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a b s t r a c t

Demand Side Management (DSM) implies intelligently managing load appliances in a Smart Grid (SG).
DSM programs help customers save money by reducing their electricity bills, minimizing the utility’s
peak demand, and improving load factor. To achieve these goals, this paper proposes a new load
shifting-based optimal DSM model for scheduling residential users’ appliances. The proposed system
effectively handles the challenges raised in the literature regarding the absence of using recent, easy,
and more robust optimization techniques, a comparison procedure with well-established ones, using
Renewable Energy Resources (RERs), Renewable Energy Storage (RES), and adopting consumer comfort.
This system uses recent algorithms called Virulence Optimization Algorithm (VOA) and Earth Worm
Optimization Algorithm (EWOA) for optimally shifting the time slots of shiftable appliances. The system
adopts RERs, RES, as well as utility grid energy for supplying load appliances. This system takes
into account user preferences, timing factors for each appliance, and a pricing signal for relocating
shiftable appliances to flatten the energy demand profile. In order to figure out how much electricity
users will have to pay, a Time Of Use (TOU) dynamic pricing scheme has been used. Using MATLAB
simulation environment, we have made effectiveness-based comparisons of the adopted optimization
algorithms with the well-established meta-heuristics and evolutionary algorithms (Genetic Algorithm
(GA), Cuckoo Search Optimization (CSO), and Binary Particle Swarm Optimization (BPSO) in order to
determine the most efficient one. Without adopting RES, the results indicate that VOA outperforms the
other algorithms. The VOA enables 59% minimization in Peak-to-Average Ratio (PAR) of consumption
energy and is more robust than other competitors. By incorporating RES, the EWOA, alongside the
VOA, provides less deviation and a lower PAR. The VOA saves 76.19% of PAR, and the EWOA saves
73.8%, followed by the BPSO, GA, and CSO, respectively. The electricity consumption using VOA and
EWOA-based DSM cost 217 and 210 USD cents, respectively, whereas non-scheduled consumption
costs 273 USD cents and scheduling based on BPSO, GA, and CSO costs 219, 220, and 222 USD cents.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Increased energy demand has contributed directly to the de-
letion of fossil fuel reserves over time. This will lead to an
ncrease in generation costs and encourage the emission of more
angerous carbon dioxide. To address the aforementioned issues,
lectricity networks are beginning to incorporate RERs. Utilities in
raditional grids respond to the increased demand by expanding
otal power production in response to peak demand. As a result,
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the demand–supply gap has widened. To deal with such situa-
tions, two parallel approaches have recently been developed: (i)
promoting and implementing energy-efficient techniques to de-
crease aggregated demand for energy; and (ii) devising strategies
to manage aggregated demand for energy. The two approaches
combine to form DSM. A new era of DSM may be conceivable by
upgrading the traditional grid to an SG. With SGs, it is possible
to simultaneously address a community’s uninterrupted electrical
demands and offer a solution for reducing emissions (Hasan et al.,
2018).

Household electricity consumption accounts for a significant
portion of total energy consumption (Yi et al., 2013). As energy

optimization becomes a growing difficulty facing our society, the
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Fig. 1. DSM techniques.
ajority of countries are developing a new paradigm for residen-
ial electrical power markets to meet this challenge. New tech-
ologies, such as controllable appliances, advanced meters, the
eneration of distributed energy and stand-alone storage systems,
torage systems such as batteries for plug-in hybrid electric vehi-
les, and communications capabilities, are being adopted (Graditi
t al., 2016).
People who use electricity could soon be able to get infor-

ation about how much their consumption costs. It is likely
hat dynamic pricing policies will be used at the retail level
n the next few years (Hubert and Grijalva, 2012). Generally,
SM solutions may be divided into two categories: incentive-
ased and price-based. Price-based loads, in particular, incorpo-
ate time-based pricing schemes that reflect the time-varying
holesale energy market prices on consumers’ electricity bills.

n contrast, incentive-based demand response includes offering
oluntary users incentives to interrupt their loads during higher
riced hours or when network reliability is compromised. In
his regard, the TOU price schemes have been identified as one
f the most successful demand-side management programs for
owering the operating costs of sustainable and renewable energy
ystems. In the TOU, prices are established well in advance, up to
year in advance, and establish a variable pricing structure for
houlder, on-peak, and off-peak hours, as well as for low peak
ours. On the consumer end, customers have an incentive to shift
heir electricity consumption from high to low peak hours in
rder to reduce PAR and electricity bills, which is referred to as
‘DSM’’ (Ali et al., 2023a).

DSM is defined as "changes in end users’ energy use that
im to increase consumption during off-peak times and decrease
n-peak consumption’’. Flattening demand fluctuations is a goal
f DSM programs. DSM will benefit both the customer and the
tility. In response to the incentives, it encourages customers to
educe peak demand. The DSM strategy synchronizes the needs of
he energy customer and the provider. By reducing high peaks on
he utility side, DSM programs are beneficial in preventing out-
ges and reducing the use of spinning reserves throughout peak
oad intervals. They also help to harmonize the supply–demand
atio and enhance the reliability of the grid (Ali et al., 2023b;
asim et al., 2022c; Bilal et al., 2021a). With DSM programs, inte-
rating RERs into residential units offers more efficient, reliable,
nd attractive solutions. It has the potential to reduce residential
lectricity costs while also mitigating utility peak demand. DSM
ontrols the electricity price by reducing energy consumption. To
4019
achieve this goal, user appliances are classified as shiftable or
non-shiftable. The DSM techniques modify the demand patterns
of customers to create the desired modification in the load shape
by moving only the shiftable appliances during peak hours to
an inexpensive period or a time with lower electricity demand.
DSM concentrates on energy-saving technology solutions, bill
tariffs, and financial incentives rather than improving the ex-
panding generation capacity. Using an appropriate objective and
DSM methodology, peak intervals of the distribution system’s
load curve can be effectively rescheduled to minimize system
instability caused by higher loads. Six DSM techniques permit the
modification of the load profile curve: (1) valley filling; (2) peak
clipping; (3) flexibility of the load curve; (4) load shifting; and (5)
conservation and growth strategies. Fig. 1 illustrates the six DSM
approaches.

Valley filling collects Energy Storage Devices (ESDs) to bring
loads at off peak hours (Shengan et al., 2011). Peak clipping
entails the elimination of consumption peaks above a certain
threshold. Peak clipping directly controls loads to reduce peak
demand. This disrupts consumer comfort and reduces service
satisfaction. Load shifting moves peak loads to off-peak hours,
thereby reducing energy demand at peak load time slots. By
reducing customer demand, strategic conservation objectives can
improve load profiles. Strategic load growth enables individuals
to respond rapidly to high demand. Individuals can actively en-
gage in the load control strategy, known in SG management as
flexible loads (Alessandro et al., 2013). The research presented in
Yi et al. (2013) and Graditi et al. (2016) demonstrates the use of
various types of battery energy storage systems to reduce elec-
tricity costs while maintaining grid stability. Another study (Peng
and Tomsovic, 2003) examines the effect of line losses and limits
on electricity prices, which are then used to manage residential
energy use.

In this context, intelligently incorporated energy management
systems focusing on end-user behaviors have been widely re-
garded as particularly successful in lowering system costs while
enhancing reliability. Furthermore, an efficient DSM program can
reduce peak demand and therefore enhance load factor. DSM
techniques, especially in SG environments, can considerably in-
crease the system’s self-sufficiency. Therefore, the accompanying
DSM interventions offer an efficient framework for end-users to
engage in electricity markets and move their non-critical loads
into off-peak hours, thereby aiding in the smoothing of the ag-
gregate load profile (Jasim et al., 2022c).
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Scientists recently presented DSM solutions that help con-
umers use less energy by incorporating RES or running loads
n off-peak periods. Energy management approaches have been
eveloped to minimize energy usage, peak demand, and carbon
missions. The stationary models in Hasan et al. (2018), Hubert
nd Grijalva (2012), Ali et al. (2023a) and Jasim et al. (2022c)
ower consumers’ power expenses. Optimization algorithm-based
SM has required significant computations in previous investiga-
ions (Rahim et al., 2016; Jovanovic et al., 2016; Vardakas et al.,
016; Javaid et al., 2017; Asad et al., 2017; Rehman et al., 2017;
amir et al., 2017; Mudabbir et al., 2017; Krishna et al., 2018;
irakhorli and Bing, 2018; Fernandez et al., 2018; Adia et al.,
018). Others disregard user comfort (Vardakas et al., 2016; Asad
t al., 2017; Rehman et al., 2017; Pamir et al., 2017; Mudabbir
t al., 2017; Sharma and Saxena, 2019; Kumar and Saravanan,
019; Cheng et al., 2020; Ahmed et al., 2021; Li et al., 2021).
ome research has dismissed RERs and RES (Asad et al., 2017;
ehman et al., 2017; Pamir et al., 2017; Mudabbir et al., 2017;
rishna et al., 2018; Mirakhorli and Bing, 2018; Fernandez et al.,
018; Adia et al., 2018; Sharma and Saxena, 2019; Ahmed et al.,
021; Karthick et al., 2021; Banala et al., 2022; Venkatesh and
admini, 2022). Adopting RERs, RES, user comfort, recent, robust,
nd easy optimization methods, and a comparison mechanism for
cheduling time slots are all challenges in the literature that have
ot been solved in a single system. In this paper, we propose
n efficient and cost-effective scheduling model for residential
ppliances. Our scheduling model optimizes controllable appli-
nces’ time slots using time shifting techniques to reduce peak
nergy consumption. In addition, the model takes into account
ERs’ generated energy and storage systems in conjunction with
tility grid energy. The model generates optimally scheduled de-
and power based on VOA and EWOA algorithms. Each shiftable
ppliance is rescheduled and controlled separately using user
references, price signals, and criteria relating to their individ-
al operating times. The adopted algorithms are compared to
ther reported and published ones using the TOU pricing sys-
em to prove their effectiveness. Users profit from the model
ince it allows them to significantly reduce their monthly power
xpenditures.
The remainder of the paper is structured as follows:

ection 2 summarizes and motivates the related work. Section 3
etails the proposed approach. The simulation results are dis-
ussed in Section 4. Section 6 concludes the paper. Table 1 lists
he abbreviations and nomenclatures used in this study.

. Related work and motivation

SG is a technological network for transporting electricity from
lectric power plants to end users. SG connects all islanded supply
nits, demand elements, and utility grids through an efficient
ommunication system. These advancements can be used to im-
rove automation, enable efficient DSM, safeguard the power
ystem’s design, and promote the integration of distributed re-
ewable generation. Recently, building or home energy manage-
ent has become a critical research topic. Appliance scheduling

s one of the most important parameters to consider in an Energy
anagement System (EMS). Included in the EMS are a smart
eter, a home gateway, a power management controller, a home-
ased display device, and appliances. Various researchers have
roposed many schedules and strategies for appliances. Some
uthors created automatic control devices for scheduling the
elated appliances to produce optimal consumption for the users.
thers utilized artificial intelligence techniques to automate the
cheduling of appliances.
The DSM strategy’s goals include increasing the use of RERs,

educing the amount of power imported from the utility distribu-
ion grid, and minimizing peak load demand (Yi et al., 2013). The
4020
objective load curve is received as an input by the DSM program,
which then requires the control action to be taken in order to
reach the desired load consumption level. A DSM algorithm must
be able to handle complexities such as operation time intervals
of electrical load appliances longer than an hour and a multitude
of controllable load appliances with varying characteristics, such
as power consumption. Building EMSs and smart meters are
deployed to enable consumers to respond to the energy market’s
behavior and minimize their energy consumption during peak
prices. There are numerous studies on DSM programs and EMS-
based SGs. In this context, some of the most recent ones are listed
in Table 2.

Some of the prior studies have examined traditionally utilized
algorithm-based DSM, which has necessitated significant compu-
tations (Rahim et al., 2016; Jovanovic et al., 2016; Vardakas et al.,
2016; Javaid et al., 2017; Rehman et al., 2017; Pamir et al., 2017;
Mudabbir et al., 2017; Mirakhorli and Bing, 2018; Fernandez et al.,
2018; Adia et al., 2018), and (Li et al., 2021; Karthick et al.,
2021; Banala et al., 2022). Some studies have not embraced RERs
or RES (Asad et al., 2017; Rehman et al., 2017; Pamir et al.,
2017; Mudabbir et al., 2017; Krishna et al., 2018; Mirakhorli and
Bing, 2018; Fernandez et al., 2018; Adia et al., 2018; Sharma and
Saxena, 2019; Ahmed et al., 2021; Karthick et al., 2021; Banala
et al., 2022; Venkatesh and Padmini, 2022). Other studies (Jo-
vanovic et al., 2016; Vardakas et al., 2016; Asad et al., 2017;
Rehman et al., 2017; Pamir et al., 2017; Mudabbir et al., 2017;
Krishna et al., 2018; Mirakhorli and Bing, 2018; Adia et al., 2018;
Sharma and Saxena, 2019; Kumar and Saravanan, 2019; Cheng
et al., 2020; Li et al., 2021; Venkatesh and Padmini, 2022) did not
compare the robustness and results of their adopted algorithms to
other algorithm-based DSMs. Others are unconcerned with user
comfort (Vardakas et al., 2016; Asad et al., 2017; Rehman et al.,
2017; Pamir et al., 2017; Mudabbir et al., 2017), or (Sharma and
Saxena, 2019; Kumar and Saravanan, 2019; Cheng et al., 2020;
Ahmed et al., 2021; Li et al., 2021). According to the authors’
knowledge, the issues in the literature pertaining to the absence
of RERs, RES, and user comfort, as well as adopting recent, ro-
bust, and not complex optimization methods and a comparison
procedure with other ones for scheduling time slots, were not
addressed in a single system. This research seeks to present a
novel understanding of SG usage and energy management in or-
der to support decisions on the use of sustainable energy sources
and energy market spending, with energy customers divided into
three groups: ordinary consumers, smart consumers, and highly
benefiting smart consumers. Ordinary customers are not price
conscious; hence, they do not have EMS in their homes. Smart
users—this group of users has an EMS but no on-site energy
production equipment. Highly benefiting smart consumers are
the ones who have both EMS and RERs generation as well as
RES in their homes. For further minimizing the electricity ex-
penses of end users, recent and easy optimization strategies can
be investigated. In this paper, we present an optimal DSM pro-
gram for residential buildings that incorporates renewable energy
and storage energy using time shifting technique-based VOA and
EWOA meta-heuristic optimization algorithms. Notably, the use
of such algorithms for DSM programs has not been mentioned
previously, not even in the unmentioned previous studies; this is
the first study to apply these algorithms to a DSM system with
RERs and RES. In terms of peak consumption, electricity cost,
robustness, and computation time, the above optimization algo-
rithms are compared to commonly used ones such as GA, CSO,
and BPSO. The contributions of this paper are detailed below:

1. We proposed a model for various types of customers and
load appliances, as well as a simple method for mod-
eling user preferences, with the goal of improving load
factor (minimizing PAR), reducing energy demanded and
electricity bill costs.
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Table 1
The adopted abbreviations and nomenclatures.
Abbreviations

DSM Demand Side Management FA Firefly Algorithm
SG Smart Grid HSA Harmony Search Algorithm
VOA Virulence Optimization Algorithm CSA Crow Search Algorithm
EWOA Earth Worm Optimization Algorithm EDE Enhanced Differential Evolution
RERs Renewable Energy Resources SOA Strawberry Optimization Algorithm
RES Renewable Energy Storage ACSO Artificial Cell Swarm Optimization
TOU Time Of Use WFSA Wingsuit Flying Search Algorithm
GA Genetic Algorithm PV Photovoltaic
CSO Cuckoo Search Optimization SOC State Of Charge
BPSO Binary Particle Swarm Optimization SS Smart Scheduler
PAR Peak-to-Average Ratio IL Interruptible Loads
ESDs Energy Storage Devices BL Base Loads
EMS Energy Management System CM Cauchy Mutation
BFA Bacterial Foraging Algorithm ET Elapsed Time
GWO Grey Wolf Optimizer

Nomenclatures

Pnom
PV Nominal power of PV Eni,h Energy consumed by appliance ni during time slot h

N Solar PV number ET Home’s overall demand energy
G Solar radiation (watts per square meter) ERES,h Hourly energy generation of a PV module
Gref reference solar radiation = 1 kW/m2 ERES Daily energy generation
K The coefficient of power at different temperatures Ecostni,h The cost of energy use per hour
T amb Ambient temperature Egrid,h hourly grid energy
NOCT Nominal operation temperature EPh The price of electricity during h time slot
T ref Reference temperature under standard conditions Pc Crossover rate
V s Total solar PV system voltage Pm Mutation rate
I s Total solar PV system current Wj The weight vector associated with the jth element of

population i in EWOA
P s Total solar PV system power Npop Population size in EWOA
V bus DC bus voltage R Random number derived from a Cauchy distribution

with a scale parameter equal to one
Pb(t) Battery’s imported/exported power xg,i ith element of the earthworm
ηbatt Battery’s round trip efficiency xg1,i ith element of the newly spawned offspring earthworm

g1
ηc
batt Charging battery efficiency xmax and xmin The upper limit and lower limit of the earthworm’s

position
ηd
batt Discharging battery efficiency α Similarity variable ranging from 0 to 1

Imax Maximum charging current of the battery P Parents number
Nbatt Total batteries’ number G Offspring generated number
V batt The single battery’s voltage x12,i and x22,i ith component of the two offspring generated in EWOA

= {n1..nN } Appliances vector P1,i and P2,i ith elements of the two parents chosen for operation of
a uniform crossover in EWOA

C Total appliances numbers w1 and w2 Weight factors that can be calculated using the fitness
values of the two offspring x22 in EWOA

T ni Delay of each appliance. It bounds between upper and
lower bounds (∅1 and ∅2)

β Proportional factor used to adjust the proportions of the
xg1 and xg2

∂ni,h A collection of shiftable appliances operating in time
slot h
Table 2
Brief previous researchers studies.
Ref. Authors Year Technique(s) Findings Limitation(s)

Rahim
et al.
(2016)

Rahim S.
et al.

2016 Binary particle swarm
optimization

Cost and emission reductions Neglected the robustness of
the adopted algorithms and
simplicity of computational

Jovanovic
et al.
(2016)

Jovanovic R.
et al.

2016 Multi-objective mixed integer
programming

Reduce production costs while
still taking into account user
preference or satisfaction

Integration of RESs is ignored,
dynamic pricing and
optimization algorithms are
not adopted

Vardakas
et al.
(2016)

Vardakas J.
et al.

2016 Quasi random process Demand peaks and cost saving Neglected features are RER
integration and user comfort.

Javaid
et al.
(2017)

Javaid et al. 2017 GA, BFOA, WDO, BPSO, and
hybrid GA + BPSO-based
management controller

To reduce power demanded
and PAR.

RERs integration are not used

Asad
et al.
(2017)

Asad Ghafar
et al.

2017 Bacterial Foraging Algorithm
(BFA) and Grey Wolf Optimizer
(GWO)

To save energy Ignored RERs integration, user
comfort and electricity costs

(continued on next page)
4021
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Table 2 (continued).
Ref. Authors Year Technique(s) Findings Limitation(s)

Rehman
et al.
(2017)

Anwar Ur
Rehman et al.

2017 Firefly Algorithm (FA) and
Harmony Search Algorithm
(HSA)

Electricity cost reduction and
peak-to-off-peak load shifting

RERs integration are not used

Pamir
et al.
(2017)

Pamir et al. 2017 Crow Search Algorithm (CSA)
and Enhanced Differential
Evolution (EDE)

Lowering electricity costs,
lowering energy consumption,
lowering PAR, and increasing
user comfort

On-site renewable power
generation and backup ESD are
not used

Mudab-
bir et al.
(2017)

Mudabbir Ali
et al.

2017 BFA and EWA To reduce electricity costs and
PAR

RERs integration are not used

Hasan
et al.
(2018)

Hasan Nasir
Khan et al

2018 Bacterial foraging and
strawberry optimization
algorithms

Lowered PAR and electricity
bills

On-site renewable power
generation and backup ESD are
not used

Krishna
et al.
(2018)

Krishna Gilda
et al.

2018 Newton trust region method
and DSM indices.

To manage electricity and
reduce investment

Integration of RESs is ignored,
dynamic pricing and
optimization algorithms are
not adopted

Mi-
rakhorli
and Bing
(2018)

Mirakhorli
et al.

2018 Behavior-driven price-based
model predictive control

Lowered PAR and electricity
bills

Integration of RESs is ignored,
dynamic pricing and
optimization algorithms are
not adopted

Fernan-
dez et al.
(2018)

Fernandez
et al.

2018 Optimization model based on
Nash’s game theory

To reduce cost, PAR, and user
discomfort.

On-site renewable energy,
backup storage systems and
simplicity of computational are
not achieved

Adia
et al.
(2018)

Adia Khalid
et al.

2018 Genetic algorithm and hybrid
bacterial foraging

To lower electricity costs and
PAR

On-site renewable energy and
dynamic pricing are not used

Sharma
and
Saxena
(2019)

Sharma, A.;
Saxena, A

2019 Whale optimization algorithm Peak load reduction and
energy saving

Integration of RESs is ignored,
dynamic pricing, PAR and
electricity cost are not adopted

Kumar
and Sara-
vanan
(2019)

Kumar K. 2019 Artificial fish swarm
optimization

To minimize power electric
costs

The authors presented a
day-ahead generation and
storage scheduling problem.

Cheng
et al.
(2020)

Cheng, et al. 2020 PSO algorithm To minimize PAR and power
electric costs

Neglected the user comfort,
PAR and cost analysis of
scheduling appliances

Ahmed
et al.
(2021)

Ahmed, E.M
et al.

2021 Strawberry Optimization
Algorithm (SOA) and PSO

Minimizing electricity bills and
energy usage

On-site renewable power
generation and backup ESD are
not used

Li et al.
(2021)

Li Y et al. 2021 CPLEX solver Energy supply and demand are
balanced

Neglected optimization in load
management

Karthick
et al.
(2021)

Karthick
Tamilarasu
et al.

2021 Binary grey wolf optimization
algorithm

Demand peaks and cost savings Proposed DSM approaches for
educational loads only and
neglected storage scheduling
problem

Banala
et al.
(2022)

Banala
Venkatesh
et al.

2022 Artificial Cell Swarm
Optimization (ACSO) and
Wingsuit Flying Search
Algorithm (WFSA)

To reduce energy consumption On-site renewable power
generation and backup ESD are
not used

Venkatesh
and
Padmini
(2022)

Venkatesh, B.;
Padmini, S

2022 Ant lion optimization To reduce electricity bills,
energy use, and PAR

On-site renewable power
generation and backup ESD are
not used
2. To schedule the supply of different load appliances in the
most efficient and cost-effective way while still respecting
customer comfort requirements, an optimal DSM system
based on simple and recent algorithms is proposed. The
proposed model adopts VOA and EWOA meta-heuristics
algorithms with a TOU pricing structure. In order to de-
cide whether to adopt local user resources or not, the
outer management-based method is then layered within
the meta-heuristic-based load adaptability scheme.
4022
3. One of the most significant contributions of our work is
the efficient integration of RERs that require modifica-
tions to heuristic algorithms. This incorporation encour-
ages consumers to manage their energy consumption more
intelligently. Additionally, integration of on-site renew-
able energy and backup energy storage devices with grid
power helps address the global energy crisis and alleviate
pressure on natural resources while taking both parties’ in-
terests into account (utilities and consumers). The
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3

t
p
p

Fig. 2. A schematic illustration of the proposed model.
availability of renewable energy sources, load demand,
storage sources, and demand-side responsiveness are po-
tential interconnections among uncertainties for the op-
eration of multi-energy systems that have explicitly been
taken into consideration.

4. The centralized optimization problem is solved using the
VOA and EWOA algorithms-based DSM program for cre-
ating the optimal schedules. Specifically, each residential
home has local RER such as solar Photovoltaic (PV) and
flexible appliances, and by optimizing individual schedul-
ing, the DSM benefits will be achieved. Using the parame-
ters related to the time of operation of each appliance, user
preference, and a pricing signal, each shiftable appliance is
rescheduled and controlled separately.

5. The results of the adopted algorithms have been compared
to those of frequently used ones, such as BPSO, GA, and
CSO, in order to investigate their required computation, as
well as a robustness test based on standard deviations and
mean values of energy usage PAR.

. Proposed work

Based on the TOU pricing scheme, an ideal way to schedule
he power use of appliances in a building is presented. An im-
ortant part of the automation is making sure that the load is
roperly managed. When it comes to EMS in residential buildings,
4023
automation of appliances is very important, especially in a SG
environment. The idea of using load scheduling to keep track of
how much electricity appliances use has been introduced.

3.1. Notion of structure

A schematic illustration of the proposed model, which will
serve as the fundamental building block for the creation of op-
timization algorithms, is shown in Fig. 2. All load types must be
met by integrating renewable and storage energy into the utility
grid. The corresponding power grid and RERs function as a single
node. In order to meet peak demand, the optimization program
applies power to home loads, and ESDs could be used during the
on-peak hours. It is directly possible to meet the energy demand
of residential loads by using grid energy, renewable energy, or
energy storage systems, depending on the price of electricity
during specific hours. On the other hand, the on-site RERs and
storage system serve as a ‘‘first choice’’ source of energy for
supplying energy to loads. As a result, the load-side management
system helps to reduce the amount of energy obtained from
the utility. Integrating on-site renewable and storage energies
with the building energy management model reduces grid peaks
during high energy demand. In terms of the residential building
network, the system has smart meters, data centers, a commu-
nication network, and a way to incorporate data into application
platforms. According to Fig. 2, a smart meter is located between
the home area network and the utility, and it is responsible for
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orwarding the aggregated load demand to the utility. Next, the
tility providers determine and provide pricing signals (e.g., ToU)
sed for load scheduling based on the load data.
In this work, a new model is proposed that produces optimal

nergy consumption patterns for appliances based on the tariff
or electricity prices without human intervention. As a start-
ng point, we classified electricity consumers into three classes:
raditional consumers, intelligent consumers, and intelligent pro-
umers. Homeowners who are traditional in their lifestyles are
ot concerned with price and, therefore, do not have EMS in
heir homes or buildings. The smart user is a category of users
ho have EMS architecture but do not have renewable energy
eneration. The smart prosumer is a type of user who not only
onsumes grid energy but also produces some energy from the
enewable energy system. Smart consumers have EMS architec-
ure, renewable energy generation, and storage systems in their
omes.

.2. Renewable energy generation and battery energy storage system
odels

A great deal of attention is being paid to the integration of
ERs because of issues with energy and the environment recently.
olar energy is the most plentiful and readily available form
f renewable energy among all of the available options. How-
ver, because of its unpredictable nature, energy retailers and
onsumers are left with a slew of questions (e.g., availability, ca-
acity, and usage) (Jasim et al., 2023; Ali and Basil, 2022; Srikanth
t al., 2021; Bilal et al., 2021b). According to a study conducted
n Solar Energy (2022), the earth receives 174,000 terawatts of
olar radiation, with approximately 30% of that radiation being
eflected back into the atmosphere. However, clouds, oceans, and
and masses absorb the majority of the remaining emissions. The
ollowing Eq. (1), according to Jasim et al. (2022b) and Ahmad
nd Enayatzare (2018), takes into account all of the important
arameters that influence PV output production, like temperature
nd amount of sunlight. It is possible to express the power output
f Nth solar photovoltaic (Ps,N ) panel in the following way:

Ps,N = Pnom
PV

G
Gref

[
1 + K (Tamb +

(
NOCT − 20

800
G
)

− Tref )
]

(1)

where Pnom
PV indicates the nominal power of PV under standard

test conditions, N is the solar PV number (N = 1, 2, 3, . . .),
G indicates solar radiation (watts per square meter), Gref = 1
kW/m2 indicates reference solar radiation, and K denotes the
coefficient of power at different temperatures. Tamb stands for
ambient temperature, NOCT is the nominal operation tempera-
ture, while Tref = 25 ◦C denotes the reference temperature under
standard conditions.

If there are N solar PVs connected in parallel, the total solar
PV system voltage (Vs), current (Is) and power (Ps) are given by
Eqs. (2)–(5)

Vs = Vs,1 = Vs,2 = · · · = Vs,N (2)

Is,N =
Ps,N
Vs

(3)

Is = Is,1 + Is,2 + · · · + Is,N (4)

Ps = Vs.Is (5)

The amount of renewable energy generated from adopted
solar PV sources is depicted in Fig. 3. Solar energy can be used
for storage purposes or to power residential appliances between
the hours of h7 and h19. However, solar energy is not available
from h1 to h7 and h20 to h24, and in this circumstance, he
optimization algorithm needs to be designed in such a way that
it can manage residential loads even during peak hours. Getting
 F
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Fig. 3. Solar panel-based renewable energy generation.

rid of high peaks at off-peak times has been achieved through the
utilization of RES-stored energy. During peak hours, users prefer
to rely on RES stored energy rather than the utility grid. Conse-
quently, electricity costs and high peaks are drastically reduced.
Additionally, it will lead to grid stability.

This work makes use of ESD to save additional energy and
supply it during underload circumstances. This, on the other
hand, has the effect of significantly lowering end-user costs and
flattening the peaks on the grid side. Energy measurement is
viable when the State Of Charge (SOC) is correctly estimated. A
battery’s SOC is a time-dependent quantity that can be deter-
mined as follows (Jasim et al., 2022a; Bilal et al., 2020, 2021c):

SOC(t)
SOC(t − 1)

=

∫ T

T−1

Pb(t)ηbatt

Vbus
dt (6)

where Vbus is the bus voltage, Pb(t) is the battery’s imported/
exported power, and ηbatt is the battery’s round trip efficiency. If
Pb (t) is positive, the battery is in charging mode; if it is negative,
the battery is in discharging mode. Additionally, a battery’s round
trip efficiency is defined as follows:

ηbatt =

√
ηc
battη

d
batt (7)

where ηc
batt and ηd

batt represent the charging and discharging
efficiencies of the battery, respectively (Nouni et al., 2007). The
battery bank’s round trip efficiency is estimated to be 92 per-
cent. Additionally, it is assumed that charging and discharging
efficiencies are different, at 85 and 100 percent, respectively.

Another critical factor to consider when modeling batteries is
the maximum charging or discharging available. It is proportional
to the charge current at its maximum value and is determined by
using the formula:

Pmax
b =

NbattVbatt Imax

1000
(8)

where Imax denotes the maximum charging current of the battery
in amps, Nbatt is the total batteries’ number and Vbatt denotes the
ingle battery’s voltage.

.3. Energy management system

A load-side EMS based on TOU dynamic pricing is presented
or a residential building. Using a smart meter, the Smart Sched-
ler (SS) obtains the grid’s differential price pattern and adjusts
he user’s hourly load level in accordance with the pricing signal.
irst and foremost, by shifting the maximum allowable load from
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Table 3
Numerous appliances and their attributes.
Load type Appliances Operating time Rated power (kW)

IL Clothes washer 1–3 PM & 1–2 AM 1
Clothes dryer 1–5 AM, 9–11 AM & 7–9 PM 2.5
Electrical vehicle 8–12 PM, 5–7 AM & 9–10 AM 3
Electric water heating apparatus 5–10 PM, 1–2 AM, 4–5 AM & 7–9 AM 4

BL Refrigerator All time 1
Lights All time 1.5
peak to off-peak times, the SS optimizes the use of electrical
appliances. Second, the SS calculates the costs of hourly energy
usage and transfers the load from the utility grid to the ESD,
where the load’s cost is high. When SS is not incorporated into
the EM system, energy is allocated to appliances on a ‘‘first come,
first served’’ basis. When the SS is accessible, a more economical
method of assigning power to a group of appliances is imple-
mented. The proposed model’s objective is to maximize economic
benefit, reduce peak costs, reduce grid power dependence and
peak demand power consumption, and maximize the use of RERs.

EMS is made up of several components: the building or home
rid, display device, and electrical appliances. The home is
quipped with an intelligent appliance decision-making and
cheduling device, referred to as SS, which is integrated into the
M architecture and works in conjunction with the appliances.
ig. 2 illustrates the EMS architecture. Three distinct user types
re considered. We simulate the daily power demand of a single
ome that serves as both a consumer and generator of power
urges, which we refer to as a "prosumer’’. The smart meter
rovides energy price signals. The SS determines the ON/OFF
ontrol signals for household appliances in the most efficient
anner.
Consider a house with = n1, n2, . . . . . . nC appliances;

⏐⏐ ⏐⏐ ∈

C (total appliances numbers). Assume that H is the observation
period and there are two types of loads: Interruptible Loads
(IL) and Base Loads (BL). A washing machine, an electric water
heater, a cloth dryer, and an electric vehicle are included in
set IL. Similarly, set BL includes a refrigerator and a source of
illumination. After being activated, interruptible appliances can
be deferred at any time. A scheduling problem exists when the
number of controllable or shiftable appliances exceeds zero (i.e., A
> 0). Optimized control behavior over shiftable loads achieve
the end user objective. Assume that ∂ni,h denotes a collection of
shiftable appliances operating in time slot h, and the base loads
are considered unscheduled. This assumption is made because the
end user has indicated that they are unwilling to reschedule those
loads. Every appliance has a fixed LOT, i.e. the count of available
time slots during which it must operate, and each appliance
must complete its task within 24 h. Due to the fact that the
SS operates on the load shifting principle, each appliance can
tolerate a certain amount of delay Tni specified as follows:

∅1 ≤ Tni ≤ ∅2 (9)

where Tni represents the LOT of nith appliance, ∅1 and ∅2 are the
minimum and maximum edges of the starting and ending times
of the nith appliance, respectively.

The following equation defines the upper and lower bounds of
Tni:

0 ≤ ∅1 < ∅2, and ∅1 < ∅2 ≤ 24 (10)

If Eni,h denotes the energy consumed by appliance ni during
time slot h, the home’s overall demand energy ET is as follows:

ET =

C∑ 24∑
Eni,h (11)
i=1 h=1

4025
Additionally, we assume the household generates 80% of its
total demand through renewable energy sources. As a result, the
user must be associated with the primary utility. Taking into
account that the hourly energy generation of a PV module is
ERES,h∀h ∈ {1, 2, 3, . . . , 24}, The following equation describes the
daily generation:

ERES =

24∑
h=1

ERES,h (12)

4. Scheduled appliances: Problem formulating

Consider the set A = {n1, n2, . . . nC }, in which every appliance
consumes a different rating of power, as illustrated in Table 3. The
appliances are wired into the SS through ON/OFF relay devices.
Our objective is to keep our electricity bill to a minimum, which
is defined as follows:

min

[
C∑

i=1

24∑
h=1

Ecostni,h

]
(13)

subject to : Egrid =

C∑
i=1

24∑
h=1

Eni,h ∀ BL (13a)

Egrid,h + ERES,h =

C∑
i=1

24∑
h=1

Eni,h ∀ IL (13b)

where Ecostni,h represents the cost of energy use per hour, denoted
by the price signal times grid energy (Egrid,h).

Eq. (13) denotes the objective function for cost minimization,
while Eq. (13a) represents energy demand and balance in the case
of BL. IL’s energy requirements are always met through grid and
renewable energy sources (Eq. (13b)). A boolean variable is used
in Eq. (14) to indicate whether the appliance is ON or OFF.

ρh,ni =

{
0 if appliance ni is OFF

1 if appliance ni is ON
(14)

The scheduler allocates an optimum energy pattern to appli-
ances by solving the objective function using VOA and EWOA al-
gorithms. This process is called optimal power pattern allocation.
The scheduler shifts load away from the grid and onto RER-stored
energy in situations where residential users are subject to the
highest costs associated with purchasing grid energy. According
to Fig. 4, the proposed DSM program is executed on an hourly ba-
sis to flatten the overall energy consumption profile and optimize
the load factor. More precisely, the objective function specified
in Eq. (15) is lowered using the VOA and EWOA algorithms to
discover the optimal dispatching of demand response flexibility
resources while observing the customers’ comfort limitations, as
well as to identify the system-wide operation schedules for the
dispatchable components. The optimization algorithm’s output is
the best distribution of demand-side flexibility resources within
the problem space constrained by the comfort requirements of
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Fig. 4. Proposed model for energy management..
he combined customers. Take note that the load flexibility pro-
ram has used shiftable loads. The optimization issue thereby
oves the loads to times when the system’s total running costs
re at their lowest. As a result, the flowchart representation
f the overall process in Fig. 4 is updated to reflect the ad-
itional explanations offered. For real-world implementation of
ptimal load-flexible schedules, customers can install devices
o monitor end-use dispatchable resource usage and manage
heir ON/OFF states using dedicated switches in line with energy
ervice provider signals.

.1. VOA based optimization

This optimization algorithm is inspired by how viruses opti-
ally infect body cells. This evolutionary algorithm is based on
4026
the unique mechanisms and functions of viruses, including the
recognition of the fittest viruses to invade body cells, the cloning
(reproduction) of these cells to initiate ‘‘invasion’’ operations, and
egress from infected regions. The VOA starts with a population of
viruses and host cells. The host cell population represents the host
environment or region containing the global optimum solution.
Viruses infect the host environment. During optimization, viruses
reside in clusters called virus groups. The virus group with the
largest mean fitness escapes The best viruses from each group
are cloned before the escape operation to spread virulence in the
host. This is repeated until most of the virus population is in the
zone of the global optimum solution (Morteza et al., 2016).

Viruses tend to form communities or societies when they
congregate in a specific geographic area. Fitness is an important
factor in choosing which groups to relocate. There is a problem,
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Fig. 5. Virus evasion mechanism.
owever, because the viruses are spread throughout the host’s
nvironment. This problem can be solved by grouping viruses
ogether using the K-means clustering method. The mean fit-
ess value of each virus group is now calculated after the virus
roups were formed. To find a safe haven, the group with the
est average fitness is selected first. The best global solution is
ikely to be found in the vicinity of the most fit group. The virus
oes not immediately encircle the group attempting to avoid the
estination. Additionally, they deviate from the intended route to
each the destination group. Fig. 5 shows how the virus evades
etection and the selected group.
VOA is used to search of the best objective function solution

cost minimization) within the constraints specified. Each of the
randomly initialized gene strands (gene strands represent the

roblem solutions) is constructed as an array of bits, and their
ength is proportional to the number of household electrical
ppliances. After creating the population, the objective function
s evaluated for fitness. The fitness function is selected in such a
ay that the final load curve obtained by the algorithm is as close
o the objective load profile as possible. The following expression
epresents the fitness function::

itness =

M∑
i=1

24∑
h=1

Eni,hEPh ∀h ∈ {1, 2, 3, . . . , 24} (15)

here EPh is the price of electricity during h time slot.
After that, they disperse in the host environment via drifting

mutation) and recombination (Shifting) operators (Morteza et al.,
016; Alizon et al., 2009; Murray et al., 2012). Virus mutations are
enetic changes in the virus genome. Viruses have a rapid growth
nd reproduction rate, making genome mutations likely (Morteza
t al., 2016).
Virus mutation has two major factors: (1) the rate of mutation:

he changes in this factor are highly dependent on the length
f time a virus has been active and its ability to adapt to the
ost’s environmental conditions. (2) The frequency with which
utations occur is the inverse of mutation rate and is commonly
sed to quantify genetic changes in a population (Alizon et al.,
009).
The high degree of similarity between different viruses across

enerations indicates that recombination occurs during their re-

roductive process. Both the length of viral genetic DNA strands

4027
and the virulence of viruses and their infected host cells can
increase as a result of recombination (Alizon et al., 2009; Murray
et al., 2012). When two distinct viruses seek to infect the same
host cell, their genetic material is exchanged.

A high crossover rate ensures that the solution converges
more quickly. We discovered the optimal crossover rate (Pc) =0.9
subject to the objective function (Eq. (13)) through extensive
simulations. Thus, mutation modifies a solution locally but ran-
domly. Again, through extensive simulations, we discovered the
following relationship for the optimal mutation rate:

Mutation Rate (Pm) =
1 − Pc
10

(16)

The SS compares the energy consumption patterns of selected
healthy individuals it has chosen and then sends a command
to the home’s devices to adjust their usage accordingly. The SS
checks the 24-h time horizon, shifting loads to the least expensive
time slot. Additionally, SS shifts the movable load away from the
utility grid and toward RER-stored energy in areas where grid
energy is most expensive for the residential user.

4.2. Earthworm optimization algorithm

Also in this paper, to optimize electricity consumption, a bio-
inspired meta-heuristic algorithm called EWA (Wang et al., 2015)
is adopted. There are two types of reproductions in EWOA: repro-
ductions 1 and 2. In nature, Reproduction 1 produces only one
offspring, whether male or female, whereas Reproduction 2 may
produce multiple offspring at the same time. Multiple crossover
operators are employed to enhance the version of the crossover
head, and a Cauchy mutation is adopted to extract the optimal
value after iterations. Fig. 6 depicts a summary representation of
an earthworm’s natural behavior (Mudabbir et al., 2017).

EWOA relies on two distinct types of earthworm breeding
found in nature, which were used in its development. A weighted
summation is applied to the offspring produced by these two
types in order to obtain the final child earthworm.

The Cauchy Mutation (CM) operator is employed in order to
broaden the search space and avoid finding a local maximum. CM
aids the solution by breaking free from local optima. As a result, it
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nhances EWA’s search capability. The following expression can
e used to express the CM operator for EWA (Ishita, 2018).

j =

∑Npop
i=1 xi,j
Npop

(17)

here Wj denotes the weight vector associated with the jth
element of population i and Npop denotes the population size.

The final earthworm’s jth element is as follows:

xt+1
i,j = xti,j + RWj (18)

here R is a random number derived from a Cauchy distribution
with a scale parameter equal to one.
4028
The following are the two types of reproduction types that
have been modeled (Venkat et al., 2021):

• Reproduction 1
The fact that earthworms are hermaphrodites means that only

a single earthworm can produce an offspring. The offspring pro-
duced by the reproduction 1 are represented by the equitation
that follows.

xg1,i = xmax,i + xmin,i − αxg,i (19)

where xg,i denotes the ith element of the earthworm xg , which
denoted the earthworm g and xg1,i denoted the ith element of
the newly spawned offspring earthworm g1. xmax and xmin are
the upper limit and lower limit of the earthworm’s position,
respectively, and α is a similarity variable ranging from 0 to 1 that
indicates the separation distance between the earthworm and its
recently reproduced counterpart.
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Fig. 6. Natural behavior of an earth worm.
• Reproduction 2
Multiple offspring are produced by certain earthworms, which

s modeled as reproduction system 2, a unique earthworm re-
roduction scheme. Three distinct scenarios are considered in
his type of reproduction by varying the parents number (P) and
he offspring generated number (G). By contrasting enhanced
ross over operations like single point, uniform, and multipoint
rossover, these three cases are examined. Among these en-
anced operations, earthworm optimization provides a more op-
imal solution for the uniform crossover operation with P = 2
and G = 2, which is taken into account in this algorithm. The
two offsprings are used in this uniform crossover operation, are
produced by Eq. (20)

x12,i = P1,i; x22,i = P2,i if rand > 0.5 (20)
x12,i = P2,i; x22,i = P1,i Elsewhere

where x12,i and x22,i denote the ith component of the two off-
spring generated, and P1,i and P2,i denote the ith elements of
the two parents chosen for operation of a uniform crossover.
Earthworms produced for reproduction 2 can be calculated using
Eq. (21)

xg2 =

{
x12 rand < 0.5

x22 Else
(21)

The newly produced earthworm from reproduction 2 is deter-
mined by the weighted sum of the two offspring generated using
Eq. (22).

xg2 = w1x12 + w2x22 (22)

where w1 and w2 are weight factors that can be calculated using
the fitness values of the two offspring x22.

When both reproduction modes are used, the Eq. (23) de-
termines the earthworm’s final position in the next generation

xt+1
g = βxg1 + (1 − β) xg2 (23)

here β is the proportional factor used to adjust the proportions
f the xg1 and xg2, and it effectively maintains a balance between
lobal and local search.
It is evident from the mathematical models of the adopted
lgorithms that the VOA is easy and requires fewer computations

4029
than the EWOA; hence, the VOA required less elapsed time to
schedule the supply of load appliances than the EWOA. This is
evident and proven by the results presented in the next section.

5. Simulation results

Using MATLAB simulation environment, the simulation results
of the proposed model are introduced and discussed in this sec-
tion. To determine the electricity cost of scheduled appliances, the
TOU pricing scheme is adopted as shown in Fig. 7. A simulation
process has been conducted to evaluate PAR, energy consumption
information, and electricity costs. Also in this section, to further
prove the robustness of the proposed method and quantify the
efficacy of the recently introduced VOA and EWOA, utilized in the
proposed DSM strategy, their performances are compared with a
variety of well-established meta-heuristics, including the BPSO,
GA, and CSO. The adopted control parameters for the applied
algorithms are shown in Tables 4–8.

5.1. Electricity consumption results

In Fig. 8, the x-axis represents the daily hour and the y-
axis represents electricity consumption (kWh). Non-scheduling
appliance energy consumption (red curve) demonstrates ineffi-
cient use of electricity, with the highest peak consumption of
12 kW at a time between 21 h and 22 h. This results in an
unflatten load demand profile, which reduces the load factor (av-
erage consumption/peak consumption) and raises the electricity
bill because high demand is always subject to a high tariff. By
using the VOA and EWA algorithms, we were able to reduce the
amount of power used during peak hours. In Fig. 8(a), scheduled
appliances produce the optimal results in terms of electricity con-
sumption when compared to unscheduled appliances. Following
the application of the algorithms VOA and EVOA, the two solid
curves in green and blue depict the overall system consump-
tion without the use of RERs-based RES, while the arrow-curves
show the results of using RES. It is clear that the EWOA-based
scheduled appliances consume peak power of 10 kWh at a time
(3 h), which is more than the appliances’ consumption under the
VOA algorithm (9 kWh at a time of 23 h). In the same figure,
and by adopting RES, the peak consumption is further reduced
(8.25 kWh using EWOA and 8.2 kWh using VOA). This reduction
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Fig. 7. The adopted TOU pattern.
Table 4
VOA control parameters.
Populations size Number of clone No. of iterations Crossover probability Mutation probability Lower limit Upper limit

30 30 2000 90% 10% 0 1
Table 5
EWOA control parameters.
Populations size No. of iterations Crossover probability Mutation probability Lower limit Upper limit

30 2000 90% 10% 0 1
Table 6
BPSO control parameters.
Swarm size Particle size (bits) No. of iterations Range of velocity Lower limit Upper limit

30 6 2000 −4 to 4 0 1
Table 7
GA control parameters.
Populations size Maximum iterations Crossover probability Mutation probability Lower limit Upper limit

30 2000 90% 10% 0 1
Table 8
CSO control parameters.
Number of host nests Maximum iterations Discover rate probability Lower limit Upper limit

30 2000 10% 0 1
indicates that the proposed load-shifting-based DSM is successful
in leveling energy usage by shifting certain adopted shiftable
appliances from peak periods to off-peak ones. This will lead to a
decrease in the PAR by decreasing consumption during on-peak
hours and increasing consumption during off-peak hours. Fig. 8(b)
explained the same discussion as Fig. 8(b) to compare the adopt-
ing algorithms with the well-known algorithms (CSO, GA, and
BPSO). In reality, focusing just on peak consumption to evaluate
progress in lowering energy usage is incorrect. The control of
PAR, or load factor, is not dependent on peak consumption alone.
The PAR provides an accurate description of the load factor and
load flattening. It will be explored in the next section in order to
determine the differences between the algorithm outputs.

5.2. Electricity cost results

In Fig. 9, the x-axis represents the daily hour and the y-
xis represents the electricity cost (USD cent). In addition, this
ndicated that the electricity bill is reduced efficiently using DSM
4030
based on EWOA and VOA because the electricity tariff during
peak demand differs from off-peak demand periods. The corre-
sponding electricity costs for the unscheduled load curve and
scheduling load curve-based DSM using the VOA and EWOA
algorithms with and without adopting RES are shown in Fig. 9(a).
Fig. 9(b) shows the electricity cost results using the well-known
algorithms (CSO, GA, and BPSO) for comparison purposes. Fig. 10
depicts the total cost of energy consumption before and after
applying all algorithm-based DSMs. The black column shows that
the unscheduled load profile has a cost of 273 USD cents (DSM is
not applied). When using DSM based on optimization techniques,
we observed a reduction in cost. The EWOA-based DSM provides
the lowest costs (210 US cents) compared to other algorithms.

5.3. PAR and load factor results

The PAR achieved by VOA and EWOA with and without using
RES is shown in Fig. 11(a), while the PAR result obtained by apply-

ing the BPSO, GA, and CSO algorithms is illustrated in Fig. 11(b).
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Fig. 8. Energy consumption for 24 h of unscheduled curve, and using optimization algorithms (VOA and EWOA) in (a) and (BPSO, GA and CSO) in (b). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Electricity cost for 24 h of unscheduled curve, and using optimization algorithms (VOA and EWOA) in (a) and (BPSO, GA and CSO) in (b).

Fig. 10. The total electricity costs with and without adopting applied algorithms-based DSM.

4031
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Fig. 11. The PAR of unscheduled curve, and using optimization algorithms (VOA and EWOA) in (a); optimization algorithms (BPSO, GA and CSO) in (b). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. The load factor values of the unscheduled curve and each algorithm with and without RES.
Any decrease in PAR helps to maximize the load factor (1/PAR)
and keep the supply and demand of electricity in balance. As illus-
trated in Fig. 11(a), there is a difference in terms of PAR reduction;
the VOA technique reduces PAR by 59% and the EWOA technique
by 54%, when compared to non-scheduled appliances without
adopting RES. By adopting RES, the VOA technique reduces PAR
by almost 76.19% and the EWOA technique by 73.8%. As shown
in Fig. 11(b), without adopting RES, the GA reduces PAR by 56%,
the BPSO reduces PAR by 50%, and the CSO technique reduces
PAR by 47.8%. By adopting RES, the GA reduces PAR by 71.4%, the
BPSO technique reduces PAR by 75%, and the CSO reduces PAR by
57.14% when compared to a non-scheduled pattern. This means
the consumption curve is well flattened, and the load factor is
maximized. For example, the non-scheduled load profile has PAR
= 4.2 (green column in Fig. 11(a)), which means the load factor
is (1/4.3 = 0.23). The load factor is greatly improved by using
VOA-based DSM (1/1.7 = 0.588 without adopting RES and 1/1
with adopting RES), compared to EWOA (1/1.9 = 0.52 without
adopting RES and 1/1.05 = 0.95 with adopting RES). It can
be concluded that the case of using VOA-based DSM with RES
provides a maximum allowable load factor of 1. Fig. 12 illustrates
the load factor values for each applied algorithm-based DSM load
pattern with and without RES.
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5.4. Robustness test of the optimization algorithms

To guarantee the lowest consumption with the most efficient
algorithms, we must analyze each algorithm’s robustness test.
Additionally, the VOA and EWOA algorithms’ ability to perform
multiple crossovers enables them to find the optimal problem
solution. Non-scheduled consumption patterns perform poorly
because they do not address peak consumption issues, whereas
our scheduling strategies are intended to prevent the formation
of peaks at any hour due to appliances being distributed optimally
for 24 h. To determine the robustness of the algorithms, a total
of 20 independent runs have been performed on each algorithm.
Fig. 13 depicts the mean and standard deviation of PAR by run-
ning a simulation program 20 times without using RES. The VOA
algorithm has the smallest deviation (0.2) as shown in Fig. 13(a),
making it superior to the other algorithms in this regard, and the
next superior algorithm is a trade-off between EWOA and GA in
terms of mean and standard deviation. As shown in Fig. 13(b),
the mean of the PAR values for the GA is the smallest (1.78 kW
with GA-based DSM) when compared to the other algorithms (for
VOA = 1.86 kW, EWOA = 1.81 kW, BPSO = 2.22 kW, and CSO =

1.96 kW). Fig. 14(a) and Fig. 14(b) show the mean and standard
deviation of PAR, respectively, without adopting RES. The VOA

and EWOA algorithms have the lowest deviations (0.1 and 0.08,
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Fig. 13. the standard deviation in (a) and mean value in (b) of PAR using (VOA, EWOA, GA, BPSO and CSO) without adopting RERs, by 20 times running the simulation
rogram.
Fig. 14. the standard deviation and mean value of PAR using (VOA, EWOA, GA, BPSO and CSO) with adopting RERs, by 20 times running the simulation program.
respectively), making them superior to the other algorithms in
this regard, with very close savings results and cost values. In
terms of the mean value, the mean value of the PAR for the BPSO
is the smallest (0.84 kW).

5.5. Computational time of the optimization algorithms

Fig. 15 displays the computation time required by each applied
optimization algorithm. The Elapsed Time (ET) of each algorithm
has been calculated based on the algorithm’s parameters shown
in Tables 4–8. It is evident that the VOA and GA have a quicker
elapsed time (ET = 98.43 s for the VOA and ET = 97.86 s for
the GA), making them superior in terms of computation time.
In addition, it is evident from the mathematical models of the
adopted algorithms that the EWOA requires a lot more compu-
tations than the VOA; hence, the EWOA required more elapsed
time to schedule the supply of load appliances than the VOA.

6. Conclusion

This paper presents a new DSM approach for residential build-
ings using a time-shifting technique and a TOU pricing scheme. In
the proposed model, the VOA and EWOA optimization algorithms
have been used to optimize energy consumption and electric-
ity costs. The model adopted an electric grid, a renewable PV
source, and a backup energy storage device to modify the energy
consumption patterns of end users in response to the optimum
DSM’s operating schedule creation. The adopted VOA and EWOA
algorithms address the scheduling issue in both cases: with and

without adopting RERs-based RES. Both schedules reduce peak

4033
consumption, energy costs, and rebound peaks while enhanc-
ing load factors and user comfort. To verify the VOA or EWOA
algorithm-based DSM framework, simulations are performed, and
the proposed model is compared to current frameworks such as
the BPSO, GA, and CSO algorithms. The simulation findings and
discussion show that the proposed VOA and EWOA optimization
methods reduced PAR consumption by 59% and 54%, respectively,
without the use of renewable sources of electricity. Adopting
RES results in 76.19% and 73.8% reductions in PAR, respectively.
In terms of electricity costs, the VOA and EWOA-based DSM
costs 217 and 210 USD cents, respectively, but non-scheduled
consumption costs 273 USD cents, and scheduling based on BPSO,
GA, and CSO costs 219, 220 and 222 USD cents, respectively. As
a result of this investigation, it can be concluded that the VOA
and EWOA are the most efficient in terms of lowering the PAR of
energy consumption and the electricity costs. To determine the
algorithms’ robustness, each algorithm has been subjected to a
total of 20 independent runs. The VOA and EWOA algorithms have
the lowest deviations, both with and without RES, making them
superior to other algorithms. Finally, in terms of computation
time, the VOA and GA have shorter elapsed times (ET = 98.43 and
97.86 s, respectively), which makes them superior to the other
ones.

We recommend that future studies focus on implementing
the load-shift method with the application of an appropriate
peak-clipping DSM program and the prioritization of appliance
operation to reduce energy usage and electricity costs more ef-
fectively. Another strategy to reduce simulation-to-reality gaps
is to define strategic interactions between system players using
game-theoretical methods.
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