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Abstract—Cardiovascular disease is one of the primary 

causes of mortality and disability. By assisting in early diagnosis, 

segmentation techniques based on deep learning might help to 

lessen their severity, although extremely high levels of accuracy 

are required. Introduce a novel and flexible architecture that 

raises the bar for semantic segmentation accuracy in this study. 

Our contributions focus on the merging of strong self-attention 

mechanisms obtained from Transformer with traditional 

convolutional neural network (CNN) architecture. This hybrid 

model demonstrates improved feature representation, 

contextual understanding, and pixel-wise predictions, setting 

new standards in semantic segmentation tasks. the average dice 

coefficients for ACDC dataset by our model, AVG DICE 

92.52%, RV 90.77%, MYO 90.00%, LV 96.28% 

Keywords—image segmentation, vision transformer, residual 

blocks, deep learning. 

I. INTRODUCTION  

Individualized modeling of the heart has been employed 
for non-invasive cardiac rhythm problem diagnosis and 
therapy, including risk stratification of heart attack patients, 
estimate of the re-entry site and clinical ablation guidance [1]. 
The precise production of the individualized model, which is 
now mostly handled by seasoned professionals, is the key to 
the therapeutic use of cardiac models [2]. An automated 
segmentation approach is essential for the medical application 
of customized cardiac modeling, because simulation takes a 
long time and manual segmentation is subjective, 
unpredictable, and time-consuming. Traditional techniques 
for segmenting medical pictures have been substantially 
supplanted by convolutional neural networks (CNNs). more 
specifically, fully convolutional networks (FCNs) [1, 3]. 
These topologies frequently produce below-average 
outcomes, especially for target structures that exhibit 
significant texture, shape, and size inter-patient variation. This 
is especially true for target structures with substantial size, 
shape, and texture differences between patients. Existing 
research suggests developing self-attention strategies based on 
CNN properties to address this issue. [4] 

In contrast, the field of medical image segmentation has 
shown tremendous promise for the capacity of transformers to 
recognize distant links by leveraging self-attention. Since the 
2015 FCN proposal, Convolution Neural Networks (CNN) in 
particular have shown to be successful when applying deep 
learning techniques for medical image semantic segmentation. 

Convolution operations are geographically localized, which is 
a weakness of the CNN-based method since it prevents it from 
describing long-range associations [5]. U-shaped convolution 
neural networks (CNNs) have gained popularity with the 
publication of UNet, Ronneberger et al. [2] Self attention 
mechanisms have been suggested as a solution to this issue 
Schlemper et al. [6] As a result, structures with varied forms 
and scales (such as brain lesions with different sizes) are not 
segmented with enough accuracy. This is because the 
challenge of obtaining multi-scale contextual information has 
not yet been resolved. Transformers are a more suitable 
alternative method for representing global contextual data. 

Unlike more recent cutting-edge image recognition 
methods, by breaking the image up into patches, Vision 
Transformer (ViT) Dosovitskiy et al. [7] models the 
relationship between these patches as sequences offered a 
knowledge distillation strategy. Bakas et al. [8] carried out a 
thorough analysis to find the most efficient way for 
segmenting brain tumors. built Vision Transformers with the 
intention to teach [5]. Due to the three-dimensional nature of 
medical images from CT and MRI, volumetric segmentation 
is crucial. However, the most recent research shows that 
Transformer, a purely self-attention based approach, beats 
RNN-based approaches with various blocks in the natural 
language process [9]. 

The ViT is then proposed as a method to examine 
Transformer's feature learning capabilities in the context of 
computer vision [10]. The suggested Swin Transformer 
performs well on the tasks of semantic segmentation 
identification, object detection, and picture classification. It 
outperforms the ViT/DeiT [11] and ResNe(X)t models [12] on 
all three of the challenges. with comparable latency. Encoder-
Decoder type segmentation models, like TransUNet, are at the 
forefront of other ViT segmentation backbone research. [13], 
which offers the ViT augment ordinary UNet in the encoder 
and Swin-UNet [14], which directly shows the Swin-ViT 
blocks inserted into U-shape backbone network.  

Despite the fact that a recent study on network design with 
ViT produced promising outcomes for the discipline of 
computer vision, one of the major obstacles to implementing 
cutting-edge methods in clinical medical image processing is 
still the training approach [13]. Due to the high cost of 
clinician annotation and the necessity of high expert level 
ability, medical data typically results in a significant volume 
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of raw data with a tiny fraction of annotations in the 
community of medical imaging. In this paper, we describe an 
enhanced UNet architecture that makes use of the attention 
mechanism and residual learning. In brief, the paper's 
contributions are as follows: 

1) Enhancing Feature Representation in the Encoder 
Our key contribution lies in enhancing the encoder 

component of our architecture using a series of Residual 
blocks. Unlike conventional approaches, we apply a multi-
layered residual design that includes three convolutional 
layers, each having Parametric Rectified Linear Unit (PReLU) 
activation and Batch Normalization. The incorporation of 
such residual structures empowers the model to capture 
intricate features, while the inclusion of Dropout layers 
maintains generalization capabilities. 

2) Transformer-Infused Decoding 
Another pivotal aspect of our contribution is the 

integration of self-attention mechanisms inspired by 
Transformers into the decoder's design. The Transformer 
component consists of two ViT blocks, each with Multi-Head 
Self-Attention and Multi-Layer Perceptron (MLP) layers. In 
addition to helping the model capture long-range 
relationships, this strategic integration improves spatial 
comprehension and feature refinement, leading to predictions 
that are more accurate. 

3) Novel Up-sampling Strategy 
Incorporating a novel up-sampling strategy, we introduce 

the Up-ResBlock function within the decoder. This function 
enhances the reconstruction process by applying residual 
connections to up-sampled feature maps, effectively 
mitigating information loss during decoding. The strategic 
concatenation of encoder and decoder features ensures a 
seamless flow of information and contributes to the model's 
pixel-wise accuracy. 

4) Comprehensive ViT Integration 
Our work extends beyond conventional architectures with 

the introduction of ViT-based decoding. The ViT-block 
function is at the core of this integration, offering a 
combination of Multi-Head Self-Attention, MLP, and skip 
connections. This innovative strategy shows off the 
adaptability of our architecture in handling various semantic 
segmentation tasks by enabling the model to recognize 
intricate relationships and patterns in the data. 

 
5) Efficient Patch-Based Processing 

To accommodate the integration of Transformers, we 
introduce the patch-extract and patch-embedding layers. This 
approach streamlines the application of self-attention 
mechanisms and enhances the overall model's computational 
efficiency. 

The organization of this paper is as follows: The first part: 
contains the introduction. The second part: contains an 
explanation of previous studies related to transformers and 
segmentation of medical images, Part Three: Contains the 
working method and its installation, the fourth part: contains 
a discussion of the results, and finally the fifth part contains 
an evaluation of the proposed method. 

II. RELATED WORKS 

A. Vision transformers 

The first vision transformer (ViT), created by Dosovitskiy 
et al. [7], may employ SA to identify distant (global) 
relationships among the pixels. Recent efforts to enhance ViT 
have resulted in new SA blocks being created. [15] Tu and 

others. Reduce the computational expense of ViT by 
integrating CNNs and taking into account data-efficient 
training techniques [5]. Wang et al. [16] created a pyramid 
vision transformer for PVT utilizing a spatial reduction 
attention technique. PVT is changed by the authors into 
PVTv2. Positional encoding and Mix-FFN blocks are used in 
SegFormer, a free hierarchical transformer proposed by Xie et 
al. [17]. A pyramid vision transformer for PVT has been 
developed by Wang et al. [16] using a spatial attention 
reduction method.overlapped patch embedding, a linear 
complexity attention layer, and a convolutional feed-forward 
network [18]. A method for creating a hierarchical hybrid 
CNN transformer in MaxViT employing a multi-axis self-
attention methodology was recently described by authors [15]. 
Despite the fact that multi-scale transformer backbone design 
is not given much care and multi-scale transformers are only 
partially capable of processing spatial information, Lin et al. 
[19] emphasize that vision transformers have shown 
substantial potential. To get around the same restrictions, this 
technique employs a multi-scale vision transformer with 
attention-based decoding. 

B. Medical Image Segmentation 

The classification of the pixels of lesions or organs in 
endoscopy, CT, MRI, etc. may be viewed as a dense 
prediction challenge in the context of medical picture 
segmentation. Dong [20] is one illustration. Because of their 
complex encoder-decoder architecture, U-shaped designs, 
such as those created by Ronneberger et al. [2], Zhou et al. 
[21], Huang et al. [22], and Lou et al. [23], are often employed 
in medical picture segmentation. According to Zhou et al. 
[21], the creators of UNet++, UNet is a hierarchical encoder-
decoder design that utilizes sub-networks connected by dense 
skip links. The full-scale skip connections with intra-
connections between the decoder blocks are examined by 
UNet3Plus. Transformers are now often employed to 
categorize medical image data, claim [22]. 

Dong and the others 18 Using PVTv2, the encoder is Wang 
et al. [18], and the opposite emphasis Attention blockers in 
the decoder include Fan et al. [24], Chen et al. [13], and Woo 
et al. [25] authors of PraNet. The designers of CASCADE, 
Rahman and Marculescu [26], offer a cascaded decoder that 
enhances features by using attention modules. By combining 
Transformer and U-Net, Fu et al. [27] are able to segment 
medical pictures effectively and totally automatically. 
Various authors Create a brand-new DualNorm-UNet for 
network normalization that simultaneously integrates 
regionally specific local statistics with global image-level 
data [28]. We suggest our model, a system for segmenting 
medical images that incorporates residual blocks and 
transformer blocks, when compared to earlier techniques 
based on pure convolution and pure transformer, our 
suggested hybrid network performs and is more resilient. 

III. PROPOSED METHOD 

We give a thorough explanation of our painstakingly 
designed image segmentation model in this section. The 
robust and accurate framework for picture segmentation 
produced by our method, which seamlessly combines the 
powerful capabilities of Convolutional Neural Networks 
(CNNs) and Vision Transformers (VITs), is shown in Fig 1. 
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Fig. 1. Capabilities of convolutional neural networks and vision 
transformers. 

The schematic representation above illustrates the core 
components of our model RT-ResUNet, that exploits residual 
learning, squeeze and excitation operations, patch Extraction, 
patch Embedding, two Vision Transformers, Reshape, and the 
attention mechanism for accurate and offering a visual of how 
CNNs and VITs collaboratively contribute to the image 
segmentation process. 

Our methodology is driven by a singular goal: precision in 
image segmentation. This pursuit of accuracy is underpinned 
by the harmonious synergy of the following potent 
components: 

C. Encoder 

The Encoder serves as the foundational pillar of our image 
segmentation model, designed to meticulously capture 
hierarchical features from the input image. This component is 
comprised of four Residual blocks, each of which plays a 
crucial role in the feature extraction process. 

Residual Blocks: Hierarchical Feature Extraction at the 
core of our Encoder, the Residual blocks are the workhorses 
responsible for hierarchical feature extraction. Each Residual 
block consists of N sequential Conv2D blocks, where N 
corresponds to the number of Conv2D blocks within a 
Residual block in the encoder. The Conv2D block, in turn, 
comprises a convolutional layer, PReLU activations, and 
batch normalization, meticulously crafted to enhance the 
model's feature learning capabilities (as depicted in Fig. 2).  

Skip Connections: Preserving Information to facilitate 
gradient flow and mitigate the vanishing gradient problem, 
each Residual block is augmented with a skip connection. This 
architectural feature allows the input tensor to be added 
directly to the output tensor of the block. This not only aids in 

the preservation of critical information but also promotes 
efficient training of deep networks. 

Down sampling Mechanism: However, it is important to 
note that down sampling occurs within a specific segment of 
each Residual block, as illustrated in Fig. 3. After the skip 
connection, the tensor undergoes further processing through a 
sequence of operations, which includes PReLU activations, 
dropout, and a Conv2D block. This particular segment is 
where the down sample operation takes place, reducing the 
spatial dimensions of the tensor. 

The Encoder's primary function is to capture and encode 
hierarchical features present in the input image. The Residual 
blocks, each consisting of N Conv2D blocks, ensure that 
features at varying levels of abstraction are adequately 
represented. The skip connections retain the vital information 
flow while the down sampling approach fine-tunes the feature 
maps' spatial resolution. Our model can comprehend both 
low-level and high-level visual information due to the 
hierarchical feature extraction procedure, which eventually 
improves the precision and accuracy of image segmentation. 

 

Fig. 2. Schematic representation of Conv2D block. 

 

Fig. 3. Schematic representation of residual block. 

D. Vision Transformers (VITs) 

Following the Encoder's feature extraction phase, as we 
move from the Encoder to the Decoder, we are easily 
transitioned to the Transformer component. This segment 
comprises two Vision Transformer (ViT) blocks, they are 
essential for capturing long-range relationships and context in 
the data. Our objective is to transform the feature 
representation from the Encoder into a format that the 
Transformer can effectively process [7]. To achieve this, we 
perform tokenization by reshaping the input feature tensor, 

denoted as � ∈ �������	 , into a sequence of flattened 2D 

patches 
���   ∈  ����∗���� � �, . . , ��. Each of these patches 

has a spatial dimension of � � � , and N represents the total 

number of patches, calculated as � � ��
��  (input sequence 

length). 
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Patch Embedding, Capturing Patch Information with 
tokenization complete, we move on to Patch Embedding. 
Here, our objective is to map the vectorized patches (��) into 

Representing a latent D-dimensional embedding space via a 
trainable linear projection. for these patches to maintain 
crucial positional information, we introduce specific position 
embedding. The addition of position embedding ensures that 
the model retains a sense of the spatial relationships between 
patches. This operation can be summarized as follows: 

 �� � �����; ����;!!!; ����" # ��$%& , (1) 

where � represents the patch embedding projection matrix of 
size ��� ! �	 � ' , and ��()  represents the position 

embedding matrix of size��' . These position embeddings 
are learned during training, allowing the model to adapt to 
different spatial contexts. 

Vision Transformer, we develop a Transformer encoder 
made up of L levels in the Vision Transformer (VIT), with 
each layer meticulously designed to capture complex 
connections in the input data. These layers effortlessly switch 
between Multi-Head Self-Attention (MSA) and Multi-Layer 
Perceptron (MLP), two essential building components. The 
essence of our VIT architecture lies in its hierarchical 

composition. Each layer - identified by the * + ,ℎ layer can 
be expressed as follows: 

 z/` � MSA�LN�z/ + 1	� # z/ + 1 (1) 

 z/ � MLP�LN�z/`	� # z/`. (2) 

These equations unveil the intricate operations within each 
layer. Here, �8 represents the output state of the layer, while 
�8 + �  is the preceding layer's output. 9��. 	  signifies the 
crucial layer normalization operation, ensuring stable training 
and consistency throughout the model. For a visual grasp of 
the architecture and structural layout of a Transformer layer, 
please refer to Fig. 4, which provides a concise illustration of 
this integral component. 

 

Fig. 4. Structure of a transformer layer. 

E. Decoder 

The Decoder component is instrumental in our model, 
tasked with the critical role of reconstructing high-resolution 
segmentation masks [13]. This is achieved through the 
utilization of multiple Up-Residual blocks, closely resembling 
the Residual blocks in the Encoder [12]. However, their 
primary function diverges significantly; instead of down-
sampling, these Up-Residual blocks specialize in up-
sampling, enabled by Conv2DTranspose layers. 

Up-Residual blocks serve as the vital bridge between the 
abstract, the encoder's high-level feature extraction and the 
output of the segmentation. They meticulously apply 
Convolutional layers, Parametric Rectified Linear Unit 
(PReLU) activations, and Batch Normalization to enhance the 
richness and context of the encoded features. 

The distinctive feature of these Up-Residual blocks is their 
proficiency in up-sampling, effectively expanding the spatial 
dimensions of the data. Conv2DTranspose layers are the key 
enablers of this up-sampling process, allowing the model to 
regain any fine-grained spatial information that could have 
been lost during the first down-sampling steps. 

Final Layer, At the pinnacle of the Decoder resides the 
final layer, a critical element for multi-class segmentation. 
This layer is meticulously designed, incorporating a 
Convolutional layer that operates on the up-sampled features. 
Its paramount function lies in the application of the Soft-Max 
activation function. The Soft-Max activation function is a 
cornerstone of multi-class segmentation tasks. It expertly 
transforms the raw model output into a probability distribution 
over multiple class. Each pixel in the output corresponds to a 
specific class, and the Soft-Max activation ensures that the 
pixel values are normalized, summing up to 1 across all 
classes. This normalization process provides a clear and 
intuitive delineation of class membership for each pixel in the 
final segmentation map. For a visual grasp of structure and 
organization of the Decoder component, please refer to Fig. 5, 
which offers a schematic representation of this pivotal 
segment of our model. 

 

Fig. 5. Schematic representation of up-residual block. 

IV. IMPLEMENTATION DETAILS 

F. Data Preprocessing and Data Enhancement 

ACDC Dataset .100 cardiac MRI images from various 
sources are part of the ACDC collection. From each MRI scan, 
we slice three organs into two-dimensional (2D) slices, such 
as the myocardium (MYO), left and right ventricles (LV and 
RV).  

Synapse multi-organ dataset We employed a subset of 
the labelled training set for testing (training sample = 14, 
validation sample = 7, test sample = 9) and just the second 
scenario from the ACDC. In order to assess the model's 
effectiveness, we employed the mean dice similarity 
coefficient (DSC) for eight abdominal organs: the aorta, gall 
bladder, spleen, left kidney, right kidney, liver, pancreas, and 
stomach.  

Images from the same dataset are all cropped to the same 
size after being resampled to the same target spacing. The 
training approach uses a number of data augmentation 
techniques, including as rotation, scaling, Gaussian blur, 
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Gaussian noise, brightness correction, and contrast 
enhancement, because there aren't enough training examples. 

G. Evaluation Metrics 

Our loss function offers a harmonic fusion of two essential 
elements, Binary Cross-Entropy (BCE) Loss and Dice Loss, 
to enhance image segmentation tasks. Pixel-wise class 
distribution discrepancies and segmentation mask similarities 
are efficiently balanced by this hybrid loss function. 

1) Binary Cross-Entropy (BCE) Loss: 

The BCE Loss serves as a foundational element, 
quantifying the disparity between predicted and true pixel-
wise class distributions. It is expressed mathematically as: 

BCE�y>?@A, yB?AC� �
+ D

E ∑
GHIJKLM

�N	   OPQRISKMT
�N	 UVRWXIJKLM

�N	 U OPQRWXISKMT
�N	 UY

NZW

. (3) 

Here, [\]^_
�`	

represents the true label for pixel a ,  [b]_c
�`	

 

denotes the corresponding predicted probability, where N is 
the segmentation's overall pixel count. 

2) Dice Loss: 

The Dice Loss assesses the degree of similarity between 
the expected and actual segmentation masks as a complement 
to the BCE Loss. It employs the Dice coefficient, 
mathematically defined as: 

Dice�y>?@A, yB?AC� � 2. ∣ y>?@A ∩ yB?AC ∣/∣ y>?@A#∣ yB?AC ∣ (4) 

Here, signifies the intersection of pixels correctly 
classified as belonging to the target class, corresponds to the 
total amount of pixels in the predicted mask and the total 
amount of pixels in the real mask. To ensure numerical 
stability, a small constant term, denoted as 'smooth,' is added 
to the denominator. 

3) Weighted Sum: 

The final loss function is an intelligently weighted sum of 
these two integral components, formulated as follows: 

 Lossnopq/ � wstuBCE�y>?@A, yB?AC� #
wvowADice�y>?@A, yB?AC� . (5) 

The weights for the BCE Loss and Dice Loss are shown 
here as xyz{ ,  x|`}_ , and correspondingly. A deliberate 
decision was made to give Dice Loss a larger weight because 
of its increased sensitivity to minute segmentation mistakes, 
which encourages accuracy. 

V. DISCUSSION AND RESULTS 

In this part, we go into great depth on the experimental 
outcomes produced by our algorithm and examine how 
various factors affect the model's performance, which we 
contrasted using the appropriate ACDC and Synapse datasets. 
We explicitly examine the effects of different learning 
analyses from a quantitative perspective. The model is Trans 
CASCADE [24], the best transformer-based model from 
Table 1 with an average dice coefficient of 91.63%. Despite 
the fact that R50-UNet, the best convolution-based model, 
with an average dice coefficient of 87.55%, our recommended 

RT-ResUNet outperforms Trans CASCADE and R50-U Net. 
Even if these networks' accuracy in their current form is 
already fairly good, the network update we suggest is still 
quite efficient. Indicating that our approach may produce 
superior prediction analysis show Fig. 6. Layer by layer 
comparison of our technique's results shows that they are very 
close to the genuine value and that excellent outcomes are still 
feasible for the right ventricle. This is difficult to divide. We 
measured our Synapse experiments and compared our RT-
ResUNet to a range of transformer- and U-net-based 
baselines, as shown in Table 2. The dice factor serves as the 
primary assessment metric. The residual block-transformer 
based technique with the highest average score, Swin-Unet, 
earns a score of 79.13. Swin Unet has significantly lower 
results than DualNorm-UNet, which boasts the best CNN-
based results with an average of 80.3 7 and TF-Unet 85.64. 
Our RT-ResUNet outperforms the average performance of 
Swin Unet and DualNorm UNet and TF-Unet, which is a 
significant improvement over Synapse. Qualitatively. In this 
study, we show that superior global and distant semantic 
information interactions may be learnt by integrating hybrid 
residual block-transforms procedures, leading to improved 
segmentation outcomes. 

A. Results ACDC Cardiac Segmentation  

Table 1 lists the outcomes of three distinct cardiac 
segmentation techniques on the ACDC dataset using MRI data 
modality. Compared to previous approaches, our method has 
higher Dice ratings. demonstrates segmentation with the 
highest Dice scores for RV (90.77%) MYO (90.0%)and LV 
(96. 28%).We created two experimental scenarios for running 
experiments on the ACDC dataset. By employing 80 training 
data as the training set and 40 test data as the test set, the first 
scenario utilizes the whole dataset. We divided the 100 labeled 
training data into 70 training sets, 20 validation sets, and 10 
test sets in order to statistically analyze our results. The real 
labels for the 20 test circumstances were not included in the 
instruction. We may infer from these results that our technique 
performs best when used with different types of medical 
imaging data. 

Results based on data from the ACDC are shown on Table 
1, for each organ, DICE scores (%) are presented. We display 
the outcomes of OURS averaging. The dark color represents 
the results of our method. 

TABLE I.   RESULTS BASED ON DATA FROM THE ACDC 

Architectures AVGDICE RV MYO LV 

R50+UNet [11] 87.55 87.10 80.63 94.92 

ViT+CUP [11]  81.45 81.46 70.71 92.18 

VIT[4] 81.45 81.46 70.71 92.18 

TransUNet [11] 89.71 88.86 84.53 95.73 

Swin-UNet [12] 90.00 88.55 85.62 95.83 

R50-VIT[4] 87.57 86.07 81.88 94.75 

MISS Former [20] 90.86 89.55 88.04 94.99 

Trans-CASCADE 
[24] 

91.63 89.14 90.25 95.50 

(Ours) 92.52 90.77 90.00 96.28 
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TABLE II.  RESULTS FROM THE MULTI-ORGAN SYNAPSE DATASET. FOR EACH ORGAN, DICE SCORES (%) ARE PRESENTED.  
THE DARK COLOR REPRESENTS THE RESULTS OF OUR METHOD 

Methods DSC(avg) Aorta Gallbla

dder 

Kidney

(L) 

Kidney

-(R) 

Liver Pancre

as 

Spleen Stomach 

VIT [4] 67.86 70.19 45.10 74.70 67.40 91.32 42.00 81.75 70.44 

R50-VIT [4] 71.29 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95 

DualNorm-Net [26] 80.37 86.52 55.51 88.64 86.29 95.64 55.91 94.62 79.80 

SQNet [27] 73.76 83.55 61.17 76.87 69.40 91.53 56.55 85.82 65.24 

TransUNet[11] 77.48 87.23 63.16 81.87 77.02 94.08 55.86 85.08 75.62 

Swin-Unet[12] 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 

TF-Unet[25] 85.46 87.45 63.10 92.44 93.05 96.21 79.06 88.80 83.57 

R50-net[11] 74.68 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16 

Ours 87.75 88.23 85.85 87.45 84.85 96.20 70.75 89.01  85.43 

B. Maintaining the Integrity of the Specifications 

To evaluate the model's efficacy for Synapse data, we used 
the mean dice similarity coefficient (DSC) for eight 
abdominal organs, including the aorta, gall bladder, spleen, 
left kidney, right kidney, liver, pancreas, and stomach. For 
ACDC, we just applied the second scenario. As can be shown, 
for 2D medical picture segmentation, both of our versions 
outperform every CNN and transformer-based method. See 
Table 2, our approach yields the highest average DICE score 
(87.75%) of all the approaches. 

In Fig. 6 the original image in the left, predicted image in 
middle, actual image in the right, Yellow represents the left 
ventricle, green the myo, and blue the right ventricle. We 
chose a number of patients' findings at random to be 
visualized. 

 
Image  Predicted  Actual 

Fig. 6. Example of segmentation results. 

VI. CONCLUSIONS 

In this research, we suggest the RT-ResUNet, a brand-new 
network for segmenting medical images. Convolution and 
self-attention from the interconnected backbone of RT-UNet, 
high effectively utilizes the fundamental CNN properties to 
construct hierarchical object conceptions at various sizes 
using a U-shaped hybrid architectural design nusing a series 
of Residual blocks. The distinctive feature of these Up-
Residual blocks is their proficiency in up-sampling, 
effectively expanding the spatial dimensions of the data. 
Conv2DTranspose layers are the key enablers of this up-
sampling process, allowing the model to regain any fine-
grained spatial information that could have been lost during 
the first down-sampling steps. Our model can comprehend 
both low-level and high-level visual information due to the 
hierarchical feature extraction procedure, which eventually 
improves the precision and accuracy of image segmentation., 
we develop a Transformer encoder made up of L levels in the 
Vision Transformer (VIT), with each layer meticulously 
designed to capture complex connections in the input data. 
These layers effortlessly switch between Multi-Head Self-
Attention (MSA) and Multi-Layer Perceptron (MLP), two 
essential building components. Our objective is to transform 
the feature representation from the Encoder into a format that 
the Transformer can effectively process, Play Transformer's 
potent self-attention mechanism as well, which ties global 
context to long-term dependencies and characteristics 
retrieved by convolution. RT-ResUNet hybrid structure is the 
basis for context. Based on this hybrid structure, RT-ResUNet 
has advanced significantly over earlier segmentation 
techniques based on Transformer. We anticipate that RT-
ResUNet will soon be able to replace manual segmentation 
techniques, greatly increasing the efficacy of specialized 
models. 
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