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Abstract. This article discusses on a new g-differential operator defined by a generalized g-Mittag-Leffler function. Motivated by
this operator, we state a new subclass for A-uniformly starlike of order @. Further, we study coefficient estimate and partial sums
for this class.

INTRODUCTION

Let o be the class of analytic and univalent functions f(z) in the open unit disk .7 = {z € C: |z] < 1} with the
normalized form

fR=z+) (1
=2
Also, we consider the subclass of the class <7 denoted by .7 generated of the following functions:
f(Z):Z—Zaij (a; >0). )
j=2
The Hadamard product of two functions f and .# denoted by f *.% is defined by

(f*%)(2) :zz—i—ialdlzl = (Fxf)(2),

1=2

where f(z) has been mentioned in (1) and .7 (z) = z+ Y72, dZ.

~

For 0 < { < 1, the subclasses .#*({) and €'({) of the class o/ which are called starlike and convex functions of

order §, respectively and given by
S =Afed R Zf'(z)) }
={rea (L)1},

and

ﬁ(g)z{fem:%(Z§’;£§)+1) >g}.

Lately, many authors have focused on the field of g-calculus; it is well known as g-analysis. This interest is due to
the importance of its applications in various mathematics and quantum physics fields. In 1908, Jackson [1]the first to
introduced and developed the concepts of g-derivative and g-integral. Also, the geometries for g-analysis have been
found in many studies presented on quantum groups. It has also been identified that there is a relationship between
g-integral and g-derivative. Recently, certain classes of functions that are analytic in .7Z using fractional g-calculus
operators have been investigated by many authors (for examples, see [2, 3, 4, 5, 6]).

Definition .1. [1] For 0 < g < 1, the g-factorial denoted by [n], ! is defined by:

. Tgli= 1y 21y J=1,2,3,...
[]]q,::{[ﬂ [j ]1 [2]4[1] j]:O.
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Then the g-numbers [ /], is given by

- (j€C)
W=V e Genen

=0

0 (j=0).

Definition .2. [1] The g-generalized Pochhammer symbol [k], ,, k € C is given by

Lg®
[K]1.g = [Klglk +1]g[x +2]q... [K+1—1]g,
and the g-Gamma function is given as below
Iy(k+1)= [K]qu(K) and (1) = 1.
Definition .3. [1] The g-derivative operator is defined as below

flqz)—f(2)
(q—1z

To calculate the g-derivative of the function f(z) in (1), we have

Dqf (2) = (z#0)

gz~

s

0,0 =1+

=2

We note that

limq—)l—gqf (Z) = f/ (Z) .

In 2019, [4] defined the classes of starlike and convex functions of the derivative function ®,f(z) as below

9§50

and

- ()

where § € C\ {0} and0 < ¢ < 1.

The Mittag-Leffler function has a large role in solving differential and integral equations. Recently, it has become
a topic of great interest in the field in a calculus and its applications. So, some mathematicians consider the classic
Mittag-Leffler function to be the Queen function of fractional calculus ( for example, see [7]).

Mittag Leffler in 1903 [8] established the function E(z) as follows

o !

E:(z) = zg(') m,(r,z eC,%Z(t) >0).

Wiman in 1905 [9] presented the generalization of Mittag-Leffler function given by

Zl

Een(2) 120 oo (T € SR, A ()] >0)

Prabhakar in 1971 [10] provided the function Efﬁu (z) as the following form
I

B0 = T iy (500 € C0(6), 400, #(9)] > 0)
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Likewise, Shukla and Prajapati [11] (also see [12]) presented a generalization of Mittag-Leffler function

0 !
250 =Y ML (e up e C (), % (1), (p)] > 0)

where k € (0,1)UN and (p); = r(lf)(;l)d) is the generalized Pochhammer symbol particularly reduce to

k B
k"TI(’”Z‘ 1) ifkeN.
m=1 1

Many studies have focused on the study of the Mittag-Leffler function and its generalizations (see, [13, 14, 15, 16, 17,
18, 19]).
Mansour [20] introduced a new concept of the g-Mittag-Leffler function as follows

oo !

Z
E 2) = — (e C,t>0zl < (1—¢g)7").
(@2 = 1 o (6 d<(1-g)7)

Hadi et al. [21] defined a generalization of q—Mittag—Lefﬂer function given by

oo l
MLE , (q:2) ; MHZ 1 (Bpp eC[2(1). % (1), % (p)] > 0) 3)

where k € (0,1)UN and (p) = Llp (Jl;) D is the generalized Pochhammer symbol.
n.6.j

Next, we define a new g-differential operator Mz}, s f(z) : &/ — o/ depending on the g-Mittag-Leffler in (3) as follows
M2y pf(2) = MLE y (g:2) * f(2), @

MRS £(2) = (1= (0= 8)) (MLE 4 (g:2) * £ (2)) + (0 = 8)2Dg (ML , (g:2) %  (2)), ®)

MIZAT () =Ml (MBS (42 1)) ©)

Now, by (5) and (6), we show that

oo

!

M‘?’S’j =74 1+ (1, —1 -5 J&aﬁ
- ™)
=z+Y Ejad,
=2

where £ = [1+ ({1, — 1) (n - 8))/ W,JeNU{O} and0 < <n.

Making use of the new g-differential operator MT P 5 f(z) and the class of A-uniformly starlike functions of order @
defined by [22], we introduce the following subclass:

Definition 4. For 0 < a <1, 0< @ < 1, A > 0, a function f(z) belongs to the subclass gfu 0.6 *(q,j:2) of A-
uniformly starlike function of order @ if and only if
D, (MI2)f (2 D M) f (2
R oMz g)) —o|>A oMz g)) —1| ze#. )
(1—a)z+a(M]y 7 f (2) (1—a)z+a(My 7 f(2)

We also set

ora DA,
TG ns (@52 =9 5 a2 (T

070002-3

9€19€:2¢ ¥20z Atenuer go



SET OF MAIN RESULTS

In the first theorem, we present the coefficient estimate for the function f(z) in (1) to be in the subclass gg fn%a (g,7:2).

Theorem .1. For0< o <1,0<® < 1,and A > 0. A class %Tpff’]}_"éa(q,j;z) contains the function f(z) if it satisfies

the condition below

Y ([g(14+A)—a(@+2))E)|a]| < 1— . )
=2
Proof. To show that the function f(z) € gff,’,’léa (g, j;2), we just need to prove that
0, 0.,
Dy(MIjipf (2)) 1‘ 2 ( Dy(MIiipf () 1) o
1.8.j o 1.8.j I B
(I-a)z+aMzypf(2) (I—a)z+a(Mcypf(z))

Since —%#(z) <

, we note that

Dy (M5 () _1’_%< Dy (M5 () _1>

(1-a)z+ oM £(2)) (1-a)z+aMPS)f(2)

Z

D, (M7 =, ([, —a)Z; !
< (a)|—DMempT )| (g )R- slalle
(I—o)z+a(Mgy 5/ (2)) |2l —a X Ejla [2]

Yt ([l — )& |l

=(14+A1 p—
( ) l—ayr,Ejlal

<l-o

where we have employed the inequalities |z| < 1 and (9). This completes the proof of Theorem .1.

Theorem .2. For 0 < a < 1,0 < ®@ < 1,and A > 0. A function f(z) belongs to the class 9%’;3#; (g,Jj:z) if and
only if

Y (,(0+2)—a(@+1))Ejla| <1—-. (10)
=2

Proof. Since T is the subclass of <, then the sufficient condition holds by Theorem .1 and the functions (2). Now, we
have to prove the necessity condition.

Suppose that the function f (z) € 3{4’;_’5”;? (¢, J32) - Then, from the fact | %(z)| < |z| for z € U, we obtain

o . ! o —_
Z_Zl:2 [l]qh’jalz _ > A Zl=2 ([l]q_a) :,jCl[Zl (11)
=Y, aBjad =Y, aBjaq

In the real axis, we select the z values for which D, f(z) is real. Putting z — 1— in real values and upon clearing the
denominator of (11),

=)

Y ([ (1+2) = a(@+1)E; |a| —1—@ <0,

=2
Ko .
Corollary .1. Let f(z) € yg’;;im;‘({],ﬁz), then
1-o
|| < ——, (12)
9
for0<a<1,0<@ < 1,and A > 0, with
1-o
f@)=z+—77,
9;
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where ¢ = ([l];(1+ 1) — (@ + 1)) E,.
If1 =2, then

1-@
las| < 7
p)

where ¢ = ([2,(1+A) —a(@+ 1)) Z;.

PARTIAL SUMS FOR THE CLASS 7%%7(q, j:2)

Lately, many results were given related to partial sums of Mittag-Leffler function and its generalizations (see for
example, [23]).

Previous works were establish by Silverman [24] and many authors (see, [25, 26, 27]) on partial sums of analytic
functions. In this part, we study the partial sums property for the function defined by (1) in relation to its sequence of
partial sums of the form

m
Sm (Z) =z+ Z alzl.
=2

Theorem .3. If the function f(z) satisfies the inequality (9), then

S —1+®
%(;((Z)>)Z¢mﬂf (e X) (13)
m\Z ¢m+1
where
; l-w, ifl=23,....m
J > . ’ Ig) )
’ _{ s Afl=m+1lm+2,... 7 (14)
The inequality in (13) is sharp with the function defined by
1—-@
f(Z) =z+ i Zm+1. (15)
rﬁ—&-l
Proof. Let the function u(z) be given by
. . 1+Zm 612171 + ¢,{,+1 Zoo azl’l
L+uz) Gy | f2) Gy —1+0| 1=2 4 o | Zi=m+t1 U »
1 —u(z) T 1-o S (2) q)’{;H o 1+Y7, a7 .

It is necessary to prove that |u(z)| < 1.
Next, based on (16) we can define

it ) yooo -1
<la§ Zl=m-§—1 arz

u(z) =

- .
242Y0, a7+ (m) Y iz

So we get

J
(ﬁ;) Z(l)ozm—&-l |al‘
u(z)| <

- 9 o '
22y, lar] — <1—+zr}) I — |a|
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Now |u(z)| < 1if
J X oo m
m+
215 Z_Z |a,|§2—2g|a,|,
=m+1 =2

and equivalently

Z|a;|+ Z m“ |a\<1

I=m+1

From the inequality (9), it suffices to prove that

o J
Z |al|+ Z m+l Z 1¢ila)'|al|’

I=m+1 1=2

which is equal to

~

=2 I=m+1

Theorem .4. If the function f(z) satisfies the inequality (9), then

fm(Z)> ¢r{1+1
% A V%
(55 Z o g C€7)

m

where ¢,{l+1 >1— o with

j 1-@, ifl=23,...,m
Ui, ifl=mtlmt2,..
mt-1) = ) R

The inequality in (17) is sharp with the function defined by

Proof. From definition u(z) by

Sn@) G
@ gl -]

l4uz) &) +1-o
l-u(z)  1-@

and following the same method in Theorem (.3).

Theorem .5. Let the function f(z) satisfies the inequality (9), then

Dy(f @)\ - et — Im+1],(1-@)
7 <@q(fm <z>>> = o (e )
and
i)q(fm (Z)) (b,{,ﬂ
g( D4(f(2)) ) - Oy +m+1],(1- @) e )

where (l),{hLl > [m+1], (1 — @) with

. ,(1-@), if [=23,....m
¢ > 6o

), if l=m+1,m+2,... "
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The inequalities in (20) and (21) are sharp with the function defined by (15).
Proof. Let the function u(z) be given by
J

1+”(Z) m+1 :Dq(f(z)) ;{1+l [m+]]q(1 —G)')

_ _ . , (23)
I—u(z)  [m+1],(1-0) | D4(fn(2)) )
where
¢m o -
([mﬂ]“)) Yimer g™
u(z) = 5 .
2+2%0, [l]qalZl_1 + <[m+1]m+l> I ] az! =1
Now, |u(z)| < 1if and only if
m J+1 oo
[ # <.
l; []q|dz|+[ T, ( Z 1, la| <

From the inequality (9), we have to prove that

m J o0 o J

9;
Z \atl+ o Y, [glal<y i,
- m+1],(1-@) 4=, in1-o

which is equivalent to

m (] —[1],(1- @) = 1,07 — 1,00
) (ﬂ;)'“l* )y [m—|—1]lq(1 o) =20

=2 I=m+1

To prove the condition (21), define the function u(z) as follows:

Dy(fn(2) -

(f@)  m+1],(1-@)+ 47,

L4uz) [m+1,(0-2)+¢).

) 1, (1-0)

and we get the desired result by using similar claims in the first part.

CONCLUSION

Recently, g-calculus has received a great attention due to wide applications in many fields, especially mathematical and
quantum physics. In this article, we defined a new g-differential operator associated with g-Mittag-Leffler function.
Using this operator, we introduced a new subclass of A-uniformly starlike functions of order @. Moreover, we studied
the partial sums of this subclass.
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