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Introduction 
�

Although iron is one of the most abundant elements on earth, about a third of 

the world's population are affected by iron deficiency. Main drivers of iron 

deficiency are beside the chronic lack of dietary iron, a hampered uptake 

machinery as a result of immune activation. Macrophages are the principal cells 

distributing iron in the human body with their iron restriction skewing these cells 

to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced 

impact on immune cells, favoring Th2-cell survival, immunoglobulin class 

switching and primes mast cells for degranulation. Iron deficiency during 

pregnancy increases the risk of atopic diseases in children, while both children and 

adults with allergy are more likely to have anemia. In contrast, an improved iron 

status seems to protect against allergy development. Here, the most important 

interconnections between iron metabolism and allergies, the effect of iron 

deprivation on distinct immune cell types, as well as the pathophysiology in atopic 

diseases are summarized.  

Although the main focus will be humans, we also compare them with innate 

defense and iron sequestration strategies of microbes, given, particularly, attention 

to catechol-siderophores. Similarly, the defense and nutritional strategies in plants 

with their inducible systemic acquired resistance by salicylic acid, which further 

leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be 

elaborated as both are very important for understanding the etiology of allergic 

diseases.  

Many allergens, such as lipocalins and the pathogenesis-related proteins, are 

able to bind iron and either deprive or supply iron to immune cells. Thus, a locally 

induced iron deficiency will result in immune activation and allergic sensitization. 
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However, the same proteins such as the whey protein beta-lactoglobulin can also 

transport this precious micronutrient to the host immune cells (holoBLG) and 

hinder their activation, promoting tolerance and protecting against allergy. Since 

2019, several clinical trials have also been conducted in allergic subjects using 

holoBLG as a food for special medical purposes, leading to a reduction in the 

allergic symptom burden. 

 Supplementation with nutrient-carrying lipocalin proteins can circumvent the 

mucosal block and nourish selectively immune cells, therefore representing a new 

dietary and causative approach to compensate for functional iron deficiency in 

allergy sufferers. 

The ability of iron to act as an electron receptor or donor forms the 

fundamental basis for its essential role in supporting basic cellular processes, of 

which oxygen transport via iron-containing heme in hemoglobin is the most well-

known [1]. As such, iron is not only essential for humans but extends to almost all 

organisms that we consume (e.g., plants, animals), symbiotically live with as 

commensal microbes or are pathogenic and infect us. 

Although iron is one of the most common elements on earth, about a third of 

the world's population are affected by iron deficiency, with, predominantly, 

infants, preschool children, young menstruating women, and women in the 

second/third trimester of pregnancy and postpartum being affected [2, 3].  

In western countries, female gender and persons with a vegetarian or vegan 

diet, blood donors but also elite endurance athletes due to inflammation-induced 

functional iron deficiency are at greater risk [4]. 

Besides blood loss, there are two main drivers for iron deficiency, chronic 

lack of dietary iron, and/or a hampered uptake machinery usually as a result of 

immune activation. Iron is closely linked with our immune system as the major 
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contributor for systematic iron recycling; shuttling and distribution are the 

macrophages, which are also key cells in innate immunity, with their iron status 

determining activation or suppression of the immune machinery. 

Many respiratory allergens, such as pathogenesis-related proteins and 

lipocalins, are able to deprive antigen-presenting cells from iron, thereby initiating 

presentation and immune activation. Iron deficiency also favors survival of Th2-

cells, facilitates antibody class switching, and is also an essential contributor in the 

effector phase as a lack of iron primes mast cells for degranulation. 

In this review, we highlight the most important interconnections between iron 

metabolism and allergies, the effect of iron deprivation on distinct immune cell 

types, as well as the pathophysiology in atopic diseases. Although the main focus 

will be humans, we also compare them with innate defense and iron sequestration 

strategies of microbes and plants important for the etiology of allergic diseases and 

give epidemiology, preclinical and clinical evidence for exploiting the iron-

immune regulatory axis to combat the atopic march. 

Iron is present in our body mainly in the ferrous (Fe2+, acting as an electron 

donor) or ferric form (Fe3+, an electron acceptor). Under anaerobic conditions, the 

ferrous form, which preferentially binds to nitrogen and sulfur ligands [5], is 

favored, whereas, in oxygen-rich environments, ferric iron is the most dominant 

form.  

Due to its incredible high affinity to oxygen, “free iron” is biochemically 

dangerous as it can damage tissue by catalyzing the formation of oxygen radicals 

that attack cellular membranes, proteins, and DNA [1] (Haber-Weiss reaction). 

Hence, under healthy conditions, no appreciable concentration of “free iron” is 

present as iron is virtually always present in a complexed form (e.g., as heme) 

and/or protein-bound form (e.g., bound to transferrin, lactoferrin, etc.) [6]. 
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Moreover, iron uptake is highly regulated with a sophisticated iron-uptake 

machinery existing not only in humans [7] but also in bacteria [8], fungi, and 

plants [9], emphasizing that iron acquisition is always an active, regulated process. 

The non-transferrin bound iron pool (NTBI) represents the presence of iron, 

not bound by transferrin in the circulation. As such, it comprises the ferric iron-

binding proteins lactoferrin and ceruloplasmin, a copper-containing ferroxidase 

that is essential to export iron out from the tissue to the circulation. It includes 

members of the lipocalin family, such as LCN1 and LCN2 [10–12], binding to a 

plethora of iron-siderophore complexes but also to heme as the lipocalin alpha1-

microglobulin [13–16]. 

 Moreover, heme-binding proteins, such as hemopexin and peroxynitrite 

isomerase THAP4 [17], as well as haptoglobulin binding to heme-containing 

hemoglobin and a large number of poorly defined low molecular weight, belong to 

the NTBI. Known low-molecular weight compounds of the NTBI are ferric iron-

binding citric acid, being the major representative here [18]but extending to amino 

acids, such as glycine and asparagine [19], ATP/AMP, and catecholamines 

[dopamine [20], norepinephrine [21], and epinephrine [22]]. Dietary-derived 

catechol flavonoids have also been suggested to be part of the NTBI that partake in 

iron homeostasis [23]. 

Intracellularly, iron concentration is about 1 μM but may range from 0.5 to 10 

μM [24, 25] and is part of the so-called labile iron pool, LIP, for further 

incorporation into iron-dependent enzymes and electron transfer proteins, with 

glutathione acting presumably as a cellular buffer [26].  

The ferritin H subunit (FTH) oxidizes ferrous to ferric iron for storage within 

ferritin. Although the ferrous form seems to be intracellular prevalent, endogenous 

ferric-binding siderophore such as 2,5-dihydroxybenzoic acid [26] also partakes in 
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iron transport and homeostasis [26], with a deficiency here causing intracellular 

iron accumulation. 

The human body contains about 4-to-5-g iron with men having, on average, 

50 mg/kg and women about 38 mg/kg. Roughly, two thirds of the total body iron is 

contained in heme within hemoglobins in red blood cells [27], with the next 

biggest store being the liver (≈1 g) and the mononuclear phagocyte system (≈0.6 

g), in which iron is stored in ferritin [28] as ferrihydrates and in hemosiderin, 

which is a poorly defined iron-storage complex, presumably composed of ferritin, 

denatured ferritin, and other materials [29].  

About 0.3 g of iron in heme is present in the myoglobins of the muscles 

[30, 31]. All other cellular iron-containing proteins and enzymes are estimated to 

bind a total of about 8 mg of iron. 

The daily uptake of iron through food is about 1–2 mg, just as high as the 

daily loss of iron through desquamation of the enterocytes lining the gut or of the 

skin and due to smaller bleedings. Iron may leave the body also through urine, bile 

or sweat, although in considerable smaller and usually neglectable amounts [32–

34]. 

About 10–20 mg iron is consumed daily via the normal diet representing the 

major iron source in humans, of which a tenth is absorbed. Within the digestive 

tract, iron is present in two forms: as heme iron (meat, fish) and non-heme iron 

(cocoa, legumes, cereals, fruits) of which heme-iron uptake is about five times 

more efficiently absorbed than non-heme iron. Its bioavailability is further 

determined by the individual iron status and physiological condition and is 

reflected by the production of hepcidin [35]. 

The chief area of iron absorption is the duodenum and the proximal jejunum 

[36], which is more acidic, with a pH ranging from 4 to 5 than the rest of small 
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intestines, with a pH range between 7 and 9. It is also the site where pancreatic 

juices and bile enter the small intestines. 

Heme iron is transported as heme (from meat) into the enterocytes via the 

known transporter for folate being the high-affinity folate transporter PCP/HCP1 

(SLC46A1) [37–39], and also the duodenal cytochrome b; Dcytb is able to bind on 

the lumen and on the cytoplasmic side to heme molecules [40–44]. 

For non-heme iron, which is typically ferric iron chelated by low molecular 

weight compounds (e.g., plants, meat), reduction by ascorbic acid and/or duodenal 

ferric reductases, such as cytochrome b, Dcytb, STEAP2, and FRRS1 [41, 42], has 

to precede before uptake via the divalent metal-ion transporter 1, DMT1, and 

ZIP14 is initiated [44, 45]. 

 Iron-carrying proteins, such as lactoferrin [46], transferrin [47], or ferritin 

from food, are efficiently absorbed without depending on reduction or heme 

transporter via receptor-mediated, clathrin-dependent endocytosis: 

ferritin via SCARA5 [48], lactoferrin via ITLN1 [49]. Moreover, glycine and 

asparagine, but not other amino acids [19], promote iron absorption [50] (Figure 

1). 
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Figure 1 

A simplified scheme of iron homeostasis under steady-state and inflammatory 

conditions. (A) Under non-inflamed steady-state conditions, iron is reduced by 

ferric reductases (Dcytb, STEAP2, FRRS1) in the intestinal lumen to ferrous iron 

before import via DMT1 and ZIP14, heme iron is transported via the folate 

receptor HCP1, lactoferrin via ITLN1, dietary ferritin uptake occurs via SCARA 5, 

and chelated iron can be captured by LCN2 and transported by the 

enterocytes via SLC22A17. Cellular iron export occurs via ferroportin often aided 

by hephaestin and/or ceruloplasmin, ferritin seems to be exported via exosomal 

pathways, heme is exported via FLCVR. Macrophages under steady state have an 



13�

�

anti-inflammatory phenotype characterized by a large labile iron pool, low ferritin-

levels, and expression of iron importers such as CD163. They constantly take up 

but also export iron that derives from damaged red blood cells, from heme-

hemopexin, haptoglobin-hemoglobin, LCN2, transferrin, and 

lactoferrin. (B) Under inflammation, iron mobilization is blocked due to increased 

expression of hepcidin that leads to FPN degradation and trapping iron inside the 

cells. Macrophages change to an inflammatory phenotype inhibiting iron import 

and export, their ferritin-levels are increased, while their labile iron pool is 

decreased. In the circulation levels of ferritin, hemopexin, haptoglobulin, and 

lipocalin 2 are elevated, while serum iron and transferrin are decreased. 

 

Iron can also be transported via the lymphatic system, with bile itself 

contributing to iron absorption [51–53]. Newer dietary iron-supplementation 

formulation encapsules iron [ferrous iron [54]] with a phospholipid bilayer 

generating a liposomal iron or surround ferric iron in sucrosomes (starchlike 

vesicles) [55], which leads to uptake of iron via the lymphatic system and 

circumvent hepcidin-mediated blockage of iron absorption [56]. 

Once in the cell, iron is exported via the iron exporter ferroportin 1 (IREG1, 

MTP1, SLC40A1, FPN1, HFE4) (57), often with the help of Hephaestin HEPH or 

ceruloplasmin CP and is released into the circulation. Ferroportin-mediated iron 

efflux is calcium activated and functions as an iron/calcium antiporter [58]. 

Heme iron export occurs via the Feline leukaemic virus receptor (FLVCR) 

[59, 60], which is also highly expressed in enterocytes, and is dependent on 

hemopexin [61, 62]. Ferritin seems to be exported via exosomes[63] (Figure 1). In 

general, iron excretion is suppressed by inflammation and enhanced during 

erythropoiesis and hypoxia [44]. 
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Dietary phytates, representing inositol polyphosphates typically contained in 

nuts, seeds, and grains, form insoluble precipitates with iron [64] and thus inhibit 

dietary uptake [65]. Similarly, fruit- and plant-derived polyphenolic compounds 

are known to reduce the bioavailability for non-heme iron as many of these bind 

with high affinity to iron [66].  

Upon consumption, flavonoid concentrations in plasma can reach 1–10 μM 

[67] and thus may considerably influence iron homeostasis [68, 69]. Consequently, 

consumption of large quantities of purified polyphenols has been reported to 

decrease the volunteers' iron status [70–73]. However, when these polyphenols are 

already in complex with iron, dietary administration of polyphenol-iron complexes 

had been demonstrated to contribute to an improved iron and redox status in 

vivo [74, 75]. 

In 2001, hepcidin, which is highly conserved between species and only 25-

amino acids long, was discovered as the key regulator for systemic iron 

homeostasis [76]. It is mainly secreted by the liver in response to iron overload or 

inflammation [77], but, also, parietal cells of the stomach [78] and macrophages 

synthesize and secrete hepcidin.  

Under steady state, hepcidin is found in the plasma in a protein-bound and 

free-circulating form [79], with only the latter being excreted into the urine (80). 

Reported hepcidin concentration in the circulation is about 7.8 nM in men, 4.1 nM 

in pre-, and 8.5 nM in post-menopausal women [81]. Radiolabeled hepcidin 

accumulated in the ferroportin-rich organs, liver, spleen, and proximal duodenum 

[82]. 

Hepcidin decreases plasma iron levels by blocking iron absorption in the 

duodenum and iron release from macrophages, thus targeting the two entrance 

gates for iron into the circulation. Molecularly, it binds to ferroportin (FPN), 
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inducing its internalization, ubiquitinylation, and consecutive degradation of FPN 

in the lysoproteasome [77], while iron is retained within the cells [81, 83]. 

Hepcidin is also negatively regulated by folic acid, cobalamin, or vitamin D [84]. 

Under iron-replete conditions, increasing body iron levels cause an increased 

hepcidin expression, hampering further iron accumulation and acquisition in 

macrophage and liver cells, and decreased dietary iron absorption; the result is a 

reduction in serum iron [85].  

In contrast, when more iron is needed, hepcidin decreases, permitting 

macrophages to release iron and allowing an enhance uptake of dietary iron via the 

gut. 

As hepcidin is also an acute phase reactant, it is upregulated during 

inflammation to remove iron from the circulation along with iron-binding proteins, 

such as lactoferrin, haptoglobulin, hemopexin, lipocalin 2, and ferritin [81, 86]. 

Due to its dual role in iron regulation and inflammation, hepcidin levels in the 

circulation reflect on the one hand ongoing inflammation as well as the need of 

iron; consequently, in conditions of severe anemia and inflammation, low hepcidin 

levels will prevail despite the presence of inflammation [87]. 

Iron is then delivered to most tissues via circulating transferrin, which carries 

roughly 2 mg of this metal in the steady state [88]. Hemopexin also seems to 

partake in distributing dietary heme iron, which accounts for two-thirds of 

absorbed body iron, as a lack of hemopexin leads to heme accumulation in the 

enterocyte and impedes heme distribution [89].  

In healthy men, plasma iron turnover ranges from 25 to 35 mg [90] per day, 

of which only 5 to 10% is provided by absorption of dietary iron in the gut, the rest 

being predominantly iron recycled from monocytes and macrophages of the liver, 

adipose tissue, bone marrow, spleen, and lymph nodes [91]. 
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 Regarding serum levels, most iron-associated proteins dedicated to 

distributing and mobilizing iron are increased in situations of greater iron demand 

such as transferrin, hemopexin, soluble transferrin receptor, and ceruloplasmin 

[92, 93], while serum iron is low.  

In contrast, reduced levels of the same proteins in the serum/plasma at steady-

state condition usually describe the consequence of an effective iron delivery to the 

target tissues (e.g., transferrin-iron binding to transferrin receptor 1 CD71, heme-

hemopexin complex binding to CD91 expressed on hepatocytes, monocytes, and 

macrophages in the spleen and liver, haptoglobulin-hemoglobin binding on CD163 

expressed on M2-macrophages) and indicate an improved iron status. 

In contrast to the widely disturbed transferrin receptor 1 TFRC responsible for 

iron import via iron-sated transferrin, transferrin receptor 2 [373] (mainly 

expressed by hepatocytes, erythroid cells, but also by basophils and eosinophils) 

bind to erythropoietin [94, 372], exert a regulatory function [95] and do not 

participate in increasing tissue iron. Ablation or mutation of this receptor leads to 

iron overload [95, 96] in the respected tissue. 

As iron homeostasis is quite complex, there is still no international consensus 

that clearly defines iron deficiency [97] with the World Health Organization 

(WHO) defining anemia as circulating hemoglobin (Hb) levels <12. g/dL in non-

pregnant women and <13. g/dL in men [98, 99].  

However, normal Hb distribution varies not only with sex but also with 

ethnicity and physiological status; thus, recommended adjustment factors are given 

by the WHO according to, e.g., smoking habits and people living above 1,000-m 

altitude [100]. Ferritin is a good indicator for iron stores, but also, here, 

adjustments are done [101] and recommended as ferritin is elevated upon infection 

or inflammation [102].  
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Thus, the assessment of the iron status is not precise, since the available 

biomarkers reflect the iron status of different compartments in the body: serum 

ferritin assesses stored iron, while serum iron and the percentage of transferrin 

saturation reflect the iron supply to tissues. Serum transferrin receptor, erythrocyte 

ferritin, and red cell zinc protoporphyrin are indicators for the iron supply to the 

bone marrow, whereas the percentage of hypochromic red blood cells, mean 

corpuscular volume, and reticulocyte hemoglobin reflect the use of iron by the 

bone marrow. 

 As these biomarkers are affected by age, sex, disease (infections, 

inflammation), life style (e.g., blood donations, smoking, drugs, physical fitness), 

there is currently no single standardized test that can diagnose iron deficiency 

without anemia, and even the use of multiple tests can only partially overcome the 

limitations of individual tests, especially because many iron markers are elevated 

during inflammatory responses or mild immune activation [103]. 

According to the Global Burden of Disease Study 2016, estimated 1.24 billion 

individuals are affected by iron deficiency anemia, with the figures for the global 

prevalence of iron deficiency without anemia being estimated at least double. 

Immune activation and iron balance are intertwined, with a change in the iron 

status always modulating the immunological reactivity. This is reflected in the two 

main entities of iron deficiency being anemia and “functional iron deficiency.” 

However, various shades and mixed forms between these two are possible. 

During functional iron deficiency, iron is not “mobilized,” leading to functional 

impairments of cells and tissues. Only in severe cases, this results in anemia, which 

represents the most extreme example of iron deficiency. In mild to moderate cases 

of iron deficiency, anemia is not present, although the function of tissues and cells 

is already compromised. 
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Virtually, every immune activation results in functional iron deficiency 

[4, 104–108], where, despite sufficient iron stores in the liver and mononuclear 

phagocyte system (macrophages), iron mobilization is inhibited and dietary iron 

absorption is decreased by hepcidin, the master regulator of iron uptake. As such, 

even in healthy adults, iron deficiency is a driver of low-grade chronic 

inflammation [109]. 

Persons with functional iron deficiencies usually suffer from underlying 

chronic or metabolic diseases such as autoimmune [110, 111] and atopic diseases 

[108, 112–115], chronic kidney diseases [56, 116, 117], congestive heart failure 

(118–120), chronic pulmonary diseases [121–123], and obesity [124, 125], in 

which iron deficiency is associated with a worsened prognosis and outcome 

[103, 104, 126–133]. Interestingly, iron deficiency is also associated with an 

increased risk for thrombosis [134, 135]. 

As duodenal dietary iron uptake only accounts for 1–2 mg of the daily 

acquirements, iron is recycled largely through the erythrocyte hemoglobin cycle as 

the novo synthesis of hemoglobin consumes about 25 mg iron per day. Iron is 

recycled from senescent red blood cells by macrophages. Recycling occurs 

predominantly in the spleen by the for this purpose specialised red pulp 

macrophages and to a lesser degree also Kupfer cells in the liver can recycle iron 

from red blood cells. Both macrophage-types in the splenic red pulp as well as in 

the liver have by default an anti-inflammatory phenotype and are critical for 

maintaining systemic iron concentration [130]. 

Macrophages are the principal cells responsible for handling iron in 

mammals, and, thus, any change in the iron status has a direct impact on the innate 

and, indirectly, on the adaptive immune system. 
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Macrophages are present in all tissues and classically appreciated for their 

surveillance role in pathogen recognition. They have crucial homeostatic function, 

including cell repair, phagocytic clearance of apoptotic and senescent cells, and 

even cell death. Moreover, in the last decade, their function to support and restore 

the tissue homeostatic balance, by acting, on the one hand, as sensors for the local 

iron demands and, on the other hand, providing the local environment with the 

essential trace element iron, became apparent [130]. 

Macrophages are sentinels, who are highly plastic, and whole spectra of 

macrophage subtypes and activation status exist, ranging from an M1-like 

proinflammatory to an M2-like tissue repair phenotype. Importantly, they 

markedly differ in their iron handling [136].  

Indeed, M2 macrophages usually express highly CD163, the 

hemoglobin/haptoglobin receptor, have low ferritin levels, while having a large 

labile iron pool LIP, and the iron-export protein, ferroportin FPN, is highly 

expressed (Figure 2). In contrast, M1 macrophages do not partake in iron 

sequestration, although they favor an iron storage phenotype having a low LIP, 

increased ferritin-levels and decreased FPN expression (Figure 2) [126, 137, 138]. 
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Figure 2 

Iron homeostasis in macrophages. Anti-inflammatory macrophages constantly take 

up but also export iron and are characterized by a large labile iron pool (LIP) and 

low ferritin levels. In contrast, inflammatory macrophages neither import nor 

efflux iron, their LIP is small, while ferritin expression is high. Under iron-

deficient conditions, no iron can be distributed by anti-inflammatory macrophages, 

changing their phenotype towards a more inflammatory state. 

 

Of note, in the healthy steady-state conditions, the increased iron uptake by 

phagocytosis of senescent red blood cells, uptake of hemoglobin [139, 140], 

hemoglobin-haptoglobin complexes [141, 142], heme-hemopexin [143–145], iron-

siderophore laden lipocalin 2 (LCN2) [146–150], iron-laden ferritin [138, 151–

155] does not induce inflammation, but, rather, contrarily promotes an anti-

inflammatory macrophage phenotype and thus contributes to immune suppression, 

regulation, and restoration of the tissue homeostatic function as, simultaneously, 
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they serve as iron-rich nurse cells supporting other cells and tissues with iron 

[148]. 

In line, macrophage-derived transferrin has been shown to contain already 

iron and supports lymphocyte proliferation [156]. 

The tendency to develop allergies, also called atopy, affects almost one third 

of the Western population and is partly inherited. Especially in our affluent society, 

the development of allergy is paradoxically characterized by a lack of contacts and 

the absence of micronutrients. 

On the one hand, the lack of contact with people, animals, and germs leaves 

the immune system untrained, and, thus, several deficiencies of innate proteins, 

such as LCN2 [157], lactoferrin [158], uteroglobin (SCGB1A1) [159], Cathelicidin 

antimicrobial peptide [160], have been described in atopic individuals compared to 

non-allergic ones, which further underline the lack of microbial contact but also the 

lack of nutritional support by commensal microbes in atopic individuals. 

On the other hand, a lack of micronutrients signals danger to the immune cells 

and often leads—through this heightened alertness—to an exaggerated immune 

response, which is such a typical characteristic in individuals with allergy 

[161, 162]. Due to the heightened immune response, patients with atopic diseases 

also have an increased risk to develop autoimmune diseases [113]. 

In contrast, studies reveal that the earlier children have contact with other 

children, as well as animals, the less likely they are suffering from allergies [163]. 

The probability of developing an allergy decreases with the number of siblings and 

the ownership of pets [164], for example, dogs, and it is proven that regular stays 

in the immediate vicinity of farms protect against the development of asthma and 

hay fever [165]. 
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Especially in the perinatal period, an adequate nutrition is pivotal to avoid an 

atopic predisposition [166, 167]. A plethora of studies affirm that atopics suffer 

from numerous micronutrient deficiencies [114, 115, 168–180], such as vitamins A 

[181], E, [182, 183], and D, as well as folic acid and iron [112, 162]. 

 Although usually widely overlooked, these micronutrients have a profound 

impact on our genes and our immune system, resulting in many epigenetic changes 

affecting immune-associated genes [167, 184], but, most importantly, being also 

associated with enhanced inflammatory responses. 

In respect to epigenetic changes, iron deficiency is known to alter key 

metabolic and epigenetic pathways, particularly of neural cells, including the 

phosphorylation of proteins involved in iron sequestration, glutamate metabolism, 

and histone methylation [185–187]; also, liver hepcidin expression, as well as the 

liver BMP-SMAD signaling pathway, is suppressed by microRNA [188, 189]; 

however, no significant differences in circulating microRNAs between iron-

deficient and -replete persons have been observed [190], although some seem to 

participate in iron homeostatic events [191]. 

Vitamin A/D and iron homeostasis are very closely linked, making it difficult 

to distinguish the individual contributions of each micronutrient. For example, 

vitamin A promotes regulatory T cells [192] but also impacts macrophages and is a 

known contributor for iron mobilization [193] and—uptake [194], whereas 

deficiencies of both iron and vitamin A are associated with inflammation 

[195, 196]. 

Similarly, iron is also essential for vitamin D synthesis [197], so that people 

with iron deficiency usually have vitamin D deficiency too [198, 199], which 

likewise is linked to inflammation [200]. 
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Regardless of the inadequate exposure of atopic individuals with people, 

animals, and microbes, the “right diet” can also prevent or alleviate allergic 

disease. The 2021 GINA [371] guideline recommends micronutrient intake in the 

form of fruits and vegetables not only to prevent asthma but also to improve 

asthma control and reduce the risk of exacerbation (Evidence A) [201]. 

 Among foods, milk and, here, in particular, the whey protein content appears 

to reduce the risk of atopy (atopic dermatitis, rhinitis, asthma) [202–204], and this 

association has been shown, especially for drinking unprocessed raw milk. Indeed, 

even allergic children could tolerate raw milk better than pasteurized shop milk, 

showing less allergic symptoms upon drinking raw milk in a human pilot study 

[205]. 

 The atopy preventive effect of milk correlates with the amount of whey 

proteins present in the milk [206, 207] and is lost by thermal treatment [204, 208]. 

The whey protein content in the milk is highest in summer when the animals are 

kept on pastures and is lower in winter [209, 210].  

Grazing also strongly affects the iron as well as polyphenol content in milk, 

which has, indeed, higher antioxidant properties than vitamin C or E [211]. The 

polyphenol content in milk depends on the forage composition and ranges from 3.7 

to 35.8 g per-liter milk [212, 213], whereas reported iron concentrations vary from 

57 μg [214] to 1,500 μg per liter [215], which correspond to roughly 1–26 μM iron 

per-liter milk. 

Due to the loss of the heat-sensitive protective factors in whey, the ultra-high 

temperature UHT milk usually offered today does not prevent atopy. In this regard, 

it is remarkable that the main component of the whey is the heat-sensitive beta-

lactoglobulin (BLG) [216] with constitutes 50–60% of all whey proteins, from 

which we show that it has a tolerogenic effect when loaded with micronutrients. 



24�

�

BLG is a known binder of many polyphenols [catechins [217, 218]], quercetin 

[219, 220], luteolin [221], rutin [220], etc., which increases the anti-oxidant 

activity of BLG [218, 222, 223] and leads to enhanced intestinal uptake of these 

polyphenols [224].  

Concurrently, depletion of BLG reduces the antioxidant activities of milk by 

50%, and, also, heating (that destroys BLG) reduces the antioxidant activity 

[225, 226], while purified BLG is only considered a mild antioxidant [225]. 

Similarly, there are numerous reports showing the iron-binding abilities of BLG 

[222, 224, 227, 228] as the major component in whey [229] improve iron 

absorption [230–233]. 

Milk processing such as pasteurization has been shown to cause aggregation 

of whey proteins [216] to impair the ligand-binding capacity of BLG—shown with 

ligands such as retinol and palmitic acid [234], while, at the same time, its 

antigenicity increases [234]. Milk processing has also been described to decrease 

copper and iron content [235] in milk. 
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Epidemiology and Clinical Evidence of Iron Deficiency in Atopic Diseases 

 

With regard to iron deficiency and atopic diseases, large epidemiology 

consistently demonstrated that children with allergies have an up to eight-fold 

greater risk of developing iron deficiency anemia than children without allergies 

[112, 114]. 

 The greater anemic risk in allergic children is clinically relevant as iron 

deficiency during the years of growth not only causes fatigue and anemia but also 

affects the small intestinal function and cognitive development (attention, sensory 

perception, emotions, intelligence). Physicians caring for children with atopic 

diseases should clarify in their current practice whether fatigue is due to sleep loss 

caused by atopic dermatitis or asthma or whether an undiagnosed anemia is 

present. 

Iron deficiency can be “inherited” as the nutritional state of the mother is 

passed to the child. As such, the iron status of pregnant women already 

predetermines the later allergy risk of children. Several studies demonstrated that a 

good iron status of the expectant mothers lowered the risk of children of 

developing atopic dermatitis or asthma [172, 176, 236, 237].  

Low maternal hemoglobin levels are also associated with increased IgE 

antibody levels and lower lung volume in the child. Higher maternal transferrin 

concentrations during pregnancy, reflecting a lower iron status, were associated 

with an increased risk of a child's physician-diagnosed inhalant allergy [238]. 

 In an Italian study, supplementing mothers with iron and folic acid during 

their pregnancy compared to women without nutrient supplementation reduced the 

risk of their children developing atopic dermatitis by the age of 6 years by 80% 
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[176]. An inverse association was also illustrated between cord blood iron levels 

[173] right after delivery and the development of atopic urticaria, infantile 

eosinophilia, and wheeze at 4 years of age [172, 173]. 

Even in adults, the anemia risk is pertained in allergic individuals. A Korean 

study analyzing health insurance records from the health care system revealed that 

men with allergies had a 3.5-fold higher risk of being anemic than non-allergic 

men, while, in women, this difference was only about half as large [115]. 

 A possible explanation for this gender discrepancy could be the natural 

fluctuations in women's iron status, which often change due to menstrual cycles, 

pregnancies, and contraceptive methods (copper IUD), as well as due to the 

general greater tendency for iron deficiency in women to be left untreated, even in 

the absence of allergies. 

By the same token, patients with anemic diseases are also more likely to 

develop atopic diseases and asthma. Elevated IgE is a common phenomenon 

observed in anemic patients, which is not related to parasitic infestations [239]. 

Patients with chronic, even life-threatening anemia as with beta-thalassemia major 

(Cooley's anemia)—having impaired hemoglobin synthesis, which is often 

accompanied by enlarged spleens, livers and hearts—are more likely to have atopic 

diseases [240, 241] and suffer from asthma [241–244]. Similarly, also subjects 

with atopic dermatitis have a greater risk to suffer from coronary heart disease, 

angina, peripheral artery disease, and anemia [245]. 

Summing up, the studies provide evidence that, indeed, atopy and iron 

deficiency are interconnected, making anemia more common in allergic people 

than in non-allergic individuals. 
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Immune Cells Under Iron-Deficient Conditions 

 

Neutrophils, Natural Killer Cells, and Macrophages—Lower ROS Formation, 

Despite Increased Activity 

Neutrophils, monocytes/macrophages [246, 247] and NK cells [248] use iron to 

combat pathogens. During intracellular infection, they release iron-loaded 

lactoferrin into their phagocytic vacuoles where ferrous iron functions as a catalyst 

of the Haber-Weiss reaction, generating reactive oxygen species (ROS) [249]. 

Hence, under iron-deficient conditions, ROS formation and microbicidal killing are 

impaired. 

As macrophages also are the principal cells for iron distribution, iron-

deficient conditions hamper their iron-distribution capability, shifting the 

macrophage toward a more pro-inflammatory phenotype. Consequently, nutritional 

iron deficiency has been implicated in low-grad inflammation [250] and shifting of 

monocytes to a more inflammatory state in children [251]and infants [252](Figure 

2). 

Lymphocytes–Survival Advantage for Th2 Cells 

An important aspect of iron deficiency is that the decrease in red blood cells is 

often accompanied by an increase of the white blood cell population, in which 

particularly the lymphocytic population is significantly increased (253). Within the 

lymphocytes, however, particularly CD4+ cells and the CD4/CD8 ratio is reduced 

[253, 254]. 

Iron chelation inhibits T cell proliferation, as T cell activation leads to 

expression of TfR1 for iron uptake. As such, iron chelation partake in apoptosis 

induction of proliferating, activated T-lymphocytes, but not of resting peripheral 

blood lymphocytes or granulocytes [255].  
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Besides iron-uptake via transferrin, also, active uptake of oligomeric ferric 

citrate has been reported for T cells [256, 257]. T lymphocytes also actively 

modulate the NTBI pool by uptake and export, with T cell deficiency associated 

with iron accumulation in the liver and pancreas [258]. 

The acidity of lysosomes also seems to partake in iron homeostasis and cell 

proliferation. Under lysosomal pH augmentation, cellular iron via TfR1 is 

impaired, decreasing cellular viability and proliferation, whereas iron 

supplementation by augmenting the NTBI pool bypasses the need for functional 

and acidic lysosomes and rescues cellular viability and proliferation in T cells 

[259]. 

In regard, to T cell subtypes, particularly, inflammation-associated Th1 cells 

are sensitive to iron-deficient conditions [260] as iron regulates the IFN-

gamma/STAT1 signaling pathway [261]. 

Iron import into T cells seems also to affect T cell polarization, as import of 

iron via iron-siderophore-laden LCN2 has been demonstrated to suppress TH17 

polarization in a vasculitis model [262]. 

In contrast, patients with iron overload have relative lower numbers of CD3 + 

T cells, while their percentage of regulatory T (Treg) cells and the ratio of 

CD4/CD8 seemed increased [263]. 

Th2 clones exhibit larger chelatable iron pools than Th1 clones and are less 

affected by deferoxamine treatment or TfR1 blocking [264], resulting in a survival 

advantage of Th2 cells under iron-deficient conditions [260, 265, 266] (Figure 3). 

Consequently, iron deficiency prones the system toward Th2 (267), induces 

splenomegaly in mice [268], and induces increased IL-4 secretion in the 

supernatants of anti–CD3-treated splenocytes compared to controls [268]. 
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Figure 3 

Impact of iron deficiency on immune cells. (A). Th2 cells characterized by IL4 

secretion have a greater chelatable iron pool compared to Th1 cells and have a 

survival advantage under iron-deficient conditions. (B). Iron-deficient conditions 

modulate iron handling in macrophages and shift them towards a more activated, 
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inflammatory status, which facilates antigen presentation. The activation-induced 

cytidine deaminase (AID), an enzyme responsible for class switch and affinity 

maturation, is repressed by iron. Iron-deficient conditions favor AID activation and 

class switch. (C) Local iron deprivation induces mast cell degranulation, whereas 

iron repletion by transferrin, lactoferrin, and lipocalins suppresses their activation. 

Similarly, also in humans, iron deficiency per se generates a Th2 environment. 

 

 In the seminal African study, which examined the immune status of children 

with or without iron deficiency, a marked elevation of the Th2 mediator interleukin 

4 was also seen in children with iron deficiency, but not in iron-repleted children 

[269]. 

As such, under iron-deficient conditions, a Th2 environment is evidently 

created, which is the basic prerequisite for allergic sensitization (Figure 3). 

 

B Cells—Promotion of Antibody Class Switch and Affinity Maturation 

Iron deficiency also affects antibody-producing B cells, as the enzyme 

responsible for antibody class switching and affinity maturation, the activation-

induced cytidine deaminase, AID, is activated under iron-deficient conditions, 

while ferrous iron specifically inhibits this enzyme [270].  

In line, a lack of iron impairs in B cells adequate transfer of ferrous iron to the 

protoporphyrin IX in the mitochondria, thereby hampering heme synthesis and 

maintaining Bach2 activation [271], an essential transcription factor not only for 

class switching and affinity maturation but also an important regulator for T reg 

differentiation and the macrophage function [272]. 

In line, iron fortification of Vietnamese school children, but not deworming 

strategies, significantly improved hemoglobin, serum ferritin, and led to a 
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significant decrease in the measured IgE-levels [239], with another study also 

reporting a decline in antibodies upon iron fortification in women [273]. In 

contrast, decreased hemoglobin levels due to autoimmune hemolytic anemia, in 

which antibodies attack red blood cells [274], or because of infections [275] such 

as plasmodium falciparum malaria, digesting hemoglobin of the red blood cells 

(leading to anemia), are correlated with increased IgE-levels and severity [276]. 

The corollary of iron deficiency is, therefore, an antibody class switch toward 

IgE as iron deficiency simultaneously promotes a Th2 environment (Figure 3). 

 

Mast Cells—Ready to Burst 

Mast cells, the main contributor for immediate allergic reactions, are 

particularly sensitive to iron deprivation. In these cells, intradermal application of 

the iron binder desferrioxamine, an iron chelator used in the clinics against iron 

overload, depletes the tissue and the resident mast cells of iron, resulting in 

histamine release and wheal formation [277]. 

 The iron binder is so effective that there have been endeavors to use the iron 

binder desferrioxamine instead of histamine as a positive control in skin tests. 

Reversely, iron delivery through transferrin, lactoferrin, or even iron-loaded beta-

lactoglobulin (holoBLG) inhibits mast cell activation [12, 278–281] (Figure 3). 

Interestingly, mast cells may also be involved in Th2-associated alopecia with an 

iron-restricted diet, resulting in hair loss in a murine model using IL10-deficient 

mice [282]. 

All in all, the degree of iron under- or oversupply seems to contribute directly 

to the reactivity of mast cells and, therefore, also on the symptom burden of 

allergic sufferers. 
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Sequestration Strategies and Defense Mechanisms in Microbes and Plants 

 

Common Concepts in Bacteria and Fungi and Plants 

Most bacteria and fungi require iron for their growth. In contrast to humans, in 

which iron is stored and transported predominantly within proteins, a very large 

pool of iron is present in bacteria [283] and fungi [284] in chelated form by low 

molecular compounds, with iron stored mainly in vacuoles and not within ferritin. 

Also, plants store iron in vacuoles and ferritin, although the distribution here varies 

with the type and development stage of the plant. 

 

Bacterial and Fungal Iron Acquisition Strategy 

Bacteria and fungi such as Alternaria alternata thus usually have two types of 

siderophores: internal siderophores, such as fungal ferricrocin [285], and 

siderophores that are excreted such as coprogen for acquisition of environmental 

iron. Intracellular siderophores have been described to serve for iron storage and 

being involved in sporulation. In contrast, bacteria and fungi use exogenous 

siderophores, but also xenosiderophores, synthesized by other microorganisms, to 

acquire environmental iron as some microorganisms do not produce siderophores 

[286].  

The feeding with xenosiderophores is a widely used approach in bioassays in 

order to demonstrate their growth-promoting activity, and cross feeding is a widely 

observed feature of the microbial world [287] but also seems to extend to the host. 

Commensal bacteria such as Bacteroides fragilis have been reported to contribute 

to iron homeostasis of macrophage and be capable to modulate the immune 

response of macrophage [288].  
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Siderophores may contribute thus in the nutritional provision of iron; in some 

cases, also binding to other metals such as copper, manganese, and zinc has been 

described, not only to support the microbial community, but that of the host too. 

Indication for that exists in murine models in which the use of broad-spectrum 

antibiotics resulted in anemia and an altered immune homeostasis with diminished 

granulocytes and B cells [289], with fecal microbiota transfer partly reverting the 

hematopoietic changes [290]. Antibiotic treatment also aggravated atopic 

dermatitis in a murine model [291, 292]. 

 In line, it is well established that individuals with atopic diseases (rhinitis, 

asthma, dermatitis, food allergy) have a reduced microbial (fungal and bacterial) 

diversity [108, 293–303], which may result in a diminished nutritional support by 

the commensal microbiota. The microbiota strongly manipulates the immune 

system. The composition and localization of the commensal microbiota in allergics 

may thus directly impact the homeostatic iron status of the host, but more studies 

here need to be done. 

Bacteria use numerous iron uptake pathways, which include iron uptake from 

transferrin, ferritin, lactoferrin, siderophores, or heme. All of these uptake 

pathways require an active transport, although not all bacteria have all systems; 

e.g., Listeria monocytogenes, a facultative intracellular pathogen, can acquire iron 

through transferrin, lactoferrin, ferritin, and hemoglobin, but does not secrete any 

siderophores.  

Rather, it can use several hydroxamate (ferrichrome, ferrichrome A and 

ferrioxamine B) and catecholate (enterobactin and corynebactin) siderophores from 

other organisms, and it can use additional iron-binding compounds, such as hosts' 

catecholamines [304], gram-negative bacteria Neisseria spp., can acquire ferric 

iron directly from lactoferrin and serum transferrin via the TbpA/TbpB receptor 
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[305, 306], and many bacteria exploit heme iron as a nutritional source [307] by 

secreting extracellular heme-binding proteins such as HasA (gram negative) and 

NEAT (gram positive) hemophores that either recognize heme and/or the host 

hemoproteins, such as hemoglobin, hemoglobin–haptoglobin and heme-

hemopexin via HxuA hemophores [306, 308]to sequester and translocate iron into 

their cytoplasm [309]. 

 

Iron Chelators: Siderophores and Flavonoids 

Animals and humans provide a particularly low-iron habitat for bacteria and 

fungi. Consequently, siderophore production and access do play crucial roles in 

determining the course of an infection. 

Siderophores are ferric iron–chelating molecules with very high ferric-ion 

association constants (1020-1049 M−1), which effectively remove iron from the 

host's iron–protein complexes. They are usually classified by their chemical 

moieties used to chelate the ferric iron, which are catechol-, hydroxamate or α-

hydroxycarboxylate- moieties (Figure 4), but also mixed forms exist [162[. 

Dependent on the moiety and the rest of the structure as well as salt type, 

ionic strength and temperature, there exist optimal pH-ranges for the respected 

siderophore types, with ferric iron usually complexed in an octahedral hexadental 

arrangement. Although dependent on the specific conditions, tris- and bis-catechol 

-ferric complexes possess some of the highest known stability constants of metal-

ligand chelates, with the pH required to establish these bis- and tris-complexes 

being typically reported to be above pH 7 [310]. 

 In contrast, hydroxamates (311) usually have a wide roptimal pH range 

from 4 to 9, and described optimal chelation conditions for alpha-

hydroxycarboxylates usually lie within the pH of 5–7 [66]. 
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Figure 4 

Plant defense and nutrition. Plants will impede biotrophic pathogens, releasing 

siderophores to sequester iron by initiating a local “hypersensitive response” as 

part of their “systemic acquired resistance.” This activates the salicylic acid, 

leading to its accumulation on site and the synthesis of pathogenesis-related 

proteins and polyphenols/flavonoids. Both can impede nutrient deprivation by the 

invading pathogen. In contrast, induced systemic resistance counter regulates the 

systemic-acquired resistance but leads to fortification of the physical and chemical 

barrier. 
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Generally, siderophore production is downregulated at low pH and 

upregulated with high pH [312]. 

Siderophores anti-oxidative and anti-inflammatory properties are widely 

acknowledged [313]as they can impede ROS formation. 

As the biosynthesis of siderophores needs energy in form of carbon sources 

and ATP, it determines with the microbial growth rate, which kind of population 

will colonize a low-iron habitat. Microorganisms that continuously produce 

siderophores are unknown in nature. Similarly, siderophore production in fungi 

starts just after germination from conidiospores and are contained in the spore wall 

material, which is released during germination [314]. 

As secondary metabolites siderophores are generally defined for not being 

directly involved in the growth, development, and reproduction of the organisms, 

but mediate ecological interactions, which may produce a selective advantage for 

the microbes or plants. As such, microbial siderophores usually belong to the class 

of nonribosomal peptides [315]and/or polyketides [316], from which a number of 

very powerful medicinal products are known for, ranging from antibiotics (e.g., 

vancomycin) to immunosuppressive drugs, such as ciclosporin. 

Similarly, many fruits and plants synthesize phenolics/polyphenols/flavonoids 

with described anti-oxidative and anti-inflammatory attributes, that—as their 

microbial counterpart—are categorized as secondary metabolites and have a very 

high affinity to iron due to the presence of catechol structures. For flavonoids, the 

reported complex stability constants for catechol are 43.7; for quercetin 44.2; and 

for catechine 47.4 [67] and thus comparable to the iron affinity of microbial 

siderophores, with the strongest known catechol-siderophore enterobactin having a 

complex stability constant of 49 at physiological pH [317]. 
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Of note, many flavonoids-binding iron such as luteolin [318], apigenin, quercetin 

[319], catechin, rutin, naringenin, fisetin [320], and epicatechin have been 

attributed an anti-allergic activity in vitro and in in vivo models [321, 322]. With a 

double-blind, placebo-controlled study using topical cream containing vitamin E, 

epigallocatechin gallate and grape seed procyanidins improving atopic dermatitis 

[323], and O-methylated catechins reducing symptoms of Japanese cedar pollinosis 

[324]. 

 

Plant Defense and Iron Availability 

Iron availability is dictated by the soil redox potential and pH. In soils that are 

aerobic or of higher pH, iron is readily oxidized, and is predominately in the form 

of insoluble ferric oxides. At lower pH, the ferric iron is freed from the oxide and 

becomes more available for uptake by roots. Because 30% of the world's cropland 

is too alkaline for optimal plant growth (e.g., calcareous soils in which the addition 

of lime increases the pH), graminaceous plants (grasses, cereals, and rice) secrete 

phytosiderophores (e.g., mugeneic acid), but also chemical compounds with 

catechol moieties have been described such as fraxetin [325], which are released 

into the soil to sequester iron [326]. 

Importantly, similarly than in the mammalian system, iron deficiency alone 

has been demonstrated to be enough to prime the plant immune response [327]and 

activate flavonoid [328, 329] and phytosiderophore synthesis [330]. 

Plants will impede pathogens by increasing their resistance via “induced 

systemic resistance” (Figure 4), which involves the synthesis of jasmonic acid and 

ethylene and leads to an increase of the physical or chemical barrier of the host 

plant [331]. 
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Simultaneously, upon infection, also, “systemic acquired resistance “is 

initiated, which is analogous to our innate immune system and mediated by 

synthesis of salicylic acid, leading to its accumulation, but also to the transcription 

of a wide range of “pathogenesis-related” proteins [332–334] as well as the 

synthesis of flavonoids [328, 335, 336] (Figure 4). Both pathways counter regulate 

each other, with salicylic acid inhibiting jasmonic acid signaling [336]. 

In response to pathogens, the salicylic acid pathway elicits a rapid local 

reaction or “hypersensitive response” to limit the area of infection for biotrophic 

pathogens, which require living tissue to gain nutrients. In the case of necrotrophic 

pathogens, hypersensitive response might even be beneficial to the pathogen, as 

they require dead plant cells to obtain nutrients. 

Strikingly, many major allergens are derived from these pathogenesis-related 

protein families that are induced by the plants to prevent nutritional deprivation 

[337, 338]. 

Also, beneficial root-associated mutualistic microbes living in the 

rhizosphere, like bacteria and fungi, besides impacting on plant nutrition and 

growth, can further boost plant defenses, rendering the entire plant more resistant 

to pathogens [339].  

These beneficial microbes secrete siderophores to facilitate plant iron 

acquisition with ectorhizosphere and rhizoplane bacteria described to release 

predominantly hydroxamate-type siderophores, whereas endophytic bacteria rather 

producing catechol-type siderophores [340] for plant uptake. Interestingly, several 

different bacterial genera, especially in plant-growth-promoting rhizobacteria, 

synthesize salicylic acid, the key compound of the systemic acquired resistance in 

plants, to ultimately incorporate them into catechol-based siderophores [341]. 
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Importantly, although a mutualistic relationship between hosts and microbial 

siderophores exists, at the same time, not only a competition between excreted 

siderophores for the metal but also for capturing these iron-siderophore complexes 

is always prevalent. 

 

Allergens or Tolerogens: the Role of Proteins Carrying Micronutrients 

Only a few protein families are capable to become allergens under 

physiological conditions; thus, virtually, all major allergens of animal origin 

belong to the lipocalin family, specifically in the lipocalin subfamily of “retinoic 

acid-binding proteins” [11, 342] and a considerable part of the major respiratory 

allergens of plant origin belongs to the pathogenesis-related-10 (PR-10) protein 

family10 or originates from the prolamin (2S albumin, lipid-binding proteins, LTPs) 

and cupin (7S, 11S) superfamilies [216, 343]. 

Apart from belonging either to animal or plant allergen families, they do 

have several features in common with the most essential one, that these proteins 

belong to the innate defense system in the respected animals/plants. They, 

therefore, possess an inherent affinity to our immune system, and their uptake 

occurs mostly receptor mediated and via the lymphatic system. The described 

allergen families have “pockets” in which they can very effectively bind and 

transport micronutrients, such as iron complexes, fatty acids [344], flavonoids 

[217–221] or vitamins [10, 281, 345–348]. In this way, they can deprive pathogens 

of nutrients or, conversely, provide nutrients to the immune cells. 

As such, many major allergens are capable to bind to flavonoids with known 

iron-binding capacity, making them nutrient binders. Consequently, the natural 

ligand of the pathogenesis-related PR-10 proteins major birch pollen allergen Bet v 

1 has been identified as quercetin-3-O-sophoroside [349]; for the major hazelnut 
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allergen Cor a 1, being quercetin-3-O-(2″-O-β-D-glucopyranosyl)-β-D-

galactopyranoside [350], and also Fra a 1 and Fra a 3 have been crystalized with 

catechin ligands [351].  

Also, other major allergens from peanuts have been well investigated with 

Ara h 2 and Ara h 6, belonging to the 2S family, binding to the flavonoid 

epigallocatechin-3-gallate [352], Ara h8 binding to quercetin, [353] as well as 

epicatechin [354] and Ara h 1 from the 7S family, forming large complexes by 

binding to proanthocyanidins, which are oligomers, consisting of catechin and 

epicatechin and their gallic acid esters [355]. 

Mammalian lipocalin allergens closely resemble endogenous human 

lipocalin proteins, such as Lipocalin-2, LCN2 [11, 157], a natural acute phase 

defense proteins that binds environmental iron and can deliver this iron directly 

and a receptor-mediated to immune cells [157, 162]. They are usually excreted and 

thus are found in the dander, urine, fur, and saliva of animals [356]. 

 LCN2 is involved in numerous iron-dependent processes of the innate 

immune arm and is also critical to renal development. Iron transport by lipocalins 

requires the presence of a siderophore, since lipocalins usually have no measurable 

affinity for iron alone [357]. 

 Consequently, LCN2 binds only to iron chelated by siderophores, thereby 

being also microbicidal. Simultaneously, it acts as an immune regulator as the iron-

containing form of LCN2 (holoLCN2) increases the intracellular iron content of 

macrophages, while the iron-free form decreases the intracellular iron content 

[358]. Thus, raising of the labile iron pool content by iron-loaded LCN2 form 

promotes the development of anti-inflammatory cells [359–361], while the 

lowering of their intracellular iron content causes their activation. Importantly, 
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LCN2 is able to activate or suppress the immune cells—dependent on the 

nutritional supply it provides. 

Due to its resemblance to lipocalin 2, mammalian lipocalins, such as the 

bovine beta-lactoglobulin BLG, are similarly taken up via the lymphatic system 

[216, 362]; in a receptor-mediated fashion and via this route, their ligands will 

predominantly transport to the residing immune cells. It can even reach the lactal 

system of nursing mothers and serves as a marker for maternal dietary proteins in 

breast milk as it is not naturally present in human milk [363]. In a series of studies 

exploiting the lymphatic pathway for targeted micronutritional supply of iron 

[10, 12, 281], zinc [281], and vitamins [346] by BLG, we provided evidence that 

micronutrients were transported to immune cells, and that this nutritional supply 

was accompanied with the establishment of immune resilience in an allergen-

independent fashion [12, 348] in a prophylactic setting, as well as in already 

sensitized mice, this leads to a significant reduction of the symptom burden upon 

allergen challenge [281]. 

Our studies, but also these of others [364, 365], have demonstrated that, in 

the absence of micronutrients, particularly of iron, proteins of the innate defense 

arm in mammals and plants in their apo-(empty) form are able to elicit a Th2 

response in vitro and in vivo [10, 12, 346, 347] as an encounter of these proteins in 

an “empty” form with our immune system enables them to locally deplete these 

cells from iron or vitamins, thereby triggering a danger signal and evoking an 

immune response. In contrast, when these proteins carry micronutrients and are 

present as holo-(loaded) proteins, they contribute to the nutritional balance of the 

immune cell and actively contribute to tolerance development 

[10, 12, 162, 281, 345–348]. 
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Thus, upon contact with the holo-proteins, the immune nutritional balance is 

not disturbed, enabling the establishment of immune resilience [12], which protects 

against atopy. 

In situations of infections or inflammation, which requires an increased 

micronutritional supply, or when nutritional deficiencies are already prevalent, 

apo-proteins can bind to micronutrients, further aggravating the micronutritional 

deficiency present in these cells, which not only activates these immune cells but 

also results that exogenous innate defense proteins are recognized as a threat and 

turn into allergens. 

 

Clinical Studies: Balancing Micronutrient Requirements as a Strategy to Ameliorate 

Allergic Diseases 

Based on the preclinical studies, we sought clinical translation of our 

research efforts and combined the whey protein BLG with catechines, iron, zinc, 

and vitamin A into a lozenge (holoBLG lozenge) to be used as a food for special 

medical purposes (FSMP). The ultimate objective was to investigate in clinical 

studies whether, indeed, the targeted transport of micronutrients to immune cells 

by holoBLG was effective and could have an influence on immune cell reactivity 

and the allergic symptom load in allergic individuals. 

Of note, the amount of iron included in the lozenge is with <1 mg/lozenge 

rather low, and, therefore, the lozenge cannot be considered as an iron 

supplement per se, but it does contain iron in a form that enables transport by 

BLG via the lymph and is roughly equivalent to the estimated daily iron 

requirement of human leukocytes. 

In the 2019 and 2020 conducted double-blind, placebo-controlled clinical 

trial with women allergic to birch and/or grass pollen allergy, 6-month 
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supplementation with holo-BLG lozenge resulted in a total nasal symptom score 

(TNSS) improvement after nasal provocation by 42% after, compared with 13% in 

the placebo group. The combined symptom-medication score, considered the gold 

standard of allergen immunotherapy, [366]was in the group, taking the holoBLG 

lozenges 45% lower in the birch pollen peak season and 40% lower in the grass 

pollen season compared to the placebo-supplemented study arm. Additionally, 

blood values improved, and peripheral blood monocytic cells had, compared to the 

monocytes of the placebo arm, a significant higher labile iron pool 

[12, 347, 367, 368]. 

Another clinical study with house dust mite allergic patients was also 

conducted in 2020, in which the symptoms were objectively assessed and recorded 

in an allergen exposure chamber before and after 3 months of holoBLG 

supplementation. Here, holoBLG supplementation resulted in a 60% reduction of 

the TNSS [369]. Moreover, a long-lasting effect was apparent, as even 7 to 8 

months later these patients had lower total symptom score and a perceived higher 

well-being on re-exposure in the allergen exposure chamber, indicating a long-

lasting nature of the induced immune resilience [370]. 

It has to be emphasized that in both atopic cohorts, dietary application of the 

holoBLG lozenge containing micronutrients, that are dedicated for the immune cell 

compartments, ameliorated allergic symptoms in a completely allergen-

independent manner. 

Further studies are currently being conducted with cat allergic patients to 

investigate in other atopic cohorts, whether compensating micronutritional 

deficiencies in the immune cell compartments is a further causal strategy to 

support immune resilience in an allergen-independent manner. 



44�

�

Iron is a trace element essential for nearly every organism and needed for oxygen 

transport, cellular respiration, but also contributing in immune regulation. Its 

access is tightly controlled due to its high affinity for oxygen, requiring that iron 

always has to be present in a complexed and/or protein-bound form; otherwise, 

reactive oxygen species are generated with detrimental effects. 

Here, we collected evidences that functional iron deficiency not only 

promotes allergy development but also increases the clinical symptom burden in 

allergic patients. 

Atopic individuals lack—besides Vitamin A and D—iron, which profoundly 

affects our immune system as deficiencies here render our cells hyper-sensitive. 

The dual role of macrophages as the central hub for iron handling but also as a 

major contributor in immunity has the consequence that iron deficiency directly 

impacts these cells and shifts them under iron poor conditions to a more 

inflammatory phenotype. 

Iron deficiency is sufficient to create a Th2-milieu to favor affinity 

maturation and antibody class switching and to prime mast cells for degranulation. 

Consequently, iron deficiency sets the whole body on alert. 

Although this a very desired response to infections, it also turns, otherwise, 

harmless proteins to allergens. 

Indeed, comparing the defense system in the plant with ours is particularly 

revealing as, here, it becomes apparent how intricate nutrition and defense are 

intertwined and that stealing and sharing often go hand in hand. On the one hand, 

the biotrophic pathogen needs its nutrients from the host and secretes anti-

inflammatory siderophores, and its attack is being counteracted by pathogenesis-

related proteins, hindering nutritional retrieval. On the other hand, microbes 

synthesize their siderophores from salicylic acid and share the nutrients bound by 
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siderophores with their host, thereby promoting the growth and health of the plant. 

Similarly, interactions can be assumed in humans with uptake of flavonoids being 

well-documented, but also the commensal microbial communities will participate 

in the nutritional provision of the human host, with the secondary metabolites of 

some commensal bacteria already known to be capable to modulate iron handling 

in human macrophages. 

Exactly, these ecological interactions seem lacking in individuals with atopy, 

with the microbial communities either not able or not sharing their precious 

micronutrients with the host but also the individuals with atopy secreting less 

lipocalin and other innate proteins capable to capture this precious siderophore-

complexed iron. Due to the precarious nutritional status, the antigen-presenting 

cells of atopic persons are also much more sensitive to potential “nutrient” thieves 

in the form of allergens. In contrast, encountering these allergens with 

micronutrients seems to turn them into friends and tolerogens. 

Once functional iron deficiency is established, dietary iron absorption is 

hindered by hepcidin, resulting that those persons with functional-iron deficiency 

(and inflammation) are in the vicious cycle, in which they need more iron but have 

to exploit different nutritional approaches to compensate their iron requirements, 

as, otherwise, their immune systems remain hyperactive. Here, evidence is given 

that one dietary approach is by the lymphatic route using the whey protein beta-

lactoglobulin as a carrier for micronutrients. 

Our preclinical as well as clinical studies demonstrated that iron can be 

selectively transported to the myeloid cells through holoBLG, thereby 

reestablishing immune resilience. Indeed, supplementation with holoBLG could 

simulate “the protective farm effect” as, also here, protection against allergies 

could be achieved in a completely allergen-independent manner. 
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To date, specific allergen immunotherapy is considered the only causative 

treatment option for ameliorating atopic diseases. However, providing immune 

cells with micronutrients shows a strikingly similar efficacy, in a completely 

allergen-independent manner. It emphasizes that micronutritional provision is 

another causative cure against allergies that should be included in the current 

practice. ����������������
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Chronic Obstructive Pulmonary Disease and Its Effect on Red Blood Cell 
Indices 

Chronic obstructive pulmonary disease (COPD) constitutes a set of 

heterogeneous symptoms affecting millions of people worldwide. The associated 

comorbidities developing in COPD involve dysregulation in physiological 

pathways resulting from systemic inflammation in respiratory airways. In addition 

to mentioning the pathophysiology, stages, and consequences of COPD, this paper 

also defines red blood cell (RBC) indices such as hemoglobin, hematocrit, mean 

corpuscular volume, mean corpuscular hemoglobin concentration, red blood cell 

distribution width, and RBC count.  

It explains the role of RBC indices and RBC structural abnormalities with 

disease severity and exacerbations in COPD patients. Although many factors have 

been studied as a marker of morbidity and mortality for COPD patients, RBC 

indices have emerged as revolutionary evidence. Therefore, the effectiveness of 

evaluating RBC indices in COPD patients and their importance as a negative 

predictor of survival, mortality, and clinical outcomes have been debated through 

rigorous literature reviews.  

Furthermore, the prevalence, mechanisms of development, and prognosis of 

underlying anemia and polycythemia in COPD have also been evaluated, with 

anemia most significantly associated with COPD. Therefore, more studies should 

be conducted to address underlying anemia in COPD patients to lessen the severity 

and disease burden. Correcting the RBC indices in COPD patients remarkably 

impacts the quality of life and reduces in-patient admissions, healthcare resource 

utilization, and costs. Hence, it is noteworthy to understand the significance of 

considering RBC indices while dealing with COPD patients. 
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Chronic obstructive pulmonary disease (COPD) is one of the most disabling 

chronic diseases, with an increasing prevalence and death rates worldwide. Among 

other causes of mortality, COPD is the fourth leading cause of death in the United 

States [374].  

Furthermore, COPD is associated with several comorbidities and 

complications as part of a systemic effect contributing to the severity of the illness. 

Many significant events can occur in the disease's natural history, potentially 

causing major comorbidities, economic burdens, and mortality [375].  

These coexisting conditions are a direct effect of COPD evolution, involving 

chronic inflammation and oxidative stress as strong components in its 

pathogenesis [376]. The increase in reactive oxygen species (ROS) and 

inflammatory markers is a hallmark causing airway and lung damage in COPD 

patients [377]. 

 However, they can have implications beyond the lung and reflect in almost 

all the systems, including musculoskeletal, metabolic, renal, cardiovascular, and 

psychiatric [378]. The hematological system is far from being spared with 

implications in hemorheology, coagulability, platelets, white blood cells (WBCs), 

red blood cells (RBCs), hemoglobin (Hb), and RBC indices [379]. 

It has been observed that overall derangement in RBC indices is associated 

with poor pulmonary function and disease severity in COPD [380]. Specifically, 

elevated red blood cell distribution width (RDW), lower mean corpuscular 

hemoglobin concentration (MCHC), and Hb levels are associated with increased 

disease severity and lower survival rates in patients with COPD [381-383].  

In addition, RBC structural alterations have also been linked with advanced 

stages of COPD [384]. Therefore, RBC indices are emerging as robust predictor 

tools of COPD disease severity and progression.  
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After establishing a diagnosis in COPD patients, predicting the prognosis, 

such as exacerbation or mortality, is critical. Therefore, multiple prognostic 

indicators have been tested. Although various studies focus on the role of WBC, C-

reactive protein (CRP), and other inflammatory markers as prognostic factors of 

COPD, very few have highlighted RBC indices. Our review will evaluate the 

association of RBC indices such as Hb, hematocrit (HCT), MCHC, and RDW with 

COPD and assess their application as markers of COPD disease severity, 

exacerbation, mortality, and hospital readmission rates.  

 

COPD  

Prevalence 

 

According to the Centers for Disease Control and Prevention (CDC) survey, 

COPD age-adjusted prevalence has remained unchanged from 2011 to 2020, but it 

is reported to be higher in women than men due to delayed diagnosis, increased 

susceptibility to tobacco smoke, and varied responses to treatment [385].  

Chronic lower respiratory disease, primarily COPD, was the fourth most 

significant cause of death in the United States in 2018, with women’s death rates 

higher than men’s. COPD has been diagnosed in nearly 15.7 million Americans 

(6.4%). However, more than half of the people with impaired pulmonary function 

were unaware that they had COPD, suggesting that the actual figure is far more 

significant [385].  

In 2019, the disease was projected to have killed 3.23 million people, 

according to the World Health Organization (WHO). The latter is known to kill 

more than 90% of people in low- and middle-income nations [386]. In addition, 

12.5 million people were diagnosed with COPD in 2020, with trends higher in non-
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Hispanic Whites (6.2%), women (5.2%), and >65-year age groups (10.8%) 

compared to Blacks (4.7%), men (4.3%), and 45-64 age groups (6%) [387]. 

 

Pathophysiology 

Chronic inflammation causing increased frequency of certain inflammatory 

cell types in distinct lung areas and structural alterations arising from repetitive 

injury and repair are pathological abnormalities associated with COPD [388]. 

Small airway disease and parenchymal destruction are caused by cigarette smoking 

or exposure to noxious chemicals, which cause inflammation in the lungs and 

airways of the bronchial tree [389]. Lung inflammation is likely to be further 

modified by oxidative stress and an abundance of proteinases [388]. 

 

Stages 

COPD is classified into four severity levels by the Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) staging system (based on post-

bronchodilator forced expiratory volume in one second (FEV1)): stage I or mild 

has an FEV1 of ≥80%; stage II or moderate has an FEV1 of ≥50% and <80%; 

stage III or severe has an FEV1 of ≥30% and <50%, and stage IV has an FEV1 of 

<30% [389]. 

 As the condition progresses, daily activities become more restricted, resulting 

in a lower quality of life and increased symptoms and exacerbations [390]. 

In 2011, revised GOLD guidelines included the ABCD assessment tool, 

categorizing COPD patients into four groups based on symptomatology, GOLD 

grades, and exacerbation history. This tool assesses the symptomatology by the 

COPD assessment test (CAT) and Modified Medical Research Council (mMRC) 

Dyspnea Scale, and exacerbation risk through GOLD grades (severity of airflow 
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limitation) and history of exacerbation episodes. In 2017, GOLD updated the 

ABCD assessment tool by evaluating disease severity through symptom burden 

and exacerbation risk calculations independent of spirometric results [391]. 

 

Consequences  

COPD produces polycythemia secondary to erythrocytosis from hypoxia in 

advanced cases. However, several investigations have found that many COPD 

patients have anemia rather than erythrocytosis [392]. 

Anemia is an important complication that occurs during the clinical course of 

chronic diseases. It is thought to be caused by chronic inflammation and iron 

deficiency. Patients with COPD have a significant rate of iron deficiency [393]. 

The response to erythropoietin (EPO) in COPD also appears to be inhibited, 

especially as the disease progresses. Therefore, it could contribute to developing 

anemia in COPD patients [392]. Depending on the populations studied and the 

diagnostic techniques used to detect Hb levels, the prevalence of concomitant 

anemia in COPD patients ranges from 7.5% to 34%. The actual prevalence of 

anemia in COPD patients is unknown [394].  

The chronic inflammatory processes in COPD promote deaths and membrane 

deformability of RBCs and alter erythropoiesis which is related to an increase in 

RDW [395]. 

 

Prognosis  

Several elements have been identified as COPD prognostic markers. FEV1, a 

measure of the severity of airflow limitation, is most often used. Once COPD has 

been diagnosed, predicting the prognosis, such as exacerbation or mortality, 

appears to be critical; yet, in some primary healthcare settings with an inferior 
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approach to inspection, determining the prognosis seems to be a near-impossible 

task [396]. 

It is well recognized that COPD is associated with oxidative stress, chronic 

inflammation, and impaired iron metabolism. As a result, MCHC, RDW, and 

erythrocyte sedimentation rate (ESR) levels are thought to reflect the severity of 

COPD inflammation [395]. 

RDW has been identified as a potential predictor of all-cause death [383]. 

Mortality rates increased five-fold from the lowest to the highest quintile of RDW 

in the Third National Health and Nutrition Examination Survey of 15,852 

adults [395]. 

Anemia and increased amounts of acute-phase proteins, fibrinogen, and 

immunoglobulin in the blood cause ESR to rise. COPD is frequently associated 

with hyperfibrinogenemia and anemia, especially in severe cases. As a result, if we 

consider COPD to be a systemic rather than just a respiratory disorder, ESR 

appears to be a promising choice for use as a prospective COPD severity index. In 

a study by Kanwal et al. in 2021, when an association between COPD and various 

RBC indices was observed, raised ESR was most significantly associated with 

COPD patients (p=0.001). It indicates the significance of monitoring ESR for 

understanding the progression and severity of the disease [395].  

Pulmonary embolism is one of the most common and serious complications, 

which develops in hospitalized COPD patients with acute exacerbation episodes. A 

systematic review indicates its prevalence of 24.7% (p=0.001) in hospitalized 

COPD patients compared to patients admitted to the emergency department 

(3.3%) [397]. In a prospective study by Zorlu et al. in 2012, high ESR was 

independently linked to higher mortality from acute pulmonary embolism in 136 

patients with acute pulmonary thromboembolism (hazard ratio 15.5) [395,398].  
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A study by Chambellan et al. in 2005 conducted on 2524 patients found that 

mortality decreased by 14% for every 5% increase in HCT [399]. 

 

RBC indices 

Wintrobe was the first to introduce the red cell indices in 1929. Their role 

resides in determining erythrocyte size and Hb content. Traditionally, these indices 

help determine the etiology of anemia and are included in every full blood count 

(FBC). They are calculated by using the Hb level, HCT, and red blood cell (RBC) 

count through standard formulas. Nowadays, machines with automated cell 

counters can directly give us the values of red cell indices [400].  

 

RBC Count 

RBCs carry Hb, which plays a vital role in oxygen delivery to the tissues. A 

normal RBC count would be 4.7-6.1 million cells per microliter (cells/mcL) in men 

and 4.2-5.4 million cells/mcL in women [401]. 

 

Hemoglobin 

Hb is a metalloprotein that contains iron and transports oxygen. The normal 

level of Hb for males ranges from 14 to 18 g/dL, and for females, Hb ranges from 

12 to 16 g/dL. An Hb level below the normal range is called anemia [402]. 

 

Hematocrit 

HCT, also known as packed cell volume, is a percentage of RBCs in the total 

blood volume, constituting RBCs and plasma. HCT in males ranges from 40% to 

54%, whereas in females, HCT ranges from 36% to 48% [402]. 
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Hb and HCT are determined by plasma volume based on whole blood. For 

example, in patients with severe dehydration, both Hb and HCT are higher than in 

euvolemic patients, contrary to patients with fluid overload, where Hb and HCT 

levels are lower [402]. 

 

Mean Corpuscular Volume (MCV) 

The MCV reflects the average size of an erythrocyte. Its measured unit is 

expressed in femtoliters (fL) or cubic micrometers (μm3). The standard MCV 

values are 87 ± 7 fL. MCV is used to classify the anemia as normocytic with 

normal range MCV, microcytic with below the normal range MCV, and 

macrocytic with above the normal range MCV. The latter also measures RBC 

distribution width [400,403]. 

 

Mean Corpuscular Hemoglobin (MCH) 

       The MCH reflects the Hb amount per RBC. The normal value of MCH is 29 ± 

2 pg per cell [400]. 

Mean Corpuscular Hemoglobin Concentration 

         The average Hb concentration per RBC is represented in FBC by the MCHC. 

Its standard unit is in grams per deciliter of RBCs. A normal MCHC value is 34 ± 

2 g/dL [400]. Hyperchromic cells with MCHC >36 are found in hereditary 

spherocytosis, autoimmune hemolytic anemia, and xerocytosis. Hypochromic cells 

with MCHC <32 are found in iron deficiency anemia, sideroblastic anemia, and 

thalassemia [393,404]. 
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Red Blood Cell Distribution Width 

RBC size heterogeneity is assessed by RDW and is expressed in percentage. 

The normal value of RDW is 13% ± 1.5%. The RDW is the ratio of the erythrocyte 

volume standard deviation to the MCV [400]. A high RDW indicates a wide range 

of RBC sizes, whereas a low RDW indicates a more uniform RBC 

population [405]. 

 

COPD and anemia 

COPD is a complex and heterogeneous lung disease with multifactorial risk 

factors and variable clinical manifestations [406]. COPD is associated with several 

distinguishing extrapulmonary comorbidities such as cardiovascular disorders, 

lung cancer, metabolic disease, reduced bone mass, stroke, cachexia, anemia, and 

others [407]. 

An observational study of the valuation of COPD Longitudinally to Identify 

Predictive Surrogate Endpoints (ECLIPSE) concluded that the prevalence of 

comorbidities is higher in COPD patients, reaching up to 38%, compared to 

smokers with normal lung function and non-smokers [408]. In addition, a recent 

study conducted on COPD patients in a Tunisian Hospital established that 

comorbidities in COPD patients result in poorer prognosis and higher severity of 

symptoms [409]. 

However, recent literature shows that anemia has gained immense 

significance as a predictor of COPD’s severity, mortality, and prognosis relative to 

other extrapulmonary comorbidities. Hence, the inter-relationship between anemia 

and COPD cannot be denied [394,410]. Numerous studies have confirmed that 

anemia exhibits an independent survival prognostic rate for COPD, negatively 

impacting the quality of life [394].  
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Bartolome R Celli et al. studied the various variables responsible for 

predicting survival in COPD patients. They mentioned that anemia is a major 

marker of mortality alongside FEV1, lung hyperinflation, and pulmonary 

cachexia [411]. 

According to the WHO, anemia is defined as having Hb levels less than 12 

g/dL and 13 g/dL in women and men, respectively. However, no specific cutoff 

value has been assigned to anemia in COPD patients [412]. 

Different mechanisms lead to the development of anemia in COPD patients. 

One of them involves the release of acute-phase reactants (CRP, lactate 

dehydrogenase [LDH], fibrinogen) and the cytokines (tumor necrosis factor-alpha 

[TNF-α], interleukin-6 [IL-6], interleukin-8 [IL-8], interleukin-1-beta [IL-1β]) due 

to the inflammatory response in the respiratory pathways ultimately leading to the 

inhibition of erythropoiesis. However, the blunted erythropoiesis, decreased EPO 

production, shortened RBC survival, and dysregulation in iron homeostasis 

eventually result in anemia of chronic disease (Figure 5) [410- 413]. 
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Figure 5: Pathophysiology of anemia of chronic disease in COPD 

TNF-α: Tumor necrosis factor-alpha; IL-6: Interleukin-6; IL-8: Interleukin-8; IL-

1β: Interleukin-1-beta; CRP: C- reactive protein; LDH: Lactate dehydrogenase; 
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SA-A: Serum amyloid-A; SP-D: Surfactant protein-D; EPO: Erythropoietin; 

COPD: Chronic obstructive pulmonary disease 

Copyright/License: This figure is recreated using data from an open-access article 

distributed under the terms and conditions of the Creative Commons Attribution-

Non-Commercial 4.0 (CC BY-NC 4.0) license. 

(http://creativecommons.org/licenses/by-nc/4.0/) 

Patel MS, McKie E, Steiner MC, Pascoe SJ, Polkey MI: Anaemia and iron 

dysregulation: untapped therapeutic targets in chronic lung disease?. BMJ Open 

Respir Res. 2019, 6:e000454. 10.1136/bmjresp-2019-000454 [413]. 

  

Anemia of chronic disease is normocytic normochromic anemia occurring in 

chronic inflammatory diseases such as rheumatoid arthritis, cancer, and chronic 

kidney disease, most likely due to EPO resistance leading to elevated EPO levels 

in these patients [413].  

Other mechanisms involved in developing anemia in COPD patients include 

renal dysfunction, renin-angiotensin-aldosterone activation by drugs, and 

hypogonadism [412,414-417]. 

However, many confounding factors also play a role in the pathophysiology 

of anemia in COPD patients like cardiovascular disorders, old age, malnutrition, 

occult blood loss, drugs such as angiotensin-converting enzyme inhibitors or 

theophylline, endocrine abnormality, and oxygen therapy [409,417-419]. 

Therefore, screening for other types of anemias, such as iron, folate, or vitamin 

B12 deficiency, is also necessary for COPD patients [409,418]. 

Anemic COPD patients have higher rates of hospitalizations and increased 

healthcare resource utilization than non-anemic COPD patients leading to poor 
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quality of life [394]. A post hoc analysis also showed diminishing health-related 

quality of life in moderate-to-severe COPD patients with anemia [420]. 

 In addition, a systematic review and meta-analysis in 2020 revealed that 

anemic COPD patients have a higher mortality rate, Charlson comorbidity index 

score (predicts ten-year mortality in comorbid patients), and prolonged hospital 

stays compared to non-anemic COPD patients [406,421]. 

The comorbidities like anemia also affect and complicate the management of 

COPD [414,422]. For example, a study conducted by Schonhofer et al. concluded 

that transfusion of RBCs led to a remarkable reduction in the work of breathing 

and minute ventilation in anemic COPD patients, and the reduced load on the 

respiratory muscles improved their dyspnea and exercise capacity. They also found 

that blood transfusion helped in the successful weaning of ventilated COPD 

patients with anemia [423]. 

The use of other treatment options, like EPO therapy and iron 

supplementation for the treatment of anemia in COPD patients, requires more 

promising literature reviews [424-426]. The raised EPO levels in anemic COPD 

patients are a physiologic compensatory mechanism and are possibly related to 

EPO resistance. Therefore, COPD patients show poor responses to treatment with 

EPO [427]. 

Hence, there is an increased need to address the underlying anemia in COPD 

patients for better clinical outcomes and enhanced survival rates. 

 

COPD and erythrocytosis/polycythemia  

Polycythemia is defined as an Hb level ≥18 g/dL in men and ≥15 g/dL in 

women [428]. Secondary polycythemia usually occurs due to chronic hypoxia, 

which increases the production of EPO. EPO is an endogenous glycoprotein 
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hormone that stimulates erythropoiesis. EPO is produced primarily in the kidney, 

but the liver is another EPO source. EPO stimulates the final differentiation of 

progenitor cells into erythrocytes in the bone marrow [392,429].  

The main trigger for EPO formation is a decrease in arterial oxygen content 

due to anemia or hypoxia, which usually results in an exponential increase in EPO 

production [379,389]. There is evidence that peritubular cells that secrete EPO 

contain the heme-containing protein that senses oxygen saturation in the 

blood [392,430]. As the partial pressure of oxygen (pO2) in the plasma decreases, 

EPO concentration will increase [392,431].  

Other than hypoxia, polycythemia may be caused by acidosis, whether 

metabolic (lactic acidosis) or respiratory (chronic respiratory failure) [19,59]. 

Hypoxia can cause lactic acidosis and produce a vicious circle of inflammation and 

oxidative stress [392,60]. 

According to recent studies, polycythemia appears to be less of a problem 

among today's COPD patients. For example, Cote et al. found a prevalence of only 

6% in a prospective cohort of 683 stable COPD outpatients, and only 8.4% of 

approximately 2,500 patients with severe COPD on long-term oxygen therapy 

(LTOT) had an HCT of more than 55%. This low prevalence can be partially 

attributable to the widespread prescription of LTOT in the severe COPD 

population [411]. 

While relatively uncommon in the modern COPD population, historical 

evidence suggests that polycythemia can cause pulmonary hypertension, 

dysfunction of pulmonary endothelium, decreased cerebral blood flow, 

hyperuricemia, gout, and a higher risk of venous thromboembolic disease [411]. 

Polycythemia, which increases blood viscosity, may increase hypoxemia and 

hypercapnic risks in COPD patients [428].  
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As with pulmonary hypertension, its presence in a COPD patient should 

prompt consideration of supplemental oxygen therapy [411]. 

 

COPD correlation with RBC indices 

COPD and Hb/HCT 

 

Both high and low Hb and HCT indexes are related to COPD, causing 

different comorbidities. 

It is well known that secondary erythrocytosis occurs as a compensatory 

mechanism in response to hypoxemia seen in COPD patients. However, new 

research suggests that systemic inflammation in COPD can possibly cause low Hb 

in these patients [433]. 

COPD patients with low Hb have a poor quality of life due to reduced 

exercise tolerance and raised shortness of breath [434]. 

A study conducted on COPD patients treated with LTOT established that 

COPD patients with low Hb have a worse prognosis than COPD patients with 

normal Hb levels. It also indicated that low HCT negatively predicts survival and 

hospital admission rates [435]. 

A database study conducted by the French respiratory home care network, the 

Association Nationale pour le Traitement a Domicile de l'Insuffisance Respiratoire 

Chronique (ANTADIR), has shown the most promising evidence for the 

association between HCT and mortality. It states that HCT is inversely related to 

age and degree of obstruction (FEV1/ vital capacity) but has a positive association 

with carbon dioxide arterial partial pressure (PaCO2). It also emphasizes that 

polycythemia had higher survival rates (three-year survival 24%) when HCT was 

<35% compared to when HCT was <55% (three-year survival 70%) [435]. 
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Treatment of low and high Hb concentrations has a significant clinical impact 

on the prognosis of COPD patients. A rise in hemoglobinemia through a blood 

transfusion improves skeletal muscle function, breathing pattern as well as 

pulmonary gas exchange, which alleviates dyspnea and enhances exercise 

capacity [436]. 

Another study demonstrated that oxygen administration to severe COPD 

patients before exercise improves exercise tolerance rates [437]. This phenomenon 

is similar to raising Hb levels by infusing RBC transfusion in COPD patients to 

decrease the degree of hyperinflation and improve symptomatology [436]. 

In COPD patients, the incidence of increased HCT and Hb levels 

(polycythemia) is immensely reduced due to the implementation of close follow-up 

and LTOT, whereas low Hb (anemia) has become a concern nowadays [438]. 

Furthermore, two other studies highlighted that in patients with an HCT level of 

50%-55%, phlebotomy had improved the hemodynamic response to exertion in 

COPD patients due to reduced pulmonary arterial resistance and arteriovenous 

oxygen content difference [439]. 

Therefore, it is determined that low Hb has more of a close association with 

survival and mortality outcomes of COPD patients than high Hb levels. A piece of 

well-established evidence is available on the correction of raised Hb levels in 

COPD patients, whereas the treatment for low Hb levels (anemia) requires further 

data exploration. 

 

COPD and MCHC  

MCHC indicates the Hb concentration within each RBC. As a result, low 

MCHC specifies functional iron shortage. Reduction in functional iron levels can 

be caused by systemic inflammation, such as in COPD, an inflammatory lung 
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disease [381]. Anemia is caused by iron deficiency; however, non-anemic iron 

deficiency can occur in patients who have not been tested for anemia. In this case, 

MCHC is also low; thus, iron deficiency may occur before the expression of 

anemia in COPD [381].  

The exact mechanisms behind the link between MCHC and chronic illness 

prognoses, such as COPD or heart disease, are unknown. According to prior 

studies, MCHC represents iron deficiency, and chronic inflammation is one of the 

reasons for iron deficiency. Therefore, the decrease in MCHC may reflect the 

intensity of inflammation [380]. In a 2021 study by Kanwal et al., the MCHC and 

COPD were significantly associated (p=0.03) [395]. 

 

COPD and RDW 

The RDW is typically reported in the complete blood count (CBC) as a 

marker of erythrocyte size heterogeneity. However, its most considerable role 

resides in the differential diagnosis of anemia, along with the MCV and 

MCH [440]. An increased RDW is an indicator of anisocytosis, mainly seen in iron 

deficiency, vitamin B12, or folate deficiency anemia. However, chronic disease 

anemia, aplastic anemia, congenital spherocytosis, acute blood loss, and some 

hemoglobinopathies are all linked to a normal RDW [441]. 

Recently, RDW elevation has been linked to several disorders, including 

cardiovascular illness, cerebrovascular disease, pulmonary embolism, cancer, 

diabetes, acute kidney failure, and others. Furthermore, RDW is thought to be a 

strong and independent risk factor in predicting mortality [442].  

According to these studies, higher RDW levels could indicate an underlying 

chronic inflammation, which promotes erythropoiesis disturbances and RBC 

membrane deformability [382]. Abnormal erythrocyte survival, telomere 
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shortening, oxidative stress, hypoproteinemia, dyslipidemia, hypertension, 

erythrocyte fragmentation, and EPO function alterations are other factors to 

consider [441].  

COPD also causes systemic inflammation, which has been suggested as a 

crucial factor in the link between COPD and elevated RDW. This shared feature 

has been the trigger behind the theory inspiring multiple research studies on RDW 

as a negative prognosis factor of COPD [442]. 

According to a recent study, patients with COPD exhibited considerably 

greater RDW values than control participants (15%±2.3% vs. 13.8%±2.5%, 

p<0.001). In COPD patients, RDW levels also correlated positively with CRP 

levels (r=0.27, p<0.01), albumin levels (r=0.23, p=0.04), right ventricular 

dysfunction (RVD) (r=0.24, p=0.01), pulmonary arterial hypertension (r=0.1, 

p=0.02), and cardiovascular disease (CVD) (r=0.24, p=0.02). Otherwise, RDW 

levels were inversely correlated with Hb concentration (r=−0.38, p=0.01). More 

importantly, RDW was independently associated with CVD and RVD in patients 

with COPD [382]. 

In another study, the severity of COPD was relatively proportionate to an 

increase in mean RDW levels (Table 1) [382]. 

GOLD Stages Mean RDW (%) 

Stage 1 13.5 

Stage 2 13.9 

Stage 3 14.4 

Stage 4 15.7 
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Table 1: RDW levels correlation with GOLD COPD stages (p<0.001) 

RDW: Red cell distribution width; GOLD: Global initiative for chronic obstructive 

lung disease. 

Copyright/License: This figure is from an open-access article distributed under the 

terms and conditions of the Creative Commons Attribution-Non-Commercial-

NoDerivatives 4.0 (CC BY-NC-ND 4.0) license.  

(https://creativecommons.org/licenses/by-nc-nd/4.0/) 

No modifications were made to the original figure. 

Tertemiz KC, Ozgen Alpaydin A, Sevinc C, Ellidokuz H, Acara AC, Cimrin 

A: Could "red cell distribution width" predict COPD severity?. Rev Port Pneumol 

(2006). 2016, 22:196-201. 10.1016/j.rppnen.2015.11.006 [382]. 

Patients with an increased RDW also had decreased pulmonary functional 

parameters, a six-minute walking test (6MWT) distance, and oxygen saturation. 

High RDW levels in the same patients were associated with increased age, 

smoking, and BODE index (Body mass index, Obstruction, Dyspnea, Exercise 

capacity), which is another COPD prognosis factor [443].  

Additionally, COPD patients with a normal RDW (14.3%) had a 75% nine-

year survival rate, while patients with a high RDW (>14.3%) had a 31% survival 

rate (Figure 6) [382]. 
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Figure 6: Representation of nine-year survival of COPD patients according to 

RDW in a Kaplan-Meier curve (p<0.01) 

RDW: Red cell distribution width; COPD: Chronic obstructive pulmonary disease. 

Copyright/License: This figure is from an open-access article distributed under the 

terms and conditions of the Creative Commons Attribution-Non-Commercial-

NoDerivatives 4.0 (CC BY-NC-ND 4.0) license.  

(https://creativecommons.org/licenses/by-nc-nd/4.0/) 

No modifications were made to the original figure. 
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Tertemiz KC, Ozgen Alpaydin A, Sevinc C, Ellidokuz H, Acara AC, Cimrin A: 

Could "red cell distribution width" predict COPD severity?. Rev Port Pneumol 

(2006). 2016, 22:196-201. 10.1016/j.rppnen.2015.11.006 [382]. 

RDW was also included in the studies evaluating acute exacerbations of 

COPD (AECOPD) severity and mortality with the requirement of several therapies 

in the treatment of respiratory failure. Patients who had been hospitalized in the 

previous 12 months showed higher RDW values than those who had not 

(p<0.01) [443].  

Patients in need of non-invasive mechanical ventilation (NIMV) had a 

substantially higher median RDW than patients who did not need NIMV 

(p<0.001). Patients who needed LTOT also had a significantly higher median 

RDW (14.2, 95% CI: 13.7-14.6) than patients who did not need LTOT 

(p=0.001) [444].  

In another study, the 30-day all-cause readmission of patients with AECOPD 

was independently linked with dynamic increases in RDW (p=0.008) [72]. 

Concerning the mortality of patients with AECOPD, RDW has a major prognosis 

role as it was demonstrated that RDW ≥13.75% was a risk factor for in-hospital 

mortality and independently correlated with death at one year after an 

AECOPD [446].  

 

COPD and RBC structural alterations  

The pathophysiologic mechanisms of COPD are very intricate; however, 

localized pulmonary and systemic inflammatory responses with associated 

oxidative stress were not only significant contributors to the disease but were 

associated with its progression and studied as markers of advanced 

stages [447,448].  
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These phenomena would cause a fundamental imbalance between pro-

oxidants and antioxidants with increased generation of ROS and reactive nitrogen 

species capable of damaging DNA, lipids, carbohydrates, and proteins [449]. Of 

course, as an essential compound of our system, RBCs will not be exempt. As a 

result, chronic oxidative stress will directly damage erythrocytes resulting in 

structural and functional alterations [450].  

Erythrocytes serve as oxygen transporters and deliverers. They also have 

powerful antioxidant systems that enable them to act as mobile free radical 

scavengers, protecting not just themselves but also other tissues and organs in the 

body [450]. 

 Thus, it stands to reason that if their primary structure and enzymes are 

compromised, oxygen exchange and transport will be altered, contributing further 

to hypoxemia induced by the destruction of the blood-gas barrier in COPD [384]. 

Oxidative stress and damage will be accentuated as RBCs’ antioxidant properties 

are significantly reduced, leading to a vicious cycle of RBC injuries and severe 

COPD disease progression [449]. 

In COPD patients, multiple studies have demonstrated the specific effects of 

inflammatory and oxidative reactions. Bożena Bukowska et al. showed evidence of 

an increase in lipid peroxidation products with a decrease in the quantity of 

sulfhydryl or thiol groups in the erythrocytes membrane. Moreover, glutathione 

peroxidase activity was increased in contrast to superoxide dismutase activity. 

Other significant alterations were also observed, as evidenced by a substantially 

reduced adenosine triphosphatase activity and increased acetylcholinesterase 

activity, key enzymes for erythrocyte structure and function [451]. 

Another study conducted on patients with moderate-to-severe COPD 

demonstrated a decreased oxidation of glucose-6-phosphate dehydrogenase, 
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glutathione reductase, and glutathione peroxidase [448]. It supports substantial 

damage to RBCs with decreased function; however, erythrocyte integrity was still 

preserved, enabling patients to live without hemolysis [448]. 

Studies on erythrocyte structural changes illustrated increased RBC 

spheronization with augmented platelet migration to the vessel wall. This could 

explain why COPD patients have such a high rate of cardiovascular events [452].  

During COPD exacerbations, RBC deformability was proven to be decreased 

with associated increased aggregation capacity, which may worsen patients’ 

oxygenation and clinical symptoms [453]. �����������
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Diagnosis and Treatment of Lymphatic Plastic Bronchitis in Adults Using 
Advanced Lymphatic Imaging and Percutaneous Embolization �

Plastic bronchitis is a rare syndrome that presents with expectoration of 

branching bronchial casts (1–3) (Figure 7). More than 20 systemic and pulmonary 

illnesses have been associated with plastic bronchitis in adults, including asthma, 

tuberculosis, allergic bronchopulmonary aspergillosis, bronchiectasis, cystic 

fibrosis, sickle cell anemia, amyloidosis, and rheumatoid arthritis [452- 454].  

Children with congenital heart disease may develop plastic bronchitis, due to 

leakage of lymphatic fluids into the airspace from the elevated venous and 

lymphatic pressures that occur after some corrective surgeries [455].  

Lymphatic anomalies have also been described in a few adult patients with 

plastic bronchitis [452, 456, 457). Casts produced in cases of plastic bronchitis 

with a lymphatic basis tend to be large (up to 30.5 cm), highly branched, 

multiantennary structures, and contrast with the smaller, simpler structures with 

fewer branch points seen in casts of asthma or pulmonary infection. When no 

specific cause is identified for expectoration of bronchial casts, the diagnosis of 

idiopathic plastic bronchitis is made [452]. 
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Figure 7.Expectorated bronchial cast. 

 

 

Dynamic contrast-enhanced magnetic resonance lymphangiogram (DCMRL) 

has recently been developed as a technique for imaging the central lymphatic 

system [458]. 

 It involves injection of gadolinium into the inguinal lymph nodes bilaterally 

and image acquisition using time-resolved central k− space dynamic T1-weighted 

magnetic resonance imaging (MRI). 

Thoracic duct embolization is a well-established, minimally invasive 

procedure developed to treat chylous leaks [459]. The procedure involves 

diagnostic intranodal lymphangiography followed by percutaneous catheterization 
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of the central lymphatic system and embolization of the thoracic duct proximal to 

the lymphatic leak [460].. 

Recently, Dori and colleagues [461, 462] used DCMRL to demonstrate 

abnormal pulmonary lymphatic flow in plastic bronchitis in pediatric patients with 

a single ventricle. Selective embolization of abnormal pulmonary lymphatic 

vessels in these patients resulted in resolution of symptoms. 

We postulated that abnormal pulmonary lymphatic flow would be present in adult 

patients presenting with some forms of plastic bronchitis as well, and that 

lymphatic embolization could potentially alleviate their symptoms. 

In this report, we summarize our experience with DCMRL and transcatheter 

lymphatic embolization in adult patients presenting with plastic bronchitis. 

We evaluated seven patients (average age = 50 yr; male/female = 3/4) with plastic 

bronchitis who were referred to our institution (Table 1). Permission from the 

University of Pennsylvania (Philadelphia, PA) Institutional Review Board was 

obtained before initiation of the study. 

Table 2. Patient demographics, diagnosis, and preprocedure plastic bronchitis 

course 

Patient 

No. 

Sex Age at 

Presen

tation 

Length 

of 

Sympto

ms 

Initial 

Diagnosi

s 

Frequency 

of 

“Casting” 

Medication

s 

(Yr) (Yr) 

1 F 50 7 Asthma Several Heparin 
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Table 2. Patient demographics, diagnosis, and preprocedure plastic bronchitis 

course 

Patient 

No. 

Sex Age at 

Presen

tation 

Length 

of 

Sympto

ms 

Initial 

Diagnosi

s 

Frequency 

of 

“Casting” 

Medication

s 

(Yr) (Yr) 

times a 

day 

inhalation, 

prednisone, 

Mucomist, 

Lovenox, 

TPA 

inhalation, 

Zithromax, 

Flovent 

2 F 38 5 Chronic 

cough 

Two to 

three casts 

per week 

Inhaled 

steroids, 

Mucomyst, 

bronchodila

tors, 

Azithromyc

in 

3 M 35 5 Histopla Daily Itraconazol
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Table 2. Patient demographics, diagnosis, and preprocedure plastic bronchitis 

course 

Patient 

No. 

Sex Age at 

Presen

tation 

Length 

of 

Sympto

ms 

Initial 

Diagnosi

s 

Frequency 

of 

“Casting” 

Medication

s 

(Yr) (Yr) 

smosis, 

desquam

ative 

interstiti

al 

pneumon

itis 

e. 

Prednisone, 

Bactrim, 

Hizentra, 

Azithromyc

in, 

Valcyclovir

, Albuterol 

4 M 75 2 Chronic 

cough 

Every 4–5 

days, 

lasting 24 

hours 

N/A 

5 M 60 3 Chronic 

cough 

Daily Prednisone, 

hypertonic 

saline, 

steroids 
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Table 2. Patient demographics, diagnosis, and preprocedure plastic bronchitis 

course 

Patient 

No. 

Sex Age at 

Presen

tation 

Length 

of 

Sympto

ms 

Initial 

Diagnosi

s 

Frequency 

of 

“Casting” 

Medication

s 

(Yr) (Yr) 

6 F 42 1 Asthma, 

mold 

hypersen

sitivity, 

peripher

al 

eosinoph

ilia, 

pneumon

itis 

Cast 

removal 

during 

bronchosc

opy 

Itraconazol

e, 

Prednisone, 

Albuterol, 

Dornase 

nebulizer, 

steroids 

7 F 52 6 PAP, 

bronchiti

s, 

chronic 

pneumon

ia 

Daily Antibiotics, 

nebulizer 
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Definition of abbreviations: N/A = not applicable; PAP = pulmonary alveolar 

proteinosis; TPA = tissue plasminogen activator. 

 

MRI 

DCMRL imaging 

MRI was performed in an X-ray and MR suite that couples a 1.5 Tesla MR 

scanner with a catheterization laboratory (Siemens, Erlangen, Germany). Initially, 

the access to the groin lymph nodes was performed similarly to the method 

described by Dori and colleagues (10). A small amount of Omnipaque (GE 

Healthcare, Mickleton, NJ) was injected under fluoroscopy guidance to confirm 

the correct position of the needles inside the lymph nodes. After stabilizing the 

needles, the patients were transferred into the MRI suite. 

 

MR protocol 

MR was performed on a 1.5 T Siemens Magnetom Avanto scanner (Siemens). 

MR lymphangiogram imaging was performed as previously described (10), with 

heavy T2 weighted sequence for identification of the lymphatic masses. T2 

weighted imaging was followed by injection of 2–8 cc of undiluted gadopentetate 

dimeglumine (Magnevist; Bayer Healthcare Pharmaceuticals Inc., Wayne, NJ) and 

dynamic imaging using a syngo time-resolved angiography with stochastic 

trajectories sequence.  

At the end of the dynamic phase, delayed imaging using a high-resolution 

navigator gated three-dimensional flash inversion recovery sequence was used to 

determine the final details of contrast distribution in the lymphatic system. 

In all patients, the scan area encompassed the neck, chest, and abdomen to the 

most caudal extent feasible. Volume rendering and further processing of the three-
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dimensional volume, maximal intensity projection and coronary reconstructions 

were performed on a Syngo InSpace Dynamic workstation (Siemens). 

 

Lymphatic Embolization 

All procedures were performed under moderate sedation and all patients 

received periprocedural antibiotics. First, an intranodal lymphangiogram was 

performed to opacify the lymphatic system as previously described [463]. The 

central lymphatic system (cisterna chyli or lumbar lymphatic vessels) was accessed 

through an anterior transabdominal approach using a 21- to 22-gauge Chiba needle 

(Cook Medical Inc., Bloomington, IN) [463.  

A V18 control guide wire (Boston Scientific, Natick, MA) was then advanced 

into the thoracic duct and manipulated cephalad. Over the wire, a 60-cm 2.3F 

Rapid Transit microcatheter (Cordis Corp., Warren, NJ) was advanced further into 

the thoracic duct. Imaging of the thoracic duct and its branches was then performed 

by injecting Isovue (Bracco, Cranbury, NJ).  

Embolization of the pulmonary lymphatics was performed using a 

combination of Lipiodol (Guerbet, Princeton, NJ), an oil-based contrast that is 

often used as an embolization material, Nestor endovascular coils (Cook Medical, 

Bloomington, IN), or TRUFILL n-BCA endovascular glue (Codeman Neuro, 

Raynham, MA). The goal was to deliver the embolization material into distal 

peribronchial lymphatics to occlude branches and the thoracic duct supplying flow 

into these networks. After the procedure, the patients were admitted for a 1- to 2-

day observation period. 

Patient demographics, diagnosis, and preprocedure clinical course are 

summarized in Table 2. All patients had bronchial casts, and most had asthma or 

chronic cough. The frequency of expectoration of casts varied from a few times per 



78

week to daily. In one patient, bronchoscopy was required for removal of an 

impacted cast. The average duration of symptoms before referral was 4 years, and 

most patients had been trialed on a variety of systemic and inhaled medications. 

Imaging 

Patient imaging, procedural, and outcome data are summarized in Table 2. 

Table 3. Patient imaging, procedural, and outcome data 

Patient 

�o. 

Sex DCMRL 

Findings 

Thoracic 

Duct 

Injection 

Findings 

Embolizat

ion 

Procedure 

Leng

th of 

Follo

w Up 

Outcome 

(Mo) 

1 F Bilateral 

hilar 

retrograde 

lymphatic 

perfusion. 

First 

Procedure: 

patent 

thoracic duct, 

lymphatic 

perfusion of 

mediastinum 

originating 

from thoracic 

duct. 

First 

Procedure: 

embolizati

on of 

thoracic 

duct. 

13 Slight 

improveme

nt after first 

procedure. 

Second 

procedure: 

Second 

procedure: 

Significant 

improveme
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Table 3. Patient imaging, procedural, and outcome data 

Patient 

�o. 

Sex DCMRL 

Findings 

Thoracic 

Duct 

Injection 

Findings 

Embolizat

ion 

Procedure 

Leng

th of 

Follo

w Up 

Outcome 

(Mo) 

occluded 

thoracic duct; 

injection of 

the 

retroperitone

al lymph 

nodes 

showed 

perfusion of 

mediastinum. 

embolizati

on of the 

retroperito

neal and 

mediastina

l masses

with

Lipiodol.

nt after 

second 

procedure. 

2 F Bilateral 

hilar and 

mediastinal 

lymphatic 

perfusion. 

Narrowing of 

the upper 

part of the 

thoracic duct 

and 

retrograde 

flow of 

Selective 

embolizati

on of the 

thoracic 

duct with 

Lipiodol 

and 

8.5 Resolution 

of 

symptoms. 



80

Table 3. Patient imaging, procedural, and outcome data 

Patient 

�o. 

Sex DCMRL 

Findings 

Thoracic 

Duct 

Injection 

Findings 

Embolizat

ion 

Procedure 

Leng

th of 

Follo

w Up 

Outcome 

(Mo) 

contrast from 

the distal 

thoracic duct 

down to 

mediastinum. 

embolizati

on of the 

thoracic 

duct with 

glue. 

3 M Lymphatic 

perfusion of 

the left 

hilum. 

First 

procedure: 

patent 

thoracic duct 

and perfusion 

of the left 

hilum from 

the branches 

of the 

thoracic duct. 

First 

procedure: 

selective 

embolizati

on of the 

branches 

from 

thoracic 

duct. 

14 Slight 

improveme

nt after first 

procedure 

and 

resolution 

of 

symptoms 

after the 

second. 

Second 

procedure: 

Second 

procedure: 
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Table 3. Patient imaging, procedural, and outcome data 

Patient 

�o. 

Sex DCMRL 

Findings 

Thoracic 

Duct 

Injection 

Findings 

Embolizat

ion 

Procedure 

Leng

th of 

Follo

w Up 

Outcome 

(Mo) 

unchanged 

from the first 

study. 

embolizati

on of the 

thoracic 

duct. 

4 M Bilateral 

hilar, 

mediastinal, 

and 

pulmonary 

lymphatic 

perfusion. 

Occlusion of 

the distal 

thoracic duct, 

retrograde 

flow of the 

contrast from 

the distal 

thoracic duct 

toward 

hilum. 

Embolizati

on of the 

thoracic 

duct and 

branches 

with 

Lipiodol 

and 

embolizati

on of the 

thoracic 

duct with 

coils and 

16 Resolution 

of 

symptoms. 
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Table 3. Patient imaging, procedural, and outcome data 

Patient 

�o. 

Sex DCMRL 

Findings 

Thoracic 

Duct 

Injection 

Findings 

Embolizat

ion 

Procedure 

Leng

th of 

Follo

w Up 

Outcome 

(Mo) 

glue 

5 M Bilateral 

hilar, 

mediastinal, 

and 

pulmonary 

lymphatic 

perfusion. 

Occlusion of 

the distal part 

of the 

thoracic duct, 

retrograde 

flow of 

contrast from 

the distal 

thoracic duct 

to 

mediastinum. 

Embolizati

on of the 

thoracic 

duct with 

glue and 

thoracic 

duct and 

branches 

with 

Lipiodol 

14 Resolution 

of 

symptoms. 

6 F Normal 

thoracic 

duct 

Normal 

thoracic duct. 

No 

interventio

n. 

N/A N/A 

7 F Bilateral Occlusion of Embolizati 4.3 Resolution 
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Table 3. Patient imaging, procedural, and outcome data 

Patient 

�o. 

Sex DCMRL 

Findings 

Thoracic 

Duct 

Injection 

Findings 

Embolizat

ion 

Procedure 

Leng

th of 

Follo

w Up 

Outcome 

(Mo) 

hilar, 

mediastinal, 

and 

pulmonary 

lymphatic 

perfusion. 

the distal part 

of the 

thoracic duct, 

retrograde 

flow of 

contrast from 

the distal 

thoracic duct 

toward 

hilum. 

on of the 

thoracic 

duct with 

glue and 

thoracic 

duct and 

branches 

with 

Lipiodol. 

of 

symptoms. 

Definition of abbreviations: DCMRL = dynamic contrast-enhanced magnetic 

resonance lymphangiogram; N/A = not applicable. 

DCMRL was technically successful in all patients. The flow in the thoracic 

duct was observed for approximately 10 minutes after the injection of contrast into 

inguinal lymph nodes in all patients. Abnormal pulmonary lymphatic flow was 

demonstrated in all but one patient (P6) (Figure 8). We observed two flow patterns: 
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localized flow from the thoracic duct toward lung hilum and bilateral diffuse 

enhancement of the hilum and mediastinum (Table 3). 

The intranodal lymphangiogram and percutaneous transabdominal thoracic 

duct catheterization with microcatheters was successful in all patients. Injection of 

the contrast material into the thoracic duct confirmed DCMRL findings of 

abnormal pulmonary lymphatic flow toward the hilum and mediastinum in six of 

seven patients (Figure 9).  

In three patients, there was complete occlusion of the distal thoracic duct, one 

patient had severe stenosis of distal thoracic duct, and two patients had a patent 

thoracic duct (Table 3).  

In one out of seven patients (P6), thoracic duct injection demonstrated normal 

thoracic duct with no pulmonary lymphatic flow. Pulmonary lymphatic flow 

dynamics revealed by thoracic duct injection correlated well with findings on 

DCMRL. 

 
Figure 8.Dynamic contrast-enhanced magnetic resonance lymphangiogram 

(DCMRL) imaging of patients with plastic bronchitis. (A) Normal thoracic duct 

(white arrow) with no pulmonary lymphatic flow in Patient 6. (B) Abnormal 

thoracic duct with abnormal pulmonary lymphatic flow toward the left hilum and 
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lung in Patient 3 (black arrow). (C) Bilateral abnormal pulmonary perfusion in 

Patient 5 (white arrowheads). 
�

 
Figure 9.Fluoroscopic images of the thoracic duct after injection of the contrast 

through the microcatheter within the thoracic duct. (A) Normal thoracic duct (white 

arrow) with no pulmonary lymphatic flow in Patient 6. (B) Occlusion of the distal 

thoracic duct (white arrowhead) with abnormal pulmonary flow toward the 

mediastinum and pulmonary and peribronchial lymphatics in Patient 3 (black 

arrows). (C) Diminutive thoracic duct, occluded distally with abnormal pulmonary 

and mediastinal lymphatic flow in Patient 4 (black arrowheads). 
�

�

Embolization and Outcome 

The six patients with abnormal pulmonary lymphatic flow underwent 

pulmonary lymphatic embolization (Table 3 and Figure 10). Embolization was not 

performed in the patient who did not have abnormal pulmonary lymphatic flow. 

Four out of six patients who had an intervention reported complete resolution of 

the symptoms immediately after the embolization. 

Two patients (P1 and P3) underwent additional embolization procedures. In 

P1, the symptoms resolved initially and then recurred to a lesser degree; repeat 

DCMRL confirmed persistent abnormal pulmonary lymphatic flow in this patient. 
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During the second procedure, access to small, tortuous paraspinal lymphatic ducts 

perfusion of the lung parenchyma through mediastinal branches was performed 

using a 22-gauge Chiba needle.  

Lipiodol was then injected through the needle, resulting in additional 

improvement, but not complete resolution of symptoms. P3 initially underwent 

selective embolization of the smaller lymphatic branches carrying the pulmonary 

lymphatic flow in an attempt to maintain thoracic duct patency. This resulted in 

temporary improvement, but not complete resolution, of symptoms. During the 

second procedure, complete embolization of the thoracic duct was performed with 

almost immediate resolution of symptoms. Four patients complained of minor 

abdominal pain during the first few days after the procedure, which was controlled 

with medications and resolved before discharge. The average follow up for this 

cohort was 11 months (range, 4.3–16 mo; Table 3). 

we demonstrated that aberrant pulmonary lymphatic flow is a cause of plastic 

bronchitis in adults, and that percutaneous transabdominal embolization is an 

effective treatment for the disorder. 

Plastic bronchitis is a rare pulmonary syndrome characterized by the 

expectoration of branching bronchial casts. Originally described by Galen and 

Morgagnis, plastic bronchitis has been called by many names, including fibrinous 

bronchitis, bronchitis pseudomembranosa, and Hofman bronchitis [452, 464, 465].  

It is most frequently encountered in children with congenital heart disease 

after single-ventricle palliation surgery [455]. Lesser-known forms of plastic 

bronchitis include an idiopathic form [452-454 and those reported in association 

with asthma [466], sickle cell anemia [467], or allergic bronchopulmonary 

aspergillosis [468]. 
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There are several prior reports in the literature suggesting that the lymphatic 

system is involved in pathophysiology of plastic bronchitis in some patients. 

Stoddart and colleagues [469] described a patient with plastic bronchitis and a 

duplicated thoracic duct who was successfully treated with thoracic duct ligation. 

Languepin and colleagues [470] documented the presence of lipids and 

lymphocytes in bronchial casts, dilated lymphatic channels on lung biopsy, and 

lymphangiographic findings of reflux of the lymph in the lungs as evidence for a 

lymphatic etiology of plastic bronchitis in a patient who presented with plastic 

bronchitis. 

Missing from the literature, however, is direct confirmation of abnormal 

lymphatic flow in plastic bronchitis using modern central lymphatic system 

imaging techniques. Intranodal lymphangioram [460] and DCMRL [458, 462] are 

new imaging techniques that better define the anatomy and dynamic flow of the 

lymphatic system. Using these techniques, Dori and colleagues [461, 462] 

demonstrated abnormal pulmonary lymphatic perfusion in an infant with cardiac 

plastic bronchitis. In this study, DCMRL and IL revealed abnormal lymphatic 

pulmonary flow from the thoracic duct toward the peribronchial lymphatics and 

lung parenchyma in six of seven adult patients (Figure 11). 

 
Figure 10.Fluoroscopic images after thoracic duct (white arrows) embolization 

with endovascular coils (black arrows) and glue (black arrowheads) (A–C). 



88�

�

 
Figure 11.(A) Schematic representation of the normal pulmonary lymphatic flow 

from pulmonary parenchyma toward the thoracic duct (green color). The thoracic 

duct empties in the left subclavian vein. (B) Schematic representation of the 

abnormal pulmonary lymphatic flow in plastic bronchitis from the thoracic duct 

toward lung parenchyma (green color). There is occlusion of the upper part of the 

thoracic duct. Reprinted by permission from the Children’s Hospital of 

Philadelphia. 

 

The functions of the lymphatic system are to maintain tissue pressure and 

fluid homeostasis, to transport lymphocytes and antigen-presenting cells to 

regional lymph nodes, and to serve as a conduit for intestinal lipid absorption 

[471]. 

The majority of lymph is generated in the lower extremities, the liver and 

intestines. Lymph flowing from these sources converges on the cisterna chyli and 

is then channeled to the thoracic duct and ultimately discharged into the subclavian 

vein. Total lymph volume is estimated at approximately 4 L/d. Valves within 
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lymphatic collecting vessels maintain unidirectional flow. Lymphocytes, antigen-

presenting cells, and other leukocytes enter lymphatics through discontinuous 

junctions in the walls of small vessels within tissues and traffic between lymph 

nodes that decorate the lymphatic tree. Chylomicrons are added to the lymphatic 

fluids by lacteals in the gut, imparting the characteristic high fat content and milky 

color to chylous fluids. 

 The lung lymphatics are also a one-way vascular network that begins in the 

secondary lobules in the periphery of the lung and flows toward the hilum, 

draining into the axial lymphatics within the mediastinum. In cases of elevated 

pressures or abnormal flow in the thoracic duct, however, lymph from the axial 

system courses retrograde into lung lymphatic channels and seeps into airways and 

engorges the lung parenchyma. 

Gray and colleagues [472] recently reported that complete occlusion of the 

thoracic duct was associated with collateral flow of chylous fluids into 

peribronchial lymphatics in infants with neonatal chylothorax.  

This lymphangiographic pattern was almost identical to that in the adult 

plastic bronchitis patients in our series, suggesting that even late presentations of 

plastic bronchitis may be related to congenital or developmental lymphatic 

variants. We postulate that these anatomical variants can variably present clinically 

in early childhood as neonatal chylothorax, or can remain silent for many years and 

become manifest later in life as a stochastic event, perhaps precipitated by a 

respiratory illness or other stressor. 

The mechanism of cast formation in plastic bronchitis likely involves 

abnormal perfusion of the bronchial submucosa with lymph and slow seepage of 

lymphatic cells, proteins, and fats into the bronchial lumen. Once in the airway, the 

extruded materials become desiccated and congeal, resulting in cast formation. 
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Exacerbation of plastic bronchitis is known to occur during bouts of respiratory 

illness, especially with influenza A virus, suggesting that bronchial mucosal 

inflammation may affect permeability and contribute to cast formation [473]. 

 This phenomenon might also explain the temporary improvement of 

symptoms with steroid treatment reported in some cases. One of the potential 

mechanisms of cardiac plastic bronchitis is lymphatic vessel overdistention, due to 

an increase in lymphatic flow through central lymphatics, which, in turn, causes 

increase of the “weeping” of the bronchial submucosal lymphatic vessels [462]. 

Percutaneous lymphatic procedures, such as thoracic duct embolization, are 

well established, less-invasive alternatives to surgical interventions in cases of 

chylous leaks [459, 460].  

The procedure involves diagnostic intranodal lymphangiography followed by 

transabdominal catheterization of the cisterna chyli and transcatheter embolization 

of the thoracic duct proximal to the chyle leak. Dori and colleagues [461, 474] 

described successful use of a modification of this technique to treat a child with 

cardiac plastic bronchitis.  

The goal of therapy in this study was to perform embolization of as many 

aberrant branches perfusing the lung as possible. This treatment was successful and 

completely ameliorated the symptoms of five of the six patients in whom the 

abnormal pulmonary lymphatic flow originated from the thoracic duct. In one 

patient (P1), the origin of the pulmonary lymphatic flow was a 

retroperitoneal/mediastinal lymphatic malformation. Embolization of these masses 

was technically difficult, and the outcome of treatment was partial improvement. 

One patient did not have abnormal pulmonary lymphatic flow, and lymphatic 

embolization was not performed. 
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 It is possible that the etiology of plastic bronchitis in some patients does not 

have a lymphatic basis or, alternatively, the current imaging techniques (DCMRL 

and IL) are not sensitive enough to detect subtle lymphatic perfusion 

abnormalities. Development of new diagnostic techniques or refinement of the 

existing methods may ultimately reveal the etiology of cast formation and optimal 

approach in this group of patients. ����������������
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Conclusions 
 

Although multiple factors have been assessed in understanding COPD 

mortality/morbidity and treatment monitoring strategies, COPD and RBC indices 

correlation is still undeniable. We concluded that chronic systemic inflammation, 

chronic oxidative stress, and impaired iron metabolism are the main pathologies 

associated with COPD that alter RBC indices.  

Ongoing systemic inflammation affects the structure and function of 

erythrocytes, reducing their deformability and interference with erythropoiesis. 

Low Hb, HCT, and MCHC, and high RDW levels were associated with poor 

prognosis, lowering survival, and raising mortality. RBC indices were also studied 

for use in guiding COPD treatment. Patients with a higher RDW had more 

hospitalizations and required LTOT therapy. Therefore, we recommend 

considering RBC indices as a prognostic indicator in assessing disease severity, 

treatment, and follow-up of COPD patients to reduce exacerbation episodes and 

hospital readmissions. 

Most patients who present with expectoration of complex, branching casts do 

not have idiopathic plastic bronchitis, but have abnormal pulmonary lymphatic 

flow that is associated with abnormal communications with the airspace. We 

propose the diagnosis “lymphatic plastic bronchitis” to differentiate this disorder 

from those of unknown cause. One patient in our series did not have an identifiable 

lymphatic etiology for his symptoms, and the diagnosis of idiopathic plastic 

bronchitis is appropriate for that subject.  

In patients with suspected lymphatic plastic bronchitis, DCMRL and 

intranodal lymphangiography may reveal abnormal lymphatic flow and the site of 
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communication of the lymphatics with the airways, which can be useful for 

planning interventional strategies.  

Transabdominal cannulation of the thoracic duct provides for high-resolution 

imaging of the leaking vessel, and for directed embolization. Complete occlusion 

of the thoracic duct is an option when targeting smaller vessels is impractical or 

unsuccessful. Embolization of abnormal lymphatic networks proved to be safe and 

effective for short-term resolution of symptoms of plastic bronchitis in our 

patients, but extended follow up will be required to confirm the long-term risks and 

benefits. ��������������
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