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RESEARCH PAPER

Deep Learning-based CAD System for Predicting the
COVID-19 X-ray Images

Aqeel R. Talib*, Hana’ M. Ali

Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq

Abstract

According to World Health Organization data, Coronavirus (COVID-19) has infected about 660, 378, 145 patients
around the world. It is nonetheless difficult for physicians to detect COVID-19 infections out of CT or X-ray radiographs.
Thus, several computer-aided diagnosis (CAD) systems based on deep learning and radiographs were developed to
detect COVID-19 infections. However, the majority of approaches considered small datasets, which is ineligible to
provide diverse COVID-19 radiographs. This work utilizes a massive number of X-ray radiographs, and compared
standard CNN, DenseNet-121, and GoogLeNet for isolating COVID-19 infections out from normal and other pneumonia
radiographs. The dataset in this work is large enough to evaluate the realistic performance of those models in labeling
COVID-19 infections. Considering the time complexity, accuracy, precision, recall, and F1 score, the experimental results
shows that the DenseNet-121 is not only the optimal model, but also there is superior for standard CNN compared to the
second output of GoogLeNet, which is an unexplained phenomenon.

Keywords: Deep learning, Convolutional neural network, GoogLeNet, DenseNet, Covid-19, Pneumonia

1. Introduction

C oronavirus (COVID-19) is a disease caused by
severe acute respiratory syndrome coronavi-

rus-2, which was spread in 2019 and occupied the
attention of the whole world. Most countries were
infected and the healthcare agreement was under
evaluation by the World Health Organization [1].
COVID-19 is characterized by a rapid spread and
infection among individuals due to the lack of
intensive treatment, and further, the majority of
diagnosis is taken after the appearance of symp-
toms, which most of the time leads to a lessened
ability to confront the virus due to the weak im-
munity of the patient and the exacerbation of the
disease [2]. According to recent data, COVID-19
causes fewer symptoms in around 99% of patients,
whereas the remaining are severe cases. As of
January 1, 2023, there have been 665, 003, 425
COVID-19 cases reported globally, with 6,697,442
deaths, and there are 21, 381, 993 active patients out
of these [3].

A crucial, simple, cheap, and fast technique for
diagnosing pneumonia is chest radiography (X-ray)
[4]. In this regard, in comparison with computed
tomography (CT) and magnetic resonance imaging
(MRI), the chest X-ray exposes the patient to less
radiation. However, an accurate X-ray picture
diagnosis requires specialized knowledge and
expertise. Consequently, compared to other imag-
ing modalities like CT or MRI, a chest X-ray is far
more challenging to diagnose.
Only specialist physicians can precisely diagnose

the X-ray, and decide whether it is embedded with a
COVID-19 virus. Unfortunately, the number of
those specialist physicians capable of making such
diagnosis is less than the number of non-specialist
doctors. Even during normal times, in most nations
around the world, there aren't enough doctors per
population. According to some data, Greece tops the
list with 607 doctors per 100,000 people; this figure is
considerably lower in other nations.
For a rapid and precise diagnosis of pneumonia

from the chest X-ray, doctors can resort to exploiting
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artificial intelligence-based diagnosis methods,
especially CADs. Artificial intelligence (AI) is one
technique that is increasingly being used in the
realm of medical services since it can handle
massive datasets better than humans can [5]. To
reduce the workload of doctors, the CAD systems
can be integrated with the radiologist diagnostic
methods, and this would also improve the reliability
and the quantitative analysis. Such a combination of
deep learning-based medical imaging CAD system
has revolutionized the state of the art [6e8]. Deep
learning (DL) paradigms have been effectively
applied in many fields such as skin cancer classifi-
cation [9], breast cancer detection [10], brain disease
classification [11], fundus image segmentation [12],
arrhythmia detection [13], pneumonia detection
from chest X-ray images [14], and lung segmenta-
tion [15].
The rapid spread of the COVID-19 outbreak has

made it necessary to cover this area. This has raised
interest in creating AI-based automated detection
systems. It is a challenge to extend expert clinicians
to all hospitals owing to the limited number of ra-
diologists. Additionally, AI methods can also help
remove drawbacks including the lack of readily
available RT-PCR test kits, test fees, and long wait
times for test results.
Recently, many X-ray images have been widely

exploited for COVID-19 classification. In [16], the
authors utilize the standard CNN to classify normal
versus pneumonia X-rays. P. Saha et al. [17] utilized a
DL paradigm to diagnose COVID-19 through X-ray
images and proposed a COVIDX-Net model, which
is composed of 7 CNN models. Wang and Wong [2]
scored a 92.4% accuracy in classifying COVID-19
versus normal and other pneumonia classes by
proposing a deep model of COVID-19 detection
(COVID-Net). Ioannis et al. [18] constructed a deep-
learning model using only 224 confirmed COVID-19
images. Their paradigms scored 98.75% and 93.48%
success rates for two and three classes, respectively.
Finally, there have been many recent studies on the
detection of COVID-19 that used CT scans and
various deep-learning models [19e21].
Our contribution to this work is to examine mul-

tiple automatic CAD predictions of COVID-19 using
a deep CNN based on chest X-ray images. In this
regard, we checked three models of CNN to inves-
tigate their role in distinguishing the X-rays of three
classes of images, which are COVID-19, normal, and
other pneumonia diseases. The first model is a
standard CNN. The second model is GoogLeNet
[22], and the third model is the Dense-121 which is
proposed in [23]. In contrast to some previous works
in the state of art, which have been performed on

limited disorganized, a huge number of chest X-ray
images of three classes have been collected from
multiple resources to fairly evaluate those models.
Further, more performance analytics on different
CNN outputs were discussed.
The rest of the paper is organized as follows: In

Section 2, research on using DL techniques on chest
X-ray and CT images used to detect COVID-19
disease is discussed. Section 3 discusses the mate-
rial, dataset, and the three models. In section 4, the
experimental results were discussed along with the
performance metrics. Finally, section 5 summarizes
the conclusion of this work.

2. Related work

Recent studies that aim to build diagnosis models
for COVID-19 detections have relied on chest X-rays
and CT radiography, and they were either binary or
multiple classifications models. While several
research works depend on feature extraction, some
others utilized raw data. Other studies also used a
variety of data set sizes to construct a well-gener-
alized model. However, most of those techniques
have been trained with tiny or high-variance data
set that produce high-accuracy models in the
training stage, but lack model generalization, which
as a result makes the model not applicable to the
real-world problem.
Convolutional neural networks are the technique

most often adopted in the majority of CAD-COVID-
19 systems. M. Mijwil suggested implementing DL
paradigms such as Random Forest, Logistic
Regression, Naïve Bayes, and Support Vector Ma-
chine to detect COVID-19 out of the X-ray images.
The work shows that the DL technique is the best
regarding disease detection [24], however, the
author trained all models with only 389 COVID-19
images, which would make the model inappropriate
to be considered as a real-world CAD system.
Mukherjee et al. [25] proposed a CNN architecture
that is appropriate to be a CAD system for both CT
and chest X-ray radiographs. Their CNN can
impeccably convolve both CT and X-ray images
with the same effectiveness; hence, they achieved an
overall accuracy of 96.28%, but with raw data con-
sisting of 336 COVID-19 CT and CXR images only.
The author in [3] proposed a CT images of the CAD
system to construct a CNN tailored for COVID-19
CT image segmentation by introducing the feature
variation block (FV) which modifies the global in-
formation of the features. The FV block enhances
the ability of feature representation in diverse cases.
They also utilized pyramid pooling to deal with the
sophisticated infection position in the images.
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Considering the difficulty of obtaining and cleaning
the CT image data, their data were medium in size
to show a good performance, hence the model
scored nearly 98%. However, the chest CT images in
their work was taken from only 861 patients with
confirmed COVID-19 by RT-PCR.
Apostolopoulos and Bessiana utilized an evolu-

tionary ANN for healthy differentiation on auto-
matic prediction of COVID-19-induced pneumonia,
and other pneumonia classes. They utilized transfer
learning techniques to detect various abnormalities
in datasets. Although their model achieved
remarkable results, the dataset was embedded with
only 224 confirmed Covid-19 images [18].
Zhang et al. [26] developed a model based on DL

that can detect COVID-19 aiming to produce high
sensitivity and provide reliable and rapid scanning.
Although their work employed the idea of rapid
scanning with thousands of viral images, their data
consisted of merely 106 confirmed COVID-19 cases
as they stated that the majority of data were
collected before the pandemic, and thus the model
would not be considered as a CAD system for
COVID-19 detection.
In [27], Narin et al. utilized a transfer learning

CNN that uses shifted cross-validation to detect
COVID-19 in chest X-ray radiographs from other
pneumonia diseases. They have been testing their
341 conformed COVID-19 cases dataset on five
models, which are (ResNet50, ResNet101,
ResNet152, InceptionV3, and Inception-ResNetV2).
Singh et al., in [28] employed a multi-objective

differential evolution (MODE)-based CNN that
supplied CT images to detect the COVID-19
infected and non-infected CT images. Their model
was built with a dataset embedded with a total of
3883 images of depicted Pneumonia, out of which
2538 images belong to Bacterial Pneumonia and
1345 images depicted virus Pneumonia, hence the
COVID-19 images in their data are within 1345
virus Pneumonia, which makes their CAD system
suitable for the prediction of all Pneumonia cases
rather than concentrated at COVID-19 detection
system.
Adhikari, in [29] proposed a network named Auto

Diagnostic Medical Analysis by which the infected
areas in the radiographs might be detected to assist
the physicians in better finding the diseased part if
any. The study made use of both X-ray and CT
scans. It has been suggested that the DenseNet
network (DN) be used to eliminate and mark
contaminated lung regions, however, there are in
total 152 images utilized for training and testing the
CAD system, which consists of different cases of the

infections that include ARDS, SARS, Pneumocystis,
Streptococcus along the COVID-19. Distributing
only 152 images of several diseases to a CNN model
is not an appropriate application for building a
COVID-19 CAD system.
In [30], the authors trained their novel CNN

model to detect COVID-19 infections by applying
three types of filters to get and locate the edges from
the images, which would help to get the desired
segmented target. However, the model receives only
nearly 200 X-ray images containing only up to 70
COVID-19 cases. With limited data, it can be very
hard to evaluate the robustness and accuracy of the
proposed approach. Further, with a small number of
images, it is hard to generalize the result.
Another earlier deep COVID-19 detection model

is proposed by Wang and Wong [2] using CNN and
X-ray images. The model was fair enough to be a
perfect CAD system, as it has been tested over 1203
normal chests, 45 COVID-19, 660 viral pneumonia,
and 931 bacterial pneumonia patients. Their model
accomplished a very good testing accuracy of
83.50%, taking into consideration the data diversity
and size, which contains 45 confirmed COVID-19
cases. Ozturka et al. [31] suggested one of the
earliest COVID-19 CAD systems that use other than
the standard CNN, which is the DarkNet model.
This model has 17 convolutional layers and
numerous filtering stages in each layer, as classifiers
for the YOLO real-time object identification system.
However, the dataset was too small and taken from
only 43 female and 82 male cases.
The author [32] proposed a CNN-based CAD

system called COVIDX-Net to assist radiologists in
automatically diagnosing COVID-19 in 50 X-ray
images, which contains only 25 confirmed positive
COVID-19 cases.
From the above works, one conclusion could be

drawn, which is the dataset set size itself, and the
number of COVID-19 images, which should be
considered when multiple models are compared.
The dataset of COVID-19 in early 2021 and 2022 was
very rare, which makes the accuracies of the earlier
models very high, and sometimes reach 98% or even
99%. Some of the above works have trained models
even to deal with data that contain less than 500
COVID-19-labeled radio images. As a result, in this
work, the dataset that has been used to train three
CNN models is very large compared with the
above-mentioned works. The dataset of one type of
radio-images, i.e., X-rays, has 36,240 images with
16,194 COVID-19 radiographs, a matter that makes
this dataset large enough COVID-19 data compared
with earlier works.
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3. Material and models

This section describes the X-ray radiographs
dataset that has been used to develop the CNN
models. The section also gives preliminaries of the
three CNN models, which are the standard CNN,
GoogLeNet, and DN-121 networks.

3.1. Dataset

The chest X-ray image dataset, visualized in Fig. 1,
has been collected from two different authorized

resources. Cohen JP developed a COVID-19 chest
X-ray image dataset extracted from various open-
access sources and it is available at https://github.
com/ieee8023/covid-chestxray-dataset. The second
source is the COVID-Net Open Initiative databases,
available at, https://www.kaggle.com/code/chaitany
a99/viral-pneumonia-classification-googlenet/data,
which is an initiative committed to speeding up
machine learning usage to support front-line
healthcare professionals and clinical institutions
around the world in their fight against the ongoing

Fig. 1. Samples of chest X-ray radiographs of three labeled classes.
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pandemic. The dataset from the second source is
updated constantly throughout the course, as new
cases with chest X-rays of COVID-19 and other
pneumonia types are added every period. The ob-
tained dataset, which contains a pre-diagnosed
COVID-19, Pneumonia, and normal cases, is packed
with 36,240 grayscale chest X-ray images taken for
infected and normal females and males with an
average age of approximately 47 years old. In Fig. 1.
COVID-19 shows a shadow on the Cardio-vassal
within the limits, infiltrate, consolidation, basilar
opacity, and vaguely defined opacities in the bilat-
eral lungs. The general picture of those samples
shows that COVID-19 X-ray images reveal a whiter
shade than pneumonia and normal ones.

3.2. Models

This work builds a CAD system based on CNN,
which is one of the common DL architectures
applied to many detection, prediction, recognition,
classification, and regression applications.
CNN is inspired by the natural visual perception

mechanism of living organisms. Generally, CNN is
formulated from three basic layers, which are con-
volutional, pooling, and a fully connected network.
While the convolutional layer aims to gain infor-
mation about the feature representation, the pooling
layer performs a shift-invariance by lessening the
feature map resolution. The fully-connected layer
generates a high global level of semantic
information.
CNN has been subjected to several developments

to overcome the difficulties encountered in deep
training. The most straightforward method of
enhancing the performance of CNN is by rising
their size (i.e., depth and width). However, there
would be two major disadvantages of such a pro-
cedure. The first disadvantage is that the bigger the
size, the larger number of trainable parameters,
which enforce the CNN to be more disposed to
overfitting. The second disadvantage relates to the
high computations due to the large number of layers
and required-to-adjust parameters.
The forthcoming subsections briefly describe the

different three CNN models, GoogLeNet, DN-121,
and the standard CNN, that have been compared to
reveal the efficiency of each in terms of computa-
tional complexity, and performance matrices in
predicting the COVID-19 diagnosis.

3.2.1. Standard CNN
The basic components of the CNN are ordinarily

very similar. This paper considers the LeNET-5
network as a representation of the standard CNN. In

such architecture, the convolutional layer is
employed to formulate a new summarized feature
map by applying a learned kernel on all spatial lo-
cations of the input along with a nonlinear activa-
tion function. Mathematically, the feature value at
the position ði; jÞ in the m� th feature map of the l-
layer ;Vl

i;j;m; can be extracted by:

Vl
i;j;m¼Cl

m xli;j þ blm ð1Þ

where Cl
m and blm are the weighted vector (kernel)

and bias of the m� th filter of the l-layer respec-
tively. xli;j is the patch input which is centered at the
position ði; jÞ. On the other hand, the nonlinear
activation function is utilized to extract the
nonlinear features. Let the activation function be f,
thus the activation function f li;j;m of Vl

i;j;m the con-
volutional feature can be calculated as:

f li;j;m¼ f
�
Vl
i;j;m

�
ð2Þ

To implement a shift-invariance, a pooling
layer is often located between two successive con-
volutional layers. In the pooling layer, each feature
map is linked to its corresponding feature map of
the previous convolutional layer. Let P denote the
pooling function of each feature map, then for each
Vl
i;j;m there is:

yli;j;m¼P
�
Vl
n;k;m

�
;cðn;kÞ24i;j ð3Þ

where 4i;j is the local neighboring around the posi-
tion of ði; jÞ: It is worth mentioning that the most
used pooling function in CNN is the average pool-
ing method.
After several layers of convolution and pooling,

the high-level reasoning is achieved by one or more
fully connected layers, which linked all neurons of
the proceeding layer with each neuron of the cur-
rent layer to generate the semantic information.
Finally, the output layer is placed at the end of

CNN architecture to execute the classification task,
which is usually done by a function called softmax
operator. CNN is a higher class of the basic multi-
layer perceptron in which a global optimization
technique should be backpropagated to gain the
optimal solution for the CNN parameters that
reduce the loss function t. Let x refer to all CNN
parameters that must be optimized. We assume K is
the desired relation between input and output to be
fðxðkÞ;yðkÞÞ; k2½1; 2;…;N�g, where xðkÞ and yðkÞ k� th
is the input data and its desired target data
respectively.
Let tðnÞ be the output of the network, then t can be

computed as follow:
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t¼ 1
K

XN

k¼1
l
�
x;yðnÞ; tðnÞ

� ð4Þ
By optimizing the trainable parameters of

CNN, the loss function can be reduced which would
enhance the classification label and approximate the
matching of input-desired relations. The figure

below demonstrates the basic architecture of stan-
dard CNN that is being used in this work. Table 1
shows the CNN architecture that has been used to
classify the chest X-ray images.
The standard CNN architecture which was uti-

lized in this work is demonstrated in Fig. 2, and
Table 1.

3.2.2. GoogLeNet
GoogLeNet was proposed by a collaboration be-

tween Google and various universities around the
world in 2014 [22]. This architecture employs some
techniques such as 1� 1 convolutions and a global
average pooling which enables the architecture to
go deep.
Fully connected layers have been used at the end

of the network in the previous architectures of CNN
such as AlexNet, and this would cause high

Table 1. Standard CNN Architecture.

Layers Description

Convolution 32 � 3 � 3
Pooling 2 � 2 max pool
Convolution 64 � 3 � 3
Pooling 2 � 2 max pool
Convolution 128 � 3 � 3
Pooling 2 � 2 max pool
Convolution 32 � 3 � 3
Pooling 4 � 4 max pool
Flatten 1568

Fig. 2. The Standard CNN architecture.

Fig. 3. Inception module with dimension reductions.

486 A.R. Talib, H.M. Ali / Karbala International Journal of Modern Science 9 (2023) 481e494



computation complexity because more parameters
are embedded in the fully connected layers. In
contrast, GoogLeNet uses a method called global
average pooling at the end of the network, which
decreases the number of the trainable parameters

due to the feature map of 7� 7 and the average 1� 1
layer containing the global average pooling.
This network adopts the inception module, which

is a new architecture different from the previous
models. The inception module, illustrated in Fig. 3,
consists of 1� 1, 3� 3; 5� 5 convolutions, and 3� 3
max pooling that operate in a parallel course to the
input and output of these which are packed together
to generate the final output.
The final building block in such a network is the

auxiliary classifier, which branches at the heart of
the architecture. Its branches perform only during
the training stage. Each branch is embedded in i)
5� 5 average pooling layer with a stride 3, ii) 128
filtered 1� 1 convolutions, iii) fully connected layers
of 1024 units with RELU activation function, iv) a
70% ratio of drooped layers, v) Softmax classifier.
The overall architecture comprises 22 layers when

one counts only the parameterized layers and 27
layers when pooling layers are counted. Fig. 4 shows
the overall architecture of the GoogLeNet that has
been used in this work.

3.2.3. Dense-121
DNs are proposed to be the new models that

resolve the problem of the vanishing gradient
existing in the standard CNN, which is a problem
that occurs due to the increasing path of information
in the routes from input to output. DNs is a modi-
fied standard CNN that is subjected to simplified
connectivity patterns among layers. The main idea
in the DNs architecture is called connectivity ac-
cording to which every layer is linked directly with
all other layers; hence, it gains the name of Dense.
For the L layer, there are LðLþ1Þ

2 connections. The

Fig. 4. GoogLeNet network with all the bells and whistles [22].

Table 2. DN-121 architecture.

Layers Output Size DenseNet-121

Convolution 112 � 112 7 � 7 conv, stride 2
Pooling 56 � 56 3 � 3 max pool, stride 2
Dense Block (1) 56 � 56

6 �
�
1� 1 conv
3� 3 conv

�

Transition Layer (1) 56 � 56 1 � 1 conv
28 � 28 2 � 2 average pool, stride 2

Dense Block (2) 28 � 28
12 �

�
1� 1 conv
3� 3 conv

�

Transition Layer (2) 28 � 28
14 � 14

1 � 1 conv
2 � 2 average pool, stride 2

Dense Block (3) 14 � 14
24 �

�
1� 1 conv
3� 3 conv

�

Transition Layer (3) 14 � 14 1 � 1 conv
7 � 7 2 � 2 average pool, stride 2

Dense Block (4) 7 � 7
16 �

�
1� 1 conv
3� 3 conv

�

Classification Layer 1 � 1 7 � 7 global average pool
1000 fully connected, Softmax
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feature maps (FM) of all former layers are concate-
nated and utilized as inputs to the current and
hence allowing the idea of discarded feature maps.
The ith layer collects the FM of all former layers, f0;

f1;…; fi�1 as input:

fi¼Ui

�h
f0; f1;…; fi�1

i�
ð5Þ

where: f0; f1;…; fi�1 are the FM concatenations, which
are the outputs, delivered by all former layers. The
inputs of Ui are combined into a single tensor to
facilitate the implementation.
DNs architecture is alienated into dense blocks in

which the dimension of the FM remains fixed within
one block, nevertheless, the number of filters be-
tween those blocks is altered. The transition layer
between blocks reduces the number of channels to
half of that existing once. In Equation (5), Ui is a
composite function that carries out three successive
processes i) batch normalization, ii) RELU, and iii)
convolution.
DNs are also characterized by their growth rate,

which regulates the amount of information linked to
each layer in DNs. The dense block of DNs is
attached to one 1� 1 bottleneck convolutional layer
before splitting into the 3� 3 convolutions.
The DN-121, as illustrated in Table 2, gains the

overmentioned main characterizations, which

include four dense blocks and three transition
layers. Every dense block in the architecture of DN-
121 has a different number of layers characterized
by two 1� 1 convolutions as bottleneck layers and a
3� 3 kernel to carry out the convolution operation.
The transition layers in DN-121 are embedded in
the 1� 1 convolutional layer and a 2� 2 average
pooling layer with stride 2.
The rest of the architecture contains a 7� 7 con-

volutional layer, a 3� 3 basic pooling layer, a global
average pooling layer, and an output layer. Fig. 5
illustrates the basic dense blocks and the structure
of the entire model.

4. Experimental setup & evaluation

4.1. Data and model preparation

The dataset is a collection of different extensions
(i.e., JPEG, JPG, and PNG) of 36,240 chest X-ray
radiologic images, and it had been labeled as
COVID-19, pneumonia, normal of 16,194, 15,773,
and 4273 images, respectively. All the labeled im-
ages are in the form of a grayscale. The form of the
images was changed to 224 � 224 pixels with 3
channels RGB with the help of the PIL library, hence
providing more contrast between COVID-19 and
other pneumonia diseases.
The images thereafter have been splitted into

three packets, which are the training, testing, and
validation samples. The training samples were
about 80% of the entire data, and the testing and
validation samples make up the remaining 20%.
Table 3 shows the volume of the datasets.
The models, which are GoogLeNet, Standard

CNN, and DN-121 were subjected to identical

Fig. 5. (a) DN-121 Architecture and (b) the connectivity pattern of dense blocks.

Table 3. Dataset sizes.

Data type Size

Dataset 36,240
Training set 28,992
Testing set 3624
Validation set 3624
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parameter values. Python programming language
along with anaconda environment and several li-
braries such as Numpy, Keras, Scipy, PIL, Pandas,
Seaborn, and Matplotlib was utilized to implement
all frameworks. All experiments were carried out
using NVIDIA graphical processing unit (GPU)
RTX, 16 GB random access memory.
The standard CNN consists of successive 32, 64,

and 128 filters in 3 � 3 kernel size convolutional
layers and terminates with 32 filters convolutional
layers of 3� 3 kernel and 4� 4 max pooling. A
pooling layer with a pooling size of 3� 3 is
embedded between every two consecutive layers.
After building the structure, the flattened vector has
1568 elements, which represent the array image of
7� 7� 32. This architecture is supposed to own the
superiority to gain the best accuracy, since the flat-
tened vector is larger than that of the other model,
and this size will be the same as the neurons in the
fully connected layer. This would help in comparing
the two fairly. Table 1 shows the entire architecture
for this model. After building the structure, the
trainable parameters are about 2,604,291. We have
constructed several models of standard CNN;
however, this architecture has the best accuracy so
far.
The DN-121 network has been constructed with

the same architecture that is described in the pre-
vious section.
DN-121 contains four dense blocks with 6, 12, 24,

and 16 ð1�1Þ and (3 � 3) convolutional layers
respectively, along with three transitional layers
each with a (1� 1) convolutional layer and (2� 2)
pooling layer. The flattened vector has 1024 ele-
ments passed to a 1024 dense network. The total
trainable parameters are about 7,040,579.
GoogleNet starts with two convolution-pooling

combinations followed by nine inception blocks
with a pooling layer after blocks 3 and blocks 7,

thereafter an average pooling layer and a dropout
rate of 60%. The total trainable parameters for this
model are 8,477,497. See Fig. 4.
For all models, Softmax function is used to extract

the classed output, and all were trained in the
initialized random weights and bias terms by
employing the adaptive moment estimation
(ADAM) to optimize the decision variables of the
cross-entropy function. For ADAM, the b1 ¼ 0.9,
b2 ¼ 0.999, and e ¼ 1e-07. All models were trained by
a maximum of 300 epochs, however, they were all
subjected to a patience technique that aims to hold
the training process if the loss function value does
not improve in 10 concussive epochs.

4.2. Evaluation metrics

In order to measure the performance of the deep
transfer, four criteria were considered along with
the confusion matrix, they are as follows:

Table 5. Accuracy values.

Model Training
Accuracy

Testing
Accuracy

Best epoch

Standard CNN 0.9436 0.9451 70
DN-121 0.9969 0.9818 17
GoogLeNet output 1 0.9413 0.9392 65
GoogLeNet output 2 0.9587 0.9536
GoogLeNet output 3 0.9638 0.9588

Fig. 6. Training versus testing accuracy in Standard CNN.

Fig. 7. Training versus testing accuracy in DN-121.

Table 4. Training time.

Model Time (sec) No. of Epochs

Standrad CNN 58683.68 81
GoogleNet 114966.87 76
DN-121 509946.4 20
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Accuracy¼ TPþ TN
TPþ TN þ FPþ FN

ð6Þ

Recall¼ TP
TPþ FN

ð7Þ

Precision¼ TP
TPþ FP

ð8Þ

F1 Score¼2� Precision�Recall
PrecisionþRecall

ð9Þ

Fig. 8. (a,b,c) Training versus testing accuracy in GoogLeNet. Fig. 9. (a,b,c) Training versus testing Loss in GoogLeNet.
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Where TN, FP, TP, and FN in equations (6)e(9) refer
to the number of true negative, false positive, true
positive, and false negative cases, respectively.
Given a model and test dataset, when considering
the COVID-19 images as a target for evaluation, TN
is the number of negative cases (normal or pneu-
monia) that are labeled clearly as either normal or
pneumonia; FP is the number of negative cases
(normal or pneumonia) that are incorrectly labeled
as positive (COVID-19); TP refers to the number of
positive (COVID-19) cases that are clearly labeled as
COVID-19; and FN is the number of positive
(COVID-19) cases that are incorrectly labeled as
normal or pneumonia.

4.3. Experimental result

In this work, we constructed three different CNN
networks for a classification CAD system that
attempt to predict the class of X-ray images, which
are COVID-19, pneumonia, and normal. While 80%
of dataset is packed for training, the other remaining
20% is packed to be testing.
Table 4 shows the computational complexity for

all three models. The training time is defined as the
time from the starting epoch till the time at which
the loss function is stable at a range of values, and
stops improving.
Table 5 shows the training and testing accuracy of

the best epochs obtained so far. DN-121 owns the
best training accuracy. Output 3 in GoogleNet also
performs well and has better training and testing
accuracy than standard CNN and the other two
outputs. The standard CNN trains better than
output 1 in GoogLeNet.
Figs. 6e8,which are plottedusing Spyder IDE, show

the training and testing accuracy versus the number of
epochs. Moreover, Figs. 9e11 show the loss function
versus the number of epochs for the standard CNN,
DN-121, andGoogLeNet. GoogLeNet has three dense
branches embedded in its structure; hence, Fig. 8
shows all the output of those branches.
It's noticeable that the performance of DN-121 is

better and has been adequately trained more than
the other models in terms of the accuracy and the
number of epochs required to reach the accuracy
peak when epochs are considered as a limit of the
patience factor. Further, the loss function in DN-121
is intuitively optimized and stabilized quickly.
The term standardization refers to the ability of a

model to be familiar with various datasets that have
never been used to train or test that model. A model
gains standardization if it has a fair difference be-
tween its training and testing accuracy values.
Considering the figures, it is clear that the

standardization in DN-121 is also better as the dif-
ference between the two lines of training and testing
shows enough contrast, which is not the case in the
standard CNN or the GoogLeNet as the two lines
match for a very long period of an epoch.
Fig. 12 shows the confusion matrix (CM) of the

standard CNN, DN-121, and GoogLeNet respec-
tively. Those CMs are generated based on newly
shuffled data different from the original testing data
set. It can be seen that DN-121 with no more them
20 epochs performs a better prediction of COVID-19
images than the 81 epochs of standard CNN and the
76 epochs of GoogLeNet.
Among those new datasets, DN-121 is still the best

model for COVID-19 detection so far. Nevertheless,
the standard CNN predicts the COVID-19 X-rays
better than output 2 of the GoogLeNet, and further,

Fig. 10. Training versus testing Loss in Standard CNN.

Fig. 11. Training versus testing Loss in DN-121.
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output1 performs better at predicting the COVID-19
X-rays, which would lead to a standardization
problem. Tables 6e8 list all the classification reports
of each model and the first output branch of

GoogLeNet, which is the best GoogLeNet output for
newly shuffled data, respectively. Those tables also
contained the Macro and weighted average. The
Macro average gives equal weight to all classes

Fig. 12. The Confusion matrix of (a): Standard CNN, (b): the DN- 121, and (c1), (c2), and (c3): the three outputs of GoogLeNet.

492 A.R. Talib, H.M. Ali / Karbala International Journal of Modern Science 9 (2023) 481e494



contributing to the final average metric, while the
weighted average considers each class by its size.

5. Conclusion

DL techniques have revolutionized the state of the
art through developing CAD radiography systems
for detecting the infection of diseases. Unlike the
previous works, where a small amount of datasets
were used, this work contributes to training three
models of CNN, which are the standard CNN, DN-
121, and GoogLeNet to work on a large number of
COVID-19 X-rays for a realistic performance evalu-
ation of those three models. The works show that the
DN-121 network gives the best performance as it
detects COVID-19 in a less number of epochs than
the other two CNN models. Further, the standard
CNN, which is the simplest basic class of CNN, gains
the superiority to detect COVID-19 infections over
the second output of GoogLeNet are compared.
Tow limitations can be listed in our work. In

recent times, many works claim that GoogLeNet
outperformed the standard CNN in all aspects,
however, this work shows that the standard CNN
outperformed the second outputs of GoogLeNet in
predicting the COVID-19 radiographies, even with a
same amount of maximum of 300 epochs, but we
still don't provide a clear explanation on such su-
periority, and thus this phenomenon will be dis-
cussed in future work.
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