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a b s t r a c t

The Shatt Al-Arab River is the primary source of the water supply in the Al-Basrah province. Therefore,
this study aimed to assess the water pollution index (WPI) of the Shatt Al-Arab River at 15 water
treatment plants (WTPs) from 2011 to 2020 (except for WTP No. 11, which was sampled from 2012
to 2020). The WPI included 12 physicochemical parameters: turbidity (Tur), pH, electrical conductivity
(EC), total dissolved solids (TDS), total hardness (TH), potassium (K+), sodium (Na+), magnesium
(Mg+2), calcium (Ca+2), alkalinity (Alk), chloride (Cl−), and sulfate (SO−2

4 ). Two modeling methods,
multiple linear regression (MLR) and an artificial neural network (ANN), were utilized to forecast
the minimum value of the WPI. The simulated annealing (SA) technique and an integrated ANN-SA
technique were used to estimate the best independent variable values that minimized the value of the
WPI. A multilayer feed-forward neural network with a backpropagation algorithm was chosen for this
study. A regression technique was employed to generate the WPI predicted equation which was also
chosen as an objective function of the SA and combined ANN-SA. For the MLR method, the correlation
coefficient (R) and mean squared error (MSE) values for the WPI were 4.746 × 10−7 and 1, respectively.
The best ANN structure (10-17-1) predicted a WPI with MSE and R values of 8.851 × 10−11 and
1, respectively, for the training, 1.220 × 10−7 and 1 for the validation, and 1.354 × 10−9 and 1
for the testing. In contrast to the results obtained from the measured data, MLR analysis, and ANN
technique, the combined ANN-SA method demonstrated the lowest WPI value at optimal parameters.
The minimum WPI value for the integrated ANN-SA was 0.373.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Water is a necessity for all life forms and is as essential to
umans as air (Dinka, 2018). Because rivers supply water for
omestic, agricultural, and industrial uses, it is crucial to prevent
iver pollution and have accurate information on river water qual-
ty. The physical, chemical, and biological characteristics of water
re used to determine its quality (Moyel, 2014). Pollution in rivers
as resulted in severe water-borne diseases and health issues that
ffect the human population (Ahmed and Ismail, 2018).
The Shatt Al-Arab River (SAR) is the main river in Iraq and it is

he primary supply of surface water in the province of Basrah. At
urna, the Shatt Al-Arab River originates from the confluence of
he Tigris and Euphrates rivers. Its water is utilized for a variety
f purposes, including drinking, irrigation, industrial uses, and
avigation. The main reasons for an increase in the salt concen-
ration in the SAR are local and regional causes, the former being
ater pollution and the latter being a low-level flow from the
igris and Euphrates rivers (Al-Muhyi, 2015). The largest influxes
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of salinity into the SAR are from seawater and salt water that
enters the river through sewage channels. The tidal phenomena
in the Arabian Gulf have an impact on the hydrological systems
of the SAR, including the tidal and seawater flows into the river
(Al-Asadi and Alhello, 2019). The high salt content in the SAR
poses a serious threat to the environment; it hampers water use
and renders it inappropriate for many domestic, industrial, and
agricultural purposes (Rahi, 2018).

In recent years, the artificial neural network (ANN) technique
has gained popularity in a variety of fields for use in prediction,
such as water resources and environmental science (Abyaneh,
2014). An ANN is a mathematical model based on biological
neural networks research. According to particular connection pat-
terns, an ANN consists of several interconnected nodes that are
analogous to biological neurons (Wong et al., 2013). Simulated
Annealing (SA) is a probabilistic search technique predicated on
a single solution (Du and Swamy, 2016). In the early 1980s,
three IBM researchers (Kirkpatrick et al., 1983) presented the
principles of annealing in optimization. These ideas are based
on a significant similarity with material annealing; this process
comprises heating a solid to an exceptionally high temperature
until the structure melts, and then cooling the solid under a

https://doi.org/10.1016/j.rsma.2022.102719
https://www.elsevier.com/locate/rsma
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Table 1
Studies of using ANN with their input and target parameters.
References Input parameters Target parameters Methods

Diamantopoulou
et al. (2005)

T, pH, EC, DO, HCO−

3 ,
SO−2

4 , Cl− , Na+ ,
Mg+2 , Ca+2 , NO−

3 ,
NH+

4 , TP, and Q

NO−

3 , EC, DO, Na
+ ,

Mg+2 , Ca+2
Multi-layer
feed-forward ANN

Zhao et al. (2007) T, Tur., pH, Alk., NH+

4 ,
Cl− , and TH

BOD and COD BP ANN

Singh et al. (2009) pH, Alk., TH, TSS,
COD, NO−

3 , NH
+

4 , Cl
− ,

PO4 , K+ , and Na+

DO and BOD BP ANN

Banejad and
Olyaie (2011)

TSS, pH, EC, Tur.,
Na+ , HCO−

3 , NO
−

3 ,
NH+

4 , and PO−3
4

DO and BOD BP ANN

Najah et al. (2013) EC, TDS, TSS, and Tur. TDS, EC, Tur. MLP ANN and
RBF-NN

Dawood et al.
(2016)

TH, EC, Tur., and TDS EC and Tur. Multi-layer
feed-forward BP
ANN

Hamdan and
Dawood (2016)

pH, TH, Mg+2 , SO−2
4 ,

Cl− , EC, and Tur.
TDS Multi-layer

feed-forward BP
ANN

Gupta et al. (2019) DO, Ph, Tur., EC, and
E Coil

WQI Multi-layer
feed-forward ANN

Khudhur et al.
(2020)

pH, Mg+2 , EC, TDS,
Ca+2 , NO−

3 , SO
−2
4 , and

PO−3
4

DO Multi-layer
feed-forward BP
ANN

Shahid et al.
(2020)

T, EC, DO, and pH BOD, DO, SAR,
TDS, and HCO−

3

feed-forward BP
ANN

Kulisz et al. (2021) EC, pH, Ca+2 , Mg+2 ,
Na+

WQI BP ANN
carefully defined temperature reduction plan to create a solid
state with the lowest amount of energy (Delahaye et al., 2019).
The present study proposes a water pollution index (WPI) that
presents a fundamental or adequate understanding of river water
quality. The prediction of surface water quality is necessary for
appropriate river basin management so that sufficient measures
can be implemented to maintain pollution within allowed limits
(Najah et al., 2013). Previously, the water quality of the SAR
was evaluated by numerous researchers (Dawood, 2017; Dawood
et al., 2017, 2018a; Hamdan et al., 2018; Dawood et al., 2018b; Al-
Adhab et al., 2019; Dawood et al., 2020). Numerous researchers
have employed ANNs in the context of water quality forecasting
(Diamantopoulou et al., 2005; Zhao et al., 2007; Singh et al., 2009;
Banejad and Olyaie, 2011; Najah et al., 2013; Dawood et al., 2016;
Hamdan and Dawood, 2016; Gupta et al., 2019; Khudhur et al.,
2020; Shahid et al., 2020; Kulisz et al., 2021). Table 1 presents
information on previous studies that used ANNs and their input
and target parameters. The integration of ANNs and SA has been
the topic of numerous studies in a variety of fields (Zain et al.,
2011; Zhang et al., 2011; Chaki and Ghosal, 2011; Bahrami and
Ardejani, 2016; Nwobi-Okoye and Ochieze, 2018; Liu et al., 2020;
Al-Mahasneh et al., 2021). In the field of water quality prediction,
combining ANNs and SA remains a relatively new approach.

The objectives of this research were to assess the WPI in the
AR at numerous sampling locations at water treatment plants
WTPs), identify the optimal topology of the ANN model for the
rediction of the WPI value (the results of the ANN model and the
LR model were compared with results of the measured data),
nd perform an integration of the ANN and SA to estimate the
est independent variable values that minimized the value of the
PI.

. Methodology

.1. Study area

The SAR originates north of Basrah at the confluence of the
igris and Euphrates rivers (Maytham et al., 2019). The SAR is
2

located in southern Iraq in the province of Basra between 29◦ 45′

00’’ to 31◦ 15′ 00’’ N and 47◦ 10′ 20’’ to 48◦ 45′ 00’’ E (Al-Asadi
et al., 2020). The SAR is 192 km long, with a width ranging from
300 m at its source to 700 meters in Basrah City, and roughly
800 m at its mouth. The water required to maintain households,
agricultural land, industries, ecological systems, transportation,
and recreational activities is provided mainly by this river (Allafta
and Opp, 2020). The SAR flows at a rate of 25 to 75 m3/s, and the
flow of the river varies seasonally depending on the contribution
of its tributary rivers, the amount of precipitation, and the effects
of the tidal phenomena of the Arabian Gulf (Almuktar et al.,
2020).

The freshwater flow rates reaching the river by the tributaries,
as well as the flow of saltwater from the Arabian Gulf, determine
the hydrological characteristics of the SAR. The Euphrates, Tigris,
Karun, and Karkheh rivers are all primary tributaries of the SAR.
Since the Karkheh and Karun River flows are diverted within
the Iranian borders, and the Euphrates River is cut off before it
reaches the Tigris, the hydrological river system is currently in
a fundamentally different state. Since 2010, the SAR has been
primarily dependent on the freshwater flow of the Tigris River
(Al-Asadi and Alhello, 2019).

A decrease in the flow of fresh water from the Euphrates
and Tigris rivers over time leads to the saltwater incursion pro-
gressing inland, causing the salinity in the SAR to rise (Almuktar
et al., 2020). The seawater intrusion from the Arabian Gulf into
the SAR could extend as much as 92 km (Al-Asadi et al., 2020).
This intrusion corresponds to the following sites in the present
study: Mhejran, Hamdan Bridge, Maheilah, and Al-Labanie. The
high salinity of the water in the SAR restricted its utilization
and rendered it unsuitable for most households and agricultural
and industrial uses (Rahi, 2018). Moreover, the growth of aquatic
plants has been significantly impacted by the increased salinity in
the river. Fisheries have been damaged and biodiversity has been
lost due to the increasing salinity in the water. The fish diversity
in the Shatt al-Arab ecosystem has decreased from 68 type to 26

form, and fish in the Seebah area fish farms have died due to



I.A. Abdulkareem, A.S. Dawood and A.A. Abbas Regional Studies in Marine Science 56 (2022) 102719

a

t
o
p
p
2

h
b
T
m
d
n
o

2

2
i
e
(
(
i
d
d
t
t
(
m
t

2

m
w
c
a
e
2
a
b
c

2

u
w

Table 2
Statistical analysis of parameters.
Variables Minimum Maximum Mean Std. deviation

Tur. 0.60 79 15.62 ±8.42
pH 7.03 8.47 7.64 ±0.23
EC 871 34030 4897.38 ±3952.51
TDS 200 22954 3113.79 ±2655.54
TH 296 4860 980.59 ±516.38
K+ 2.50 123 12.64 ±8.11
Na+ 62 6780 713.15 ±794
Mg+2 36 590 117.83 ±62.73
Ca+2 59 976 199.06 ±103.90
Alk. 90 296 157.45 ±17.97
Cl− 104 10300 1118.04 ±1209.82
SO−2

4 134 4449 804.76 ±495.88

Note: All values are expressed in mg/L except pH (dimensionless), EC (µs/cm)
nd turbidity (NTU).

he high salinity. Salinity in irrigation water reduces the amount
f moisture that is available to cultivated plants, which impacts
lant growth. Low river levels and rising salinity have led to the
aralysis of economic life in the Basrah province (Yaseen et al.,
016).
In recent years, domestic, industrial, and agricultural activity

ave increased, resulting in increased pollution, and the SAR has
ecome an accessible dumping ground for all types of waste.
he water quality of the SAR has deteriorated due to the above-
entioned types of contamination. Furthermore, effluent from
omestic, agricultural, and industrial activities can produce sig-
ificant alterations in the physical and chemical characteristics
f the SAR (Hamdan, 2020).

.2. Data description

In this study, monthly raw water parameters for the period
011–2020 were acquired from the Basrah Water Directorate
n Basrah, Iraq. A total of 12 parameters were investigated for
ach water sample: turbidity (Tur), pH, electrical conductivity
EC), total dissolved solids (TDS), total hardness (TH), potassium
K+), sodium (Na+), magnesium (Mg+2), calcium (Ca+2), alkalin-
ty (Alk), chloride (Cl−), and sulfate (SO−2

4 ). Table 2 shows the
escriptive statistics (minimum, maximum, mean, and standard
eviation values) of the 12 physical and chemical parameters for
he raw water for the period 2011–2020. The dataset used in
his study was obtained from our previously published research
Abdulkareem et al., 2022). Table 3 shows the methods and equip-
ent used to measure the parameters, while Figs. 1 and 2 show

he measurement frequency of the parameters.

.3. Sampling sites

The physical and chemical parameters of the river water were
easured at 15 WTPs. Traditional water treatment processes
ere used in all of the WTPs, including pretreatment, chemical
oagulation, quick mixing, flocculation, sedimentation, filtration,
nd disinfection. As a result, the WTPs lacked the necessary
quipment to reduce the TDS in the water (Khudair and Eraibi,
017). The coordinates for these WTPs are shown in Table 4,
nd Fig. 3 shows their locations. Table 5 shows the distances
etween the WTPs in this study. According to the TDS values, five
ategories of WTPs were revealed (Table 6).

.4. Water pollution index

The water pollution index (WPI) is a new index that can be
sed to assess the physical, chemical, and biological quality of

ater sources using known water quality standards for a variety

3

Table 3
Methods and equipment of the measured parameters in this research.
Parameters Methods Equipment

pH pH meter pH meter model SD300
Tur. Nephelometric Turbidity Meter Lovibond

TB 300 IR
EC Electrometric (METTLER TOLEDO FIVE

GOTM conductivity meter
(Mettler Toledo, Columbus,
OH, USA)).

TDS Electrometric METTLER TOLEDO FIVE
GOTM conductivity meter
(Mettler Toledo, Columbus,
OH, USA)).

Alk. Titrimetric method Atomic Absorption
Spectrophotometer model
SpectroDirect LoviBond (The
Tintometer Limited,
Amesbury, UK).

TH EDTA titration Burette
Mg+2 EDTA titration Burette
Ca+2 EDTA titration Burette
Na+ Flame photometric Flame photometer model

M410
K+ Flame photometric Flame photometer model

M410
Cl− Silver nitrate titration –
SO−2

4 Spectrophotometri-
cally
Using barium sulfate
turbidity method
according to APHA
(1998)

Spectrophotometer

Table 4
Geographic Coordinates of Sampling Sites along the SAR.
No. of water
treatment plant

Name of water
treatment plant

X Y

1 Al-Dear 746969.3152 3410480.348
2 Al-Houta 764653.4872 3394077.932
3 Al Basrah Unified 763346.3973 3393806.914
4 Al-Garmma 1 763358.0723 3385353.837
5 Al-Garmma 2 763581.3847 3385795.167
6 Al-Faiha 767627.768 3385217.24
7 Al-Jubailah 1 769800.9144 3383108.889
8 Al-Ribat 771557.1858 3381562.851
9 Al-Bradhiah 1 774079.4702 3377999.902
10 Al-Bradhiah 2 774133.3117 3377949.087
11 Owaisyan 775211.3282 3376911.192
12 Mhejran 776773.9816 3374729.195
13 Hamdan Bridge 778716.0082 3373839.328
14 Maheilah 780719.0404 3373228.353
15 Al-Labanie 786574.7517 3373974.971

Table 5
Distance between water treatment plants in this study.
From–To Distance (km)

Al-Dear–Al-Houta 24.16
Al-Houta–Al Basrah Unified 1.33
Al Basrah Unified–Al-Garmma 1 8.01
Al-Garmma 1–Al-Garmma 2 0.52
Al-Garmma 2–Al-Faiha 4.09
Al-Faiha–Al-Jubailah 1 3.01
Al-Jubailah 1–Al-Ribat 2.36
Al-Ribat–Al-Bradhiah 1 4.36
Al-Bradhiah 1–Al-Bradhiah 2 0.07
Al-Bradhiah 2–Owaisyan 1.50
Owaisyan–Mhejran 2.68
Mhejran–Hamdan Bridge 2.13
Hamdan Bridge–Maheilah 2.10
Maheilah–Al-Labanie 5.90
Al-Labanie–Coast 103.62
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Fig. 1. Histograms of the TDS, TH, EC, Alk, pH and Tur parameters.
K

of purposes. In this context of any designated use, the WPI can
present a basic or general understanding of the water quality
state (Hossain and Patra, 2020).
 t

4

A total of 12 water quality parameters (TDS, Tur, Mg+2, pH,
+, Cl−, Na+, EC, SO−2

4 , TH, Ca+2, and Alk) were chosen to es-
imate the water pollution in the SAR using the WPI, according
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Fig. 2. Histograms of the Mg, Ca, Na, K, Cl, and SO4 parameters.
o their standard permitted limits as stated by the World Health
rganization (WHO, 2011) (Table 7). These standard permitted
imits were used in several previous studies (Ewaid and Abed,
017; Abbas et al., 2017; Ghalib, 2017; Mahmood et al., 2019).
5

The steps used to calculate the WPI were as follows (Hossain and
Patra, 2020):

The pollution load (PLi) for each parameter was computed in
the first step using the formula presented below (Hossain and



I.A. Abdulkareem, A.S. Dawood and A.A. Abbas Regional Studies in Marine Science 56 (2022) 102719
Fig. 3. Map of Basrah, Iraq, with an inset map showing the locations of the WTPs surveyed.
Table 6
Water treatment plants classification based on TDS values.
TDS
(mg/l)
Values

200–
5000

5000–12000 12000–19000 19000–21000 >22000

WTPs Al-Dear Al-Houta
Al Basrah
Unified

Al-Jubailah 1
Al-Faiha
Al-Ribat
Al-Garmma 1
Al-Garmma 2

Al-Bradhiah 1
Al-Bradhiah 2
Owaisyan
Maheilah

Mhejran
Hamdan Bridge

Al-Labanie
Patra, 2020):

PLi = 1 +
Ci − Si

Si
(1)

Where Ci is the measured concentration for the specified param-
eter and Si denotes the standard permitted limit for the specified
parameter.

In the case of pH, the following equations are advised for
various pH ranges; if the pH is less than 7, Eq. (2) is suggested
(Hossain and Patra, 2020). Where Sic is the minimum pH value
that may be accepted (6.5).

PLi =
Ci − 7
Sic − 7

(2)

If the pH is greater than 7, Sid is the highest pH value that
can be accepted (8.5), and the proposed equation is given below
(Hossain and Patra, 2020):

PLi =
Ci − 7
Sid − 7

(3)

Finally, the overall WPI was computed by combining all the
values of the pollution load and then dividing that by the number
of parameters, as specified in the formula below (Hossain and
Patra, 2020):

WPI =

∑n
i=1 PLi
n

(4)

The values of the WPI can be categorized depending on n number
of parameters in four categories (Table 8) (Hossain and Patra,
2020).
6

Table 7
Maximum allowable values of
water quality variables given by
WHO 2011.
Variables WHO 2011

pH 6.5-8.5
Tur. 5
EC 1500
TDS 1000
TH 500
K+ 12
Na+ 200
Mg+2 100
Ca+2 75
Alk. 200
Cl− 250
SO−2

4 250

Table 8
WPI classification.
WPI value Category

<0.5 Excellent water
0.5–0.75 Good water
0.75–1 Mildly polluted water
>1 Highly polluted water

2.5. Artificial neural networks

Artificial neural networks are among the finest reliable and
commonly used prediction models that have shown successful
application for the prediction of social, economic, and engineering
aspects, etc. (Khashei and Bijari, 2010). In comparison to tra-
ditional computers, ANNs manage problem-solving in a unique
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Fig. 4. Structure of the multilayer artificial neural network with the backpropagation algorithm.
way. Traditional computers employ an algorithmic technique to
solve problems, and a set of steps are implemented. If the pre-
cise procedures that the computer must use are unknown, the
computer will be unable to solve the problem. As a result, the
problem-solving capabilities of traditional computers are limited
to problems that humans already understand and can solve. Con-
versely, computers would be much more efficient if they could
perform tasks that humans cannot. ANNs are analogous to the
human brain when it comes to processing information (Maind
and Wankar, 2014). Depending on the communication pattern,
the network architecture can be separated into two types: a
feed-forward neural network (FFNN) and a feed-backward neural
network (FBNN) (Gupta, 2013). Feed-forward neural networks
permit signals to transit in one direction only, from input to
output (Eluyode and Akomolafe, 2013). The first and most simple
type of ANN model was the FFNN. Without cycles or loops, infor-
mation travels from the input layer to any hidden layers and then
to the output layer in the FFNN (Abiodun et al., 2019). An input
layer, one or more hidden layers, and an output layer of neurons
constitute a multilayer feed-forward network. The most popular
ANN in use presently is the multilayer ANN (Zhang, 2018).

2.5.1. Backpropagation algorithm
The backpropagation (BP) algorithm is a supervised learning

algorithm that has been utilized in prediction and classification
apps and is implemented with known data of input and output
samples (Hameed et al., 2016). In Fig. 4 below, σ1 is the activation
function for the hidden layer and σ2 is the activation function
for the output layer, W1 represents the matrices involving the
weights of the connections among the input nodes and the hidden
nodes, and W2 represents the matrices involving the weights of
the connections among the hidden nodes and the output nodes,
7

whereas b1 is the bias vector for the nodes in the hidden layer
and b2 is the bias vector for the nodes in the output layer (Khan
et al., 2020). The forward phase is a two-step procedure. The first
involves obtaining the values of the nodes in the hidden layer,
and the second step involves using those values to determine the
output layer value. The input data are sent to the hidden neurons,
where they are multiplied by the weights of the linked neurons.
The computed values are then added to one another, and each
hidden neuron computes its output using an activation function.
The network spreads forward once the values of the hidden layer
are computed, transmitting values from the hidden neurons to
the output neuron. To calculate the current network error, the
network result is compared to the corresponding output pattern
(Cilimkovic, 2015). In the backpropagation phase, the weights
correction is calculated using the specified minimum locating rule
and the correction is implemented into the weights of the layer
(Gallo, 2015).

2.5.2. Performance measurement
The output of the ANN was evaluated in terms of the mean

squared error (MSE) and the correlation coefficient (R) values.
The MSE performed well and the calculation was straightforward.
The difference between both items of the output vector and goal
vector was used to calculate the MSE, as shown in Eq. (5) (Kubat,
2015). The R was computed using Eq. (6) (Kulisz et al., 2021).

MSE =

∑n
i=1(ti − yi)2

n
(5)

R =

∑n
i=1

(
ti − t

)
(yi − y)(√∑n

i=1(ti − t)2
∑n

i=1(yi − y)2
) (6)
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Fig. 5. Flowchart of simulated annealing algorithm (Zhan et al., 2016).

8
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Fig. 6. Annual mean values of the water pollution index (WPI) for the water treatment plants (WTPs) investigated in this study during (a) 2011, (b) 2012, (c) 2013,
and (d) 2014.

9
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Fig. 7. Annual mean values of the WPI for the WTPs investigated in this study during (a) 2015, (b) 2016, (c) 2017, and (d) 2018.

10
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n

c
t

Fig. 8. Annual mean values of the WPI for the WTPs investigated in this study during (a) 2019 and (b) 2020.
Fig. 9. WPI annual values of WTPs for all study years (2011–2020).
Where n is the number of data, ti is the target data, yi is the
etwork predicted, t is the average value of the target data, and

y is the average value of the output network.

2.6. Simulated annealing

Simulated annealing is a simulation of the physical gradual
ooling operation, also known as annealing, which generates bet-
er crystals and improves the strength properties of a metal. The
11
transition method between the states and the cooling timetable
are the two primary steps in SA, and the goal is to determine the
state with the least amount of energy. Using precise temperature
control during the annealing process, a perfect crystal can be
formed. Kirkpatrick et al. (1983) and Cerny (1985) independently
proposed this optimization technique; they discovered that alter-
nate physical states of matter are similar to the solution space
for an optimization method and that the fitness function for an
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Fig. 10. Monthly values of the WPI from 2011 to 2020 for (a) WTP No. 1 to WTP No. 5, (b) WTP No. 6 to WTP No. 10, and (c) WTP No. 11 to WTP No. 15.
optimization method matches the free energy of the material (El-
Naggar et al., 2012). The initial temperature is selected to include
the entire solution space. Depending on the type of issue, the
12
initial temperature is determined through trial and error (Suman
and Kumar, 2006). The most widely utilized procedure for the SA
algorithm is as follows (Sibalija, 2018):
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Fig. 11. Correlation coefficients for the water parameters and the WPI.
Fig. 12. The results of the regression model compared to the results of the measured data.
1. Adjust the parameters specific to the algorithm, such as the
start point, the initial temperature, the annealing sched-
ule (which includes both the annealing and temperature
update functions), the reannealing period, and the termi-
nation condition (for example, the ultimate temperature,
the number of iterations, the alteration in the objective
function).

2. Compute the objective function of the initial point, f(x).
3. Compute a new neighbor point, defined by a probability

distribution commensurate to the existing temperature,
and calculate the objective function of the new point, f(x).
13
4. Compute the difference in the objective functions among
the new and existing points (∆E).

5. Accept the new point if ∆E is less than zero. If ∆E ≥ 0,
generate a stochastic number r into the range (0, 1) and
verify if r ≤ exp(−∆E

T ). If yes, continue to step 6. If not,
start with a new point and move on to step 3.

6. Reduce the temperature regularly using the provided tem-
perature update function. If the present temperature is
greater than the final temperature, proceed to step 3. If not,
proceed to step 7.

7. Terminate the operation if the termination criteria are sat-
isfied (for example, if the present temperature is less than



I.A. Abdulkareem, A.S. Dawood and A.A. Abbas Regional Studies in Marine Science 56 (2022) 102719

r
T
s
d
i
t

X

v

a
g
c
d
9

p
a
s
o
t

w
p
a
T
v
t
b

W

Fig. 13. MSE vs. epoch numbers for the proposed ANN model.

Table 9
Values of coefficient from MLR analysis for twelve independent parameters and
WPI as dependent variable.
Model of
MLR

Unstandardized coefficients t Significant

B Standard
Error

Constant −0.019 0.001 −31.485 0
K+ 0.062 0.002 33.776 0
Na+ 0.219 0.005 41.767 0
TDS 0.233 0.023 10.327 0
SO−2

4 0.109 0.003 33.056 0
Cl− 0.140 0.011 12.397 0
Mg+2 0 0.011 0.032 0.975
TH 0 – 0.039 0.969
Ca+2 0.129 0.011 11.385 0
Alk. 0.005 0.001 4.053 0
EC 0.213 0.022 9.781 0
pH 0.007 0.001 9.863 0
Tur. 0.100 0.001 101.498 0

or equal to the set final temperature, the number of it-
erations is completed, and the alteration in the objective
function is lower than the stated value).

2.7. Normalization of the data

Normalization is the process of converting data into a certain
ange, such as between 0 and 1 or −1 and 1 (Ali and Faraj, 2014).
he normalization of all the input and output data is the initial
tep in the calculation. Eq. (7) is the normalization equation for
ata of the input values within the range of 0 to 1, whereas Eq. (8)
s the normalization equation for data of the output values within
he range of 0 to 1 (Zain et al., 2009).

n =
X − Xmin

Xmax − Xmin
(7)

tn =
t − tmin

tmax − tmin
(8)

Where X is the input variable, Xn denotes the normalized value
for the variable X, Xmin is the lowest value of the variable X , and
Xmax is the highest value of the variable X . While t is the output
ariable, tn denotes the normalized value of the variable t , tmin is

the lowest value of the variable t , and tmax is the highest value of
the variable t .
14
3. Results and discussion

3.1. Water pollution index

The water of the SAR is highly polluted according to the
classification of the WPI for all the WTPs sampled in this study
between 2011 and 2020, as shown in Figs. 6 to 9. These figures
illustrate the annual mean values of the WPI for all the WTPs
investigated in this study. It was observed that 2018 was the most
polluted year for all the sampling stations. The salinity in the
SAR showed significant changes in 2018 due to a sharp reduction
in the flow and a salinity intrusion that extended to the upper
reaches of the river. According to the data obtained from the
Basrah Water Directorate, the maximum values of the TDS and
EC in 2018 reached 22954 mg/l and 34030 µs/cm, respectively.

The variations in the measured parameters and the WPI are
shown in Figs. A.1 to A.3 in Appendix.

Fig. 10 depicts the monthly values of the WPI from 2011 to
2020 for each WTP that was investigated in this study. WTP No.
7 (Al-Jubailah 1) showed the lowest WPI value (0.634543 in the
year 2019), while WTP No. 15 (Al-Labanie) showed the highest
WPI value (15.06927 in the year 2018). The most polluted WTPs
were located in the Abu Al Kaseeb area (WTP No. 11, 12, 13, 14,
and 15). Extremely high pollution levels were observed in 2018.
The pollution began to increase from the sixth month until the
end of the year, with the greatest increase in pollution occurring
in the ninth month. Fig. 11 illustrates the correlations between
the water parameters and the WPI. The results showed strong
correlations between the EC, Na, TDS, SO4, Cl, and Ca and the
WPI.

3.2. Prediction of the WPI by MLR

The aim of MLR analysis is to forecast the value of the de-
pendent variable given a set of predictor variables (independent
variables).

In the present study, the WPI was the dependent variable,
while the TDS, Tur, Mg+2, pH, K+, Cl−, Na+, EC, SO−2

4 , TH, Ca+2,
nd Alk were the independent variables. The SPSS software pro-
ram was used to analyze the data, the multiple correlation
oefficient (R) of our model was 0.999 and the coefficient of
etermination

(
R2

)
was 0.998. This model had a success rate of

9.8% and an error of 0.2%.
The data presented in Table 9 shows that most of the inde-

endent variables (TDS, Tur, pH, K+, Cl−, Na+, EC, SO−2
4 , Ca+2,

nd Alk) showed a significant effect on the WPI (p < 0.001; the
ignificance level was 0.05). However, the Mg+2 showed no effect
n the WPI (p = 0.975). Additionally, the TH showed no effect on
he WPI (p = 0.969).

Therefore, the variables that were used to predict the WPI
ere TDS, Tur, pH, K+, Cl−, Na+, EC, SO−2

4 , Ca+2, and Alk. The SPSS
rogram was used to analyze the data. The R of our model was 1,
nd the R2 was 1, indicating that it was optimal for forecasting.
he data presented in Table 10 indicate that all the independent
ariables showed a significant effect on the WPI (p < 0.001). In
his study, the MLR analysis estimated the regression function to
e:

PI = − 0.020 + 0.067 K+
+ 0.237 Na+

+ 0.248 TDS

+ 0.118 SO−2
4 + 0.156 Cl− + 0.44 Ca+2

+ 0.006 Alk

+ 0.225 EC + 0.007 pH + 0.019 Tur (9)

Two of the variables showed a positive correlation, as presented
in Table 11. In Fig. 12, a comparison of the predicted results of

the MLR model and the measured results is depicted.



I.A. Abdulkareem, A.S. Dawood and A.A. Abbas Regional Studies in Marine Science 56 (2022) 102719

s
f
a
t
d
1
r
a
w
w
v

Fig. 14. Regression analysis for the proposed ANN model.
1
t
f
T
d

Table 10
Values of coefficient from MLR analysis for ten independent parameters and WPI
as dependent variable.
Model of
MLR

Unstandardized coefficients t Significant.

B Standard
Error

Constant −0.020 0 −248.831 0
K+ 0.067 0 273.184 0
Na+ 0.237 0.001 337.755 0
TDS 0.248 0.003 81.966 0
SO−2

4 0.118 0 266.611 0
Cl− 0.156 0.002 104.265 0
Ca+2 0.044 0.001 51.752 0
Alk. 0.006 0 32.315 0
EC 0.225 0.003 77.085 0
pH 0.007 0 76.702 0
Tur. 0.109 0 823.701 0

3.3. Prediction of the WPI by the ANN

An ANN with a backpropagation algorithm was chosen for this
tudy. The following 10 variables were used as input variables
or the ANN model: Tur, Alk, pH, EC, TDS, Na+, K+, Ca+2, Cl−,
nd SO−2

4 . One variable was selected as the output: the WPI. The
otal number of data points used in this research was 2430. These
ata were divided into three categories: 75% for the training set,
0% for the validation set, and 15% for the testing set since this
atio generated the optimum results regarding the lowest MSE
nd highest R values. Therefore, a dataset containing 1823 values
as selected as the training set, a dataset containing 243 values
as selected as the validation set and a dataset containing 364
alues was selected as the testing set (Salami et al., 2016).
15
One of the important aspects in the design of an ANN is
the identification of the appropriate number of hidden layers
and hidden neurons; a trial-and-error method was used in the
present study because no universal rule exists for determining
the characteristics of the hidden layer and neurons. The network
size that resulted in the minimum MSE and maximum regression
in the training, validation, and testing sets was chosen as the
optimal network. Tables 12 and 13 present the best results of
an ANN model that employed a single layer and two hidden
layers, respectively, with different numbers of nodes and epochs
in which the training functions provided the minimum MSE and
maximum R values for the training set, validation set, and testing
set.

Tables 12 and 13, present the ideal neural network architec-
ture employed in the present study. The Levenberg–Marquardt
algorithm (trainlm) was employed to train this network because
this algorithm provided the best results regarding the minimum
MSE and maximum R values compared with the other algorithms.
The network consisted of an input layer, one hidden layer, and
the output layer; the hidden layer had 17 neurons. The logsig
activation function was employed between the input layer and
the hidden layer, whereas the purelin was utilized between the
hidden layer and the output layer. This optimal network struc-
ture provided the best results, with an MSE of 8.851 × 10−11,
.220 × 10−7, and 1.354 × 10−9 for the training, validation, and
esting sets, respectively (Fig. 13), and an R value of 1, 1, and 1
or the training, validation, and testing sets, respectively (Fig. 14).
he ideal neural network architecture employed in this study is
epicted in Fig. 15.
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Fig. 15. Structure of the suggested ANN model.
Table 11
Correlation and statistic.
Variables N Mean Std.

deviation
Std. error
mean

MSE Correlation

Measured 2430 0.13390 0.11979 0.00243 4.746 × 10−7 1Regression 2430 0.13406 0.11973 0.00242
Table 12
Minimum (MSE) and maximum (R) for the training functions, with one hidden layer.
Training
functions

Number of
nodes

Training set’s
MSE value

Validation set’s
MSE value

Testing set’s
MSE value

Testing set’s R
value

Number of
Epochs

trainbfg 10 1.933 × 10−5 5.893 × 10−5 2.923 × 10−5 0.9983 91
traincgb 20 2.443 × 10−5 1.334 × 10−5 3.409 × 10−5 0.9987 86
traincgf 19 1.380 × 10−5 2.359 × 10−5 1.621 × 10−5 0.9992 230
traincgp 16 1.432 × 10−4 1.476 × 10−4 1.263 × 10−4 0.992 69
traingdm 20 0.0018 0.0012 0.0026 0.8884 5000
traingda 13 0.0010 8.710 × 10−4 8.995 × 10−4 0.9356 183
traingdx 17 5.654 × 10−4 5.841 × 10−4 4.989 × 10−4 0.9747 154
trainlm 17 8.851 × 10−11 1.220 × 10−7 1.354 × 10−9 1 290
trainoss 21 4.904 × 10−5 5.668 × 10−5 1.063 × 10−4 0.9967 101
trainrp 13 8.115 × 10−5 8.889 × 10−5 9.315 × 10−5 0.9933 278
trainscg 19 1.101 × 10−5 2.023 × 10−5 1.319 × 10−5 0.9993 197
3.4. Simulated annealing optimization solution

The regression model presented in Eq. (9) was selected as the
itness function of the SA solution and in the following way:

inimize : WPI (K+, Na+, TDS, SO−2, Cl−, Ca+2, Alk, EC,
4

16
pH, Tur) = min(−0.020 + 0.067 K+
+ 0.237 Na+

+ 0.248 TDS + 0.118 SO−2
4 + 0.156 Cl− + 0.044 Ca+2

+ 0.006 Alk + 0.225 EC + 0.007 pH + 0.019 Tur) (10)

The minimization of the fitness function value was restricted
by the constraints of the independent variables. The range of



I.A. Abdulkareem, A.S. Dawood and A.A. Abbas Regional Studies in Marine Science 56 (2022) 102719

v
u
s
t
s
T

Table 13
Minimum (MSE) and maximum (R) for the training functions, with two hidden layer.
Training
functions

Number of
nodes

Training set’s
MSE value

Validation set’s
MSE value

Testing set’s
MSE value

Testing set’s R
value

Number of
Epochs

trainbfg (11 28) 3.474 × 10−6 2.757 × 10−6 4.713 × 10−6 0.9998 136
traincgb (12 12) 9.531 × 10−6 1.101 × 10−5 1.953 × 10−5 0.9992 105
traincgf (17 13) 1.006 × 10−5 1.205 × 10−5 1.966 × 10−5 0.9989 237
traincgp (11 16) 1.143 × 10−4 1.203 × 10−5 7.916 × 10−5 0.9952 63
traingdm (10 10) 7.032 × 10−4 4.229 × 10−4 5.199 × 10−4 0.9704 5000
traingda (14 21) 9.406 × 10−4 0.0029 6.509 × 10−4 0.9562 438
traingdx (12 10) 2.427 × 10−4 2.473 × 10−5 2.251 × 10−4 0.9912 263
trainlm (10 10) 2.510 × 10−8 2.783 × 10−9 1.057 × 10−8 1 177
trainoss (20 10) 8.979 × 10−5 1.334 × 10−4 9.903 × 10−5 0.9952 79
trainrp (15 14) 2.909 × 10−5 2.987 × 10−4 3.443 × 10−5 0.9975 198
trainscg (16 20) 6.592 × 10−5 8.196 × 10−5 7.133 × 10−5 0.9958 108
Fig. 16. Best fitness value and mean fitness value for the SA.

Fig. 17. Best fitness value and mean fitness value for the ANN-SA.

alues for the measured independent variables (normalized val-
es) was taken to represent the limitations of the optimization
olution, as presented in Table 14. Additionally, the parameters
hat resulted in the lowest WPI of the regression model were
elected as the start points for the SA solution, as presented in
able 14 below.
17
Table 14
Limitations and start points of independent variables (SA).
Parameters Range (normalized values) Start point

K+ 0 ≤ K+
≤ 1 0.008

Na+ 0 ≤ Na+
≤ 1 0.003

TDS 0 ≤ TDS ≤ 1 0.017
SO−2

4 0 ≤ SO−2
4 ≤ 1 0.005

Cl− 0 ≤ Cl− ≤ 1 0.005
Ca+2 0 ≤ Ca+2

≤ 1 0.007
Alk. 0 ≤ Alk. ≤ 1 0.165
EC 0 ≤ EC ≤ 1 0.002
pH 0 ≤ pH ≤ 1 0.333
Tur. 0 ≤ Tur. ≤ 1 0.080

Table 15
Conditions to define limitations of integrated ANN-SA (Zain et al., 2011).
Condition Decision

Lower limit Upper limit

(Opt-ANN) < (Opt-SA) Opt-ANN Opt-SA
(Opt-ANN) > (Opt-SA) Opt-SA Opt-ANN

Table 16
Limitations and start points of independent variable (ANN-SA).
Parameter Range (normalized

values)
Start point

K+ 0 ≤ K+
≤ 0.008 0

Na+ 0 ≤ Na+
≤ 0.003 0

TDS 0 ≤ TDS ≤ 0.017 0
SO−2

4 0 ≤ SO−2
4 ≤ 0.005 0

Cl− 0 ≤ Cl− ≤ 0.005 0
Ca+2 0.001 ≤ Ca+2

≤

0.007
0.001

Alk. 0.116 ≤ Alk. ≤

1.165
0.116

EC 0 ≤ EC ≤ 0.002 0
pH 0.158 ≤ pH ≤

0.333
0.158

Tur. 0 ≤ Tur. ≤ 0.080 0

By employing the fitness function in Eq. (10), the limitations of
the independent variables in Table 14, the start points in Table 14,
and the MATLAB optimization toolbox were used to determine
the lowest value of the WPI at the best points. Several trials were
conducted to obtain the minimum WPI values using the MATLAB
optimization toolbox.

Fig. 16 presents the optimal results of the MATLAB optimiza-
tion toolbox. As shown in Fig. 16, the minimum observed WPI
value was −0.01811. The set values (normalized values) of the
independent parameters that resulted in the lowest WPI value
were 0 for K+, 0 for Na+, 0 for TDS, 0 for SO−2

4 , 0 for Cl−, 0.001
for Ca+2, 0.116 for Alk, 0 for EC, 0.158 for pH, and 0 for Tur. The
optimal solution was indicated at iteration number 24141 of the
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Fig. A.1. Variations of the TDS, EC, Tur., and pH parameters.
simulated annealing, the annealing function used was Boltzmann
annealing, and the initial temperature was 0.04 ◦C.

3.5. Integration of the ANN with the SA (ANN-SA)

The optimum independent variable values of the SA were
merged with the nonoptimal independent variable values of the
ANN method to set the upper and lower limits for the opti-
mization solution was the procedure used to apply the merged
ANN-SA technique. The nonoptimal values of the parameters that
resulted in the lowest predicted WPI value in the ANN model
were K+

= 0.008, Na+
= 0.003, TDS = 0.017, SO−2

4 = 0.005,
Cl− = 0.004, Ca+2

= 0.007, Alk = 0.165, EC = 0.002, pH = 0.333,
Tur = 0.080. The ideal values of the parameters from the SA were
K+

= 0, Na+
= 0, TDS = 0, SO−2

4 = 0, Cl− = 0, Ca+2
= 0.001,

Alk = 0.116, EC = 0, pH = 0.158, Tur = 0.
18
Classification of the nonoptimal parameter values for the ANN
model (Opt-ANN) and the optimum parameter values for the SA
(Opt-SA) are presented in Table 15, under two conditions (Zain
et al., 2011). The second condition was met.

The limitations of K+, Na+, TDS, SO4, Cl−, Ca+2, Alk, E.C, pH
and Tur., parameters, respectively, are presented in Table 16.
To identify the start points for the merged ANN-SA, the ideal
parameter values that resulted in the lowest WPI for the SA were
chosen, as presented in Table 16.

By employing the fitness function in Eq. (10), the limitations
of the parameters in Table 16, the start points in Table 16, and the
MATLAB optimization toolbox were used to obtain the minimum
values of the WPI at the optimal points.

The minimum observed WPI value was −0.01815, as shown in
Fig. 17. The specified values of the independent parameters that



I.A. Abdulkareem, A.S. Dawood and A.A. Abbas Regional Studies in Marine Science 56 (2022) 102719
Fig. A.2. Variations of the Na, SO4 , Cl, TH, K, and Alk. Parameters.
resulted in the minimumWPI value were 0 for K+, 0 for Na+, 0 for
TDS, 0 for SO−2

4 , 0 for Cl−, 0.001 for Ca+2, 0.116 for Alk, 0 for EC,
0.158 for pH, and 0 for Tur. The optimal solution was indicated
at iteration number 5000 of the ANN-SA.

3.6. Results

In contrast to the results obtained from the measured data,
MLR analysis, ANN technique, and SA technique, the combined
ANN-SA provided the lowest WPI value at the optimal param-
eters. The minimum WPI value for the integrated ANN-SA was
0.373, as presented in Table 17.
19
4. Conclusion

The WPI is beneficial to the public in terms of assessing the
state of the surface water quality and may be utilized as a pow-
erful tool in the development of pollution control plans regarding
treatment requirements at various levels. The water of the SAR is
highly polluted according to the classification of the WPI for all
the WTPs investigated in this study between 2011 and 2020. The
effectiveness of the MLR and ANN models at predicting the WPI
in the SAR were investigated. The results demonstrated that these
models were quite effective at predicting the WPI (the value of
the R for both models was 1). The 10-17-1 network structure was
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Fig. A.3. Variations of the Mg, Ca, and WPI.
Table 17
Presentation of research’s results.
Methods Measured

data
MLR model ANN model SA ANN-SA

WPI minimum
normalized value

0 −0.00032 0.00002 −0.01811 −0.01815

WPI minimum
real value

0.63543 0.63081 0.63572 0.37403 0.37346

The percentage
reduction of WPI
compared to the
measured data

– 0.727% −0.046% 41.137% 41.227%

Tur. (NTU) 6.9 6.9 6.9 0.6 0.6
pH 7.51 7.51 7.51 7.26 7.26

(continued on next page)
20
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Table 17 (continued).
Methods Measured

data
MLR model ANN model SA ANN-SA

EC (µs/cm) 942 942 942 871 871
TDS (Mg l−1) 584 584 584 200 200
K (Mg l−1) 3.5 3.5 3.5 2.5 2.5
Na (Mg l−1) 84 84 84 62 62
Ca (Mg l−1) 65 65 65 59.92 59.92
Alk. (Mg l−1) 124 124 124 113.9 113.9
Cl (Mg l−1) 150 150 150 104 104
SO4 (Mg l−1) 156 156 156 134 134
the ideal neural network architecture employed in this study. This
optimal network structure with the algorithm (trainlm) provided
the best result with MSE values of 8.851 × 10−11, 1.220 × 10−7

nd 1.354 × 10−9 for the training, validation and testing sets,
respectively. Furthermore, R values of 1, 1, and 1 were obtained
for the training, validation, and testing sets, respectively. The
results of this study indicated that the merged ANN-SA was the
most successful approach for determining the minimum value
of the WPI when compared to the measured, MLR, ANN, and
SA results. The minimum WPI value for the integrated ANN-
SA was 0.373459. The MLR, ANN, SA, and ANN-SA reduced the
lowest WPI value of the measured data by 0.738%, −0.006%,
1.137%, and 41.228%, respectively. No significant difference was
bserved (0.15%) between the minimum WPI value presented by
he SA technique and the minimum WPI value presented by the
ombined ANN-SA technique. However, the number of iterations
rovided by the combined ANN-SA was less than that provided
y the SA.
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