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ABSTRACT The progress and evolution of technology have been rapidly transforming various aspects of
our society and daily lives, including colleges and campuses into smarter environments compared to the past.
Despite the numerous advantages offered by cutting-edge technologies, such as IoT-based smart campuses,
academic research on their implementation suffers from a significant lack of comprehensive information
necessary to deliver efficient smart campus solutions. Therefore, the focus of this study is to investigate the
significance of IoT-based smart campus adoption from 14 proposed hypotheses. The researchers collected
data from stakeholders affiliated with universities in Iraq, resulting in a dataset of 442 observations.
To analyze the data, a two-stage approach was employed, consisting of structural equation modeling (SEM)
and reevaluated with the artificial neural networks (ANN)method. The findings provide evidence supporting
the significance of various constructs. In particular, the model demonstrates satisfactory predictive relevance,
indicating its effectiveness in making accurate predictions or forecasts. The ANN analysis suggests that
the model has predictive capabilities. Moreover, the study findings support the importance of perceived
usefulness in technology-specific factors, facilitating conditions, and propagation in organizational-specific
factors, government support, social influence, and external pressure in environmental-specific factors, as well
as privacy concerns, self-efficacy, satisfaction, and domain-specific knowledge in end-user-specific factors.
Four hypotheses related to perceived ease of use, service collaboration, habit, and innovativeness were
rejected. Notably, the study identifies propagation as the most significant predictor in the ANN analysis. The
conclusions of this study can be beneficial for university administrators, manufacturers, and policymakers
in understanding the essential components of smart campuses to enhance the adoption and maximize the
effectiveness of smart solutions.

INDEX TERMS Smart campus, IoT, adoption factors, smart education, higher education, SEM, ANN.

I. INTRODUCTION
In recent years, the rapid progress of Internet of Things
(IoT) technologies has opened up new possibilities for
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transformative applications across multiple domains [1], [2],
including the realm of higher education. Particularly, the
notion of a ‘‘Smart Campus’’ appeared as a promising
paradigm, harnessing IoT capabilities to enhance campus
operations, improve resource management, and provide
innovative services to students and faculty [3]. An IoT-based
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smart campus is described as the integration of IoT
technologies and solutions in various aspects of a campus
environment, such as education, administration, facilities
management, and student services [3], [4], [5]. It involves the
use of interconnected devices, sensors, and data analytics to
improve operational efficiency, enhance safety and security,
optimize resource utilization, and provide a seamless and
personalized experience for students, faculty, and staff. The
smart campus offers various benefits and functionalities
services [3], [4] as summarised in Figure 1.

The IoT technologies can enhance the learning experience
by enabling smart classrooms equipped with interactive
displays, digital whiteboards, and connected devices [6].
Students can access educational resources, collaborate with
peers, and receive personalized feedback. IoT-based track-
ing systems can also monitor attendance, analyze student
engagement, and provide insights to improve teaching
methodologies. Moreover, IoT devices and sensors can
monitor the campus environment for potential risks, including
surveillance cameras, access control systems, and fire
detection sensors [3], [5], [7]. Specifically, devices like
unmanned aerial vehicles (UAVs) have the potential to carry
out surveillance and real-time monitoring, generating fresh
information, as enlightened upon in the existing studies [8],
[9], [10], [11], [12]. The real-time data collected from these
devices can be analyzed to detect anomalies, raise alerts, and
facilitate rapid response in case of emergencies in Campuses.
Smart lighting systems can optimize energy consumption
and enhance safety by automatically adjusting lighting levels
based on occupancy and daylight.

In addition, the IoT-based solutions enable efficient man-
agement of campus infrastructure [3], which offers predictive
maintenance to identify potential equipment failures and
enable proactive maintenance, minimizing downtime [13].
IoT-based smart cards or wearables can serve as student
identification, granting access to various campus facilities,
such as libraries, labs, and dormitories [14]. Location-based
services can provide real-time information about campus
events, transportation options, and personalized notifications
based on individual preferences [5], [15]. Furthermore, smart
campus solutions can contribute to sustainable practices
on a smart campus [3]. For example, smart grids and
energy management systems optimize energy distribution
and consumption, reducing carbon footprint. Environmental
sensors can monitor air quality, temperature, and humid-
ity, facilitating informed decisions for sustainable campus
planning. Water management systems can monitor usage,
detect leaks, and optimize irrigation in landscaping. There-
fore, understanding the factors influencing Smart Campus
adoption is crucial for educational institutions seeking to
leverage these technologies effectively [16], [17], [18], [19].
To comprehensively investigate the factors influencing

the IoT-based Smart Campus adoption intention, a robust
analytical approach is required. This research paper presents
multiple analysis methods, combining the power of Structural
Equation Modelling (SEM) as well as Artificial Neural

Networks (ANN) [20], [21], [22], [23], [24]. This integrated
approach offers a more accurate insight into the complex
dynamics underlying the adoption model and processes.
In the first stage of the analysis, SEM is employed for
the evaluation of the latent variables and observed variable
relationships. SEM provides a statistical framework for
testing theoretical models, enabling the assessment of the
direct and indirect effects of various factors of IoT-based
Smart Campus adoption. By capturing both the measurement
as well as the structural models, the SEM offers a holistic
view of the relationships among the constructs and enables
the examination of hypothesized relationships.

Building upon the findings from the SEM stage, the second
stage of analysis employs ANN to enhance the predictive
power of the model. ANN leverages the principles of machine
learning to evaluate and enhance the performance of predic-
tivemodels by training neural network architectures. Through
the ANN analysis, the importance of different predictors
can be assessed, potentially uncovering hidden patterns and
nonlinear relationships that may be missed by traditional
statistical approaches. The integration of the two methods in
this study contributes to a more robust and comprehensive
investigation of the factors influencing the adoption of Smart
Campus technologies. By combining the strengths of both
approaches, we aim to provide valuable insights and practical
implications for educational institutions embarking on Smart
Campus initiatives. Understanding the drivers and barriers to
adoption is essential for informed decision-making, resource
allocation, and effective implementation strategies.

Hence, the central premise of this study revolves around
exploring the significance of IoT-based smart campus
adoption, a topic that has been gaining increasing attention
in recent years due to rapid technological advancements
and their implications for educational institutions. The
novelty of this study comes from two key aspects; A)
a holistic model for IoT-based Smart Campus adoption,
and B) methodological design. This study believes that
these elements collectively establish the novelty of the
study and its potential to inform university administrators,
manufacturers, policymakers, and researchers about the
essential components of smart campuses.

A. HOLISTIC IOT-BASED SMART CAMPUS MODEL
The integration of factors from these four key themes
results in a comprehensive and holistic framework that has
not been extensively explored in the context of IoT-based
smart campus adoption. While previous research might have
focused on individual elements within these themes [3], [25],
[26], [27], this study uniquely combines them through a
systematic review process [17] and analytical hierarchical
process [28] to provide a more complete understanding of
the factors that collectively influence the adoption of smart
campus solutions. This holistic approach reflects the intricate
interplay between technology, organizational dynamics, envi-
ronmental influences, and end-user perceptions empirically,
thereby offering a richer and more nuanced perspective on
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FIGURE 1. Summary of smart campus functionalities and benefits.

the adoption process. Notably, the integration of factors from
diverse themes inherently brings together insights from mul-
tiple disciplines such as technology adoption, organizational
behavior, environmental studies, and user experience. This
interdisciplinary approach enriches the study’s novelty by
acknowledging the multifaceted nature of the topic. The
incorporation of these different perspectives enables the study
to contribute to a broader range of academic and practical
domains, fostering a more holistic understanding of the
challenges and opportunities presented by IoT-based smart
campus adoption. Similarly, the incorporation of these four
themes in the study’s framework adds to its novelty by
ensuring its applicability to various contexts. While the study
focuses on universities in Iraq, the identified factors and their
interrelationships can serve as a foundation for examining
smart campus adoption in other regions and educational
settings. This adaptability enhances the study’s potential
impact beyond its immediate context and strengthens its
relevance to a wider audience.

B. METHODOLOGICAL DESIGN
Considering the fact that the concept of smart campuses and
the integration of IoT technologies have been explored to
some extent [3], [5], [6], [29], [30], [31], [32], this study takes
a distinct approach by focusing on a specific geographical
context - universities in Iraq, with empirical data. This
contextualization is crucial as it acknowledges the diversity
in adoption challenges and opportunities that may not be
directly transferable from other regions. As such, the study

fills a gap by providing insights into the adoption of smart
campus solutions in a region that might have unique socio-
cultural, economic, and technological factors.

Furthermore, the study’s methodology adds to its novelty.
The two-stage approach involving SEM followed by ANN
analysis showcases a rigorous analytical process [33], [34],
[35], [36], [37] that offers a comprehensive understanding
of the factors influencing smart campus adoption. The ANN
analysis, in particular, provides a predictive dimension to
the study, enabling accurate forecasts and highlighting the
potential of this approach for future research in similar
domains. In addition, the empirical evidence collected from
stakeholders affiliated with universities in Iraq, resulting in a
dataset of 442 observations, further enhances the novelty of
the study. The specific findings, including the identification
of propagation [3] as a significant predictor, emphasize
the importance of tailoring smart campus strategies to the
local context. These elements collectively establish the
novelty of the study and its potential to inform university
administrators, manufacturers, policymakers, and researchers
about the essential components of smart campuses for future
consideration.

C. ORGANISATION OF THE PAPER
In this study, the aim is to contribute significantly to
the ever-growing body of knowledge on the adoption of
IoT-based Smart Campus, offering insights that can drive
successful implementation and utilization of these trans-
formative technologies in the higher education landscape.
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Accordingly, the remaining part of the paper is structured
as follows: Section II provides a review background of
the relevant literature on IoT-based Smart Campus adoption
as well discussion of the hypothesized model. Section III
comprehensively describes the proposed research method-
ology, including data collection procedures, measurement
instruments, and the analytical framework. Section IV
presents the results and findings from the two-stage analysis,
which covers data normality, measurement model, structural
model, and ANN outcomes. Section V covers the result of the
as well as implications for policy and practice for educational
institutions. Finally, Section VI covers the conclusion of the
study, which summarizes the key contributions and suggests
avenues for future research.

II. LITERATURE OVERVIEW
The majority of existing technology adoption studies have
primarily revolved around the realm of IoT applications
[38], [39], [40], [41], [42], [43] with less emphasis on
IoT-based Smart Campus. Table 1 presents the current
literature concerning the IoT smart campus. Accordingly,
there’s been a notable scarcity of studies focusing on the
adoption context of Smart Campus. This perspective not only
encompasses the incorporation of IoT technologies but also
addresses various facets of campus life, from educational
enhancements to effective infrastructure management. As a
result, the proceeding sections provide a succinct overview
of the research landscape. This underscores the crucial gap
in the existing literature, namely the limited exploration of
the broader smart campus adoption concept and hypothesis
development.

A. RESEARCH GAP AND MOTIVATIONS
The trends in smart campus research indicate a growing
interest in leveraging IoT technologies, big data, and edge
computing to enhance various aspects of campus life, from
teaching and learning to infrastructure management. These
trends demonstrate the potential for smart campuses to
provide more efficient and user-centric services. While there
are several noteworthy trends and areas of focus within the
field. These trends provide valuable insights into the current
state of research and the areas that require further exploration,
especially highlighting the need for an integrated adoption
model for IoT-based smart campuses, as presented in Table 1.
For example, one of the focuses of the literature is proposing
and experimenting with algorithms for smart campuses to
improve features such as security, authentication, campus
management, etc. [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52], [53], [54]. Other studies propose the criteria
and indicators for successful smart campus initiatives [25],
[55], [56], [57], [58], [59]. There is extensive literature on
the theoretical or conceptual framework for smart campuses
[56], [60], [61], [62], [63], and utilizing multi-decision
criteria to investigate the factors for smart campuses [28],
[64], and [65]. Specifically, several studies, e.g., [43],

[66], have explored the implementation of IoT in the
educational sector. This approach aims to enhance traditional
teaching methods with IoT technologies, improving student
engagement and learning outcomes. The concept of a campus
edge computing network, using elements such as street
lighting as IoT communication nodes, has gained traction
in recent research [44]. Similarly, some existing papers,
e.g., [45], [64], emphasize the importance of robust data
acquisition, management, and storage systems in smart
campuses. Additionally, addressing semantic interoperability
issues is a critical aspect of IoT-enabled smart campuses,
as highlighted by Reference [63]. These issues relate to the
compatibility and seamless communication of various IoT
devices and applications within the campus ecosystem.

Moreover, the integration of IoT and big data analytics
has been explored in creating small-scale testing envi-
ronments for smart city technologies within a university
campus [47], [60]. This approach focuses on optimizing
resource management and supporting strategic decisions for
improving campus services and sustainability. Several studies
[55], [57], [61] focus on defining criteria and KPIs for
evaluating smart campuses. These criteria help in assessing
the success, effectiveness, and decision-making of smart
campus initiatives. In addition, a human-centered approach
to smart campus development is evident in studies evalu-
ating user experiences and satisfaction [50]. This approach
emphasizes the importance of meeting user expectations and
requirements. The analysis of the prior research revealed
that, while existing studies provide valuable insights into
various aspects of smart campuses, there is a noticeable gap
in the literature regarding an integrated adoption model for
IoT-based smart campuses. The existing research focuses
mostly on implementation, but there is a need for an adoption
model for the successful deployment of smart campuses.
Therefore, an integrated adoption model for IoT-based smart
campuses serves as a valuable resource for universities
planning to embark on the journey toward a smarter campus,
and proposing such a model is a novel and significant
contribution to the literature. The model would provide a
roadmap for the strategic deployment of IoT technologies,
considering all relevant components and their interplay.
By addressing this research gap, this study contributes to
the development of a comprehensive framework that guides
universities in creating truly smart campuses that benefit both
students and faculty.

B. HYPOTHESIS DEVELOPMENT
The literature analysis conducted in earlier studies reveals
that studies on technology adoption can be categorized
into four primary classifications [17], [28], [70], [71], [72],
[73], [74]. These classifications, as previously discussed
[17], [28], encompass four broad themes: technology-
specific factors (TSF), organizational-specific factors (OSF),
environmental-specific factors (ESF), and end-user-specific
factors (USF) are the key elements considered. In adoption
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TABLE 1. Summary of smart campus existing studies.
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TABLE 1. (Continued.) Summary of smart campus existing studies.
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TABLE 1. (Continued.) Summary of smart campus existing studies.

studies, it is crucial to consider various aspects related
to Smart Campus, such as the technology, organization,
environment, and end users. These factors collectively
contribute to the successful implementation and utilization
of technological solutions. For example, technology-specific
factors refer to the specific features and capabilities of the
technology that are relevant to the users, which involves
understanding the functionalities, ease of use, compatibility
with existing systems, security measures, and any unique
attributes that make the technology appealing and beneficial
[74], [75]. Organizational-specific factors focus on the
characteristics and resources of the organization, particularly
in the context of higher education institutions, such as the
organization’s size, degree of centralization, formalization,
human resources, managerial structure, availability of slack
resources, and the level of employee linkages [74]. The
environmental factors encompass the external factors that
surround the organization, including the structure and size of
institutions, competitive landscape, regulatory environment,
and macroeconomic background [73], [74]. Finally, end-user
factors focus on the personal features as well as characteris-
tics of the users themselves, such as their knowledge, skills,
attitudes, perceptions, and preferences towards technology
play a significant role in determining their acceptance and
effective use of the technology [73]. By considering these
factors, higher institutions can develop strategies that address
the diverse aspects influencing the adoption and effective
use of technology. Hence, as presented in Figure 2, the
hypothesized model for the adoption of IoT-based smart
campuses based on these factors is conceptualized to illustrate
the impact of TSF, OSF, ESF, and USF on the behavioral
intention of IoT-based Smart Campus adoption (BISC).

1) TECHNOLOGY SPECIFIC FACTORS
The factors specific to technology encompass the perceived
ease of use (PE) and perceived usefulness (PU) as defined
in the Technology Acceptance Model (TAM) [76]. PE refers

to an individual’s subjective evaluation of the effort required
to use a particular technology or system, while behavioral
intention represents an individual’s inclination to engage
in a specific behavior [76], [77], [78], [79]. Understand-
ing the impact of PE on behavioral intention is critical
for predicting and promoting the adoption of IoT-based
Smart Campus initiatives. Previous research conducted in
various technological contexts has explored the relationship
between PE and behavioral intention, providing valuable
insights for the present study. The TAM sheds light on
this relationship, asserting that PE significantly influences
behavioral intention, suggesting that individuals are more
likely to adopt a technology if they perceive it as easy to use.
Numerous studies investigating the adoption of IoT-based
technologies have applied TAM and consistently supported
the influence of PE on behavioral intention [80], [81], [82],
[83]. Additionally, the Unified Theory of Acceptance and
Use of Technology (UTAUT) [84], integrates influential
theories including TAM, and emphasizes the significance of
PE in shaping behavioral intention. According to UTAUT,
perceiving technology as easy to use leads to more positive
intentions to adopt it. Research applying UTAUT in the
context of IoT-based technologies consistently reveals a
positive association between PE and behavioral intention
[81], [82], [83], [85], [86]. Therefore, hypothesis 1 (H1) is
suggested as follows:

• H1: There is a significant relationship between per-
ceived ease of use and BISC.

Secondly, perceived usefulness (PU) refers to an individ-
ual’s subjective evaluation of how using a specific technology
or system will surely enhance their performance or produc-
tivity, while behavioral intention represents an individual’s
inclination to engage in a particular behavior [76], [78], [79],
[87], [88], [89], [90]. Understanding the influence of PU on
behavioral intention is crucial for predicting and promoting
the adoption of Smart Campus initiatives. Similarly, the TAM
offers a theoretical framework to explore the relationship
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FIGURE 2. Conceptual model and hypotheses.

between PU and behavioral intention. TAM highlight that
individuals or peoples are more likely to adopt a technology if
they perceive the technology to be useful. Numerous studies
have applied TAM to investigate the adoption of IoT-based
technologies and consistently support a positive relationship
between PU and behavioral intention [87], [88], [89],
[90], [91]. Apart from TAM, other theoretical models and
frameworks also contribute to understanding the relationship
between PU and behavioral intention. Notably, the UTAUT
suggests that when individuals perceive technology as useful,
they are more likely to develop positive intentions to adopt it.
Several studies applying UTAUT in the context of IoT-based
technologies have also found a positive relationship between
PU and behavioral intention [87], [88], [89], [90]. This study
specifically focuses on the adoption of IoT-based Smart
Campus initiatives, highlighting the significance of PU in
driving behavioral intention. Therefore, this study suggests
hypothesis 2 (H2) as follows:

• H2: There is a significant relationship between per-
ceived usefulness and BISC.

2) ORGANIZATIONAL SPECIFIC FACTORS
The organization-specific factors comprise facilitating condi-
tions (FC), service collaboration (SC), and propagation (PG).
Firstly, FC refers to the resources, support, and infrastructure

available to individuals that facilitate the adoption and use of
a technology or system [78], [84], [86], [92]. Understanding
how FC influences behavioral intention is essential for
promoting the successful implementation of IoT-based Smart
Campus initiatives. The UTAUT also sheds light on the facil-
itating condition-behavioral intention relationship. UTAUT
suggests that FC are critical determinants of individuals’
intentions to use technology. When individuals perceive
that the necessary conditions for using technology are
in place, their behavioral intention to adopt and use the
technology increases. Studies applyingUTAUT in the context
of IoT-based technologies environments have similarly found
a positive association between FC and behavioral intention
[78], [86], [92]. In the specific context of IoT-based Smart
Campus adoption, research has emphasized the importance
of FC in shaping behavioral intention. Hence, this study of
IoT-based technologies and Smart Campus environments can
be impacted by FC. Thus, this study posits hypothesis 3 (H3)
as follows:

• H3: There is a significant relationship between facilitat-
ing conditions and BISC.

Secondly, service collaboration refers to the coopera-
tion and interaction among different stakeholders, such
as students, faculty, staff, and administrators, in utilizing
and contributing to IoT-based Smart Campus services and
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applications [81]. Understanding how service collaboration
influences behavioral intention is crucial for promoting effec-
tive implementation and utilization of IoT-based solutions
for Smart Campus. Research specific to IoT-smart devices
adoption highlights the importance of service collaboration
in shaping behavioral intention [81]. In this study, increased
collaboration and partnership between various entities (e.g.
government organizations, non-governmental organizations,
etc.) with the aim of sharing responsibility, authority,
or support in governmental processes as well as actions, has
a positive impact on smart adoption, including the adoption
of smart campuses. Therefore, hypothesis 4 (H4) is proposed
as follows:

• H4: There is a significant relationship between service
collaboration and BISC.

Thirdly, propagation refers to the spread and dissemination
of information, knowledge, and awareness about IoT-based
Smart Campus initiatives among relevant stakeholders, such
as students, faculty, staff, and administrators [3]. Understand-
ing how propagation influences behavioral intention is crucial
for effectively promoting and encouraging the adoption
of IoT-based Smart Campus solutions. Existing studies
specific to IoT-based Smart Campus adoption highlights
the importance of propagation. For example, the emphasis
on propagation especially to replicate smart campus was
highlighted strongly in the prior study [3]. In this study,
propagation has been suggested as one of the factors influenc-
ing the adoption of IoT-based Smart Campus technologies.
Hence, hypothesis 5 (H5) is posited as follows:

• H5: There is a significant relationship between propa-
gation and BISC.

3) ENVIRONMENTAL SPECIFIC FACTORS
Environmental-specific factors encompass three key con-
structs, which include government support (GS), social influ-
ence (SI), and external pressure (EP). Government support
refers to the initiatives, policies, funding, and resources
provided by government entities to promote and facilitate
the technologies and services of Smart Campus adoption
[73], [87], [93]. Understanding how government supports
influences behavioral intention is crucial for promoting
the successful implementation and widespread adoption
of IoT-based Smart Campus solutions. Accordingly, the
presence of government support plays a significant role in
shaping individuals’ behavioral intention by providing a
conducive environment and resources for IoT-based Smart
Campus adoption [93]. Several studies have highlighted the
impact of government support on behavioral intention [73],
[87], [93]. Government support can take various forms,
including policy initiatives, funding schemes, infrastructure
development, and regulatory frameworks. These measures
create an enabling environment and provide the necessary
resources and incentives for stakeholders to adopt IoT-based
Smart Campus solutions. Hence, hypothesis 6 (H6) is
suggested as follows:

• H6: There is a significant relationship between govern-
ment support and BISC.

Secondly, social influence refers to the impact of social
interactions, norms, and the opinions of others on an
individual’s decision-making and behavior [86], [94], [95].
Therefore, understanding how social influence affects behav-
ioral intention is crucial for promoting and facilitating the
successful adoption of IoT-based Smart Campus solutions.
The prominent Theory of Planned Behavior (TPB) [79],
emphasizes the role of subjective norms in shaping behav-
ioral intention. Subjective norms represent an individual’s
perception of the social pressures and expectations regarding
a specific behavior. In the context of IoT-based Smart
Campus adoption, subjective norms capture the influence
of peers, colleagues, and the institutional community on an
individual’s behavioral intention. Studies applying TPB in the
context of technology adoption have consistently found that
subjective norms significantly influence behavioral intention
[83], [85], [86], [92], [94], [95]. Therefore, this study
highlights the significance of SI as a driver of behavioral
intention among stakeholders in IoT-based smart campuses.
As a result, this study proposed hypothesis 7 (H7) as follows:

• H7: There is a significant relationship between social
influence and BISC.

In addition, external pressure refers to the influence exerted
on individuals or organizations by external factors, such as
regulatory bodies, industry standards, market demands, and
stakeholder expectations [88], [93]. Hence, understanding
how external pressure influences behavioral intention is
crucial for effectively promoting and facilitating the adoption
of IoT-based Smart Campus solutions. In the context
of IoT-based Smart Campus adoption, external pressure
captures the influence of external factors and stakeholders
on individuals’ behavioral intentions. Studies applied in tech-
nology adoption contexts have found that external pressure
significantly influences behavioral intention [72], [87], [88],
[93]. Therefore, the literature supports a relationship between
external pressure and behavioral intention in the context of
IoT-based Smart Campus adoption. As a result, hypothesis 8
(H8) is proposed as follows:

• H8: There is a significant relationship between external
pressure and BISC.

4) END-USER SPECIFIC FACTORS
The end-user factors (ESF) encompass the personal features
or characteristics of the users. These factors cover privacy
concerns (PC), satisfaction (SF), self-efficacy (SE), domain-
specific knowledge (DK), habit (HB), and innovativeness
(IN). Firstly, privacy concern refers to individuals’ worries or
apprehensions regarding the collection, disclosure, and use of
their personal information in the context of IoT-based Smart
Campus technologies and services [89], [92], [96]. Therefore,
understanding how privacy concern influences behavioral
intention is crucial for addressing privacy-related challenges
and promoting the successful adoption of IoT-based Smart
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Campus solutions. Privacy concerns have emerged as a
critical factor influencing individuals’ behavioral inten-
tion to adopt IoT-based Smart Campus initiatives [89].
As the collection and utilization of personal data become
more prevalent in educational settings, stakeholders become
increasingly concerned about the potential risks associated
with privacy breaches and unauthorized access to their
information. Several studies have examined the impact of
privacy concerns on behavioral intention in the context of
IoT Smart technologies [71], [72], [73], [82], [89], [90],
[92], [96], [97], [98], [99], [100]. The educational institutions
and policymakers play a crucial role in addressing privacy
concerns and shaping individuals’ behavioral intention. The
privacy concerns can be addressed through various strategies
and measures to enhance individuals’ trust and confidence
in IoT-based Smart Campus initiatives. Therefore, this study
proposed hypothesis 9 (H9) as follows:

• H9: There is a significant relationship between privacy
concerns and BISC.

In the context of satisfaction and behavioral intention of
smart campus relationships. Satisfaction refers to an indi-
vidual’s subjective evaluation of their experience, benefits,
and overall fulfillment derived from using IoT-based Smart
Campus technologies and services [101], [102]. Existing
research has highlighted the importance of user satisfaction
as a key element for achieving success in the field of
information technology (IT) [103], [104], [105]. Within
technology adoption studies, SF consistently emerges as a
prominent factor due to its substantial influence on adoption
behavior, as demonstrated in the literatures [106], [107], and
[108]. Hence, understanding the influence of satisfaction on
behavioral intention is crucial for ensuring the long-term
success and sustainability of IoT-based Smart Campus
solutions. Numerous studies have examined the impact of SF
on behavioral intention in the context of technology adoption
[101], [102]. Existing research consistently demonstrates a
relationship between SF and behavioral intention, suggesting
that individuals who are satisfied in terms of their previous
and current experience are more likely to continue using
and adopting the technology. Therefore, this study proposed
hypothesis 10 (H10) as follows:

• H10: There is a significant relationship between satis-
faction and BISC.

Thirdly, self-efficacy refers to individuals’ belief in their
own ability to successfully perform a specific task or
behavior [73], [102], in this case, the adoption and usage of
IoT-based Smart Campus technologies and services. Thus,
understanding the influence of self-efficacy on behavioral
intention is crucial for promoting individuals’ confidence
and motivation to adopt IoT-based Smart Campus solutions.
Nevertheless, the literature consistently demonstrates a
relationship between self-efficacy and behavioral intention
in technology adoption contexts services [73], [95], [102],
[109]. When individuals possess a high level of self-efficacy,
they believe in their ability to overcome challenges, learn

new technologies, and successfully adopt and utilize them.
This confidence influences their intention to engage in the
behavior. Therefore, individuals with higher self-efficacy are
more likely to have stronger intentions to adopt and utilize
IoT-based Smart Campus technologies and services. As a
result, this study deposited hypothesis 11 (H11) as follows:

• H11: There is a significant relationship between
self-efficacy and BISC.

The domain-specific knowledge refers to individuals’
understanding and expertise in a particular subject or domain,
in this case, the knowledge related to IoT-based Smart Cam-
pus technologies and their application in educational settings
[109], [110]. Understanding the influence of domain-specific
knowledge on behavioral intention is crucial for promoting
individuals’ competence and confidence in adopting and
using IoT-based Smart Campus solutions. Various studies
have explored the impact of domain-specific knowledge on
behavioral intention in the context of technology adoption
[109], [110]. The studies suggest a relationship between
domain-specific knowledge and behavioral intention. This
indicates that individuals with a higher level of insight as
well as more knowledge in the IoT-based Smart Campus
technologies are very likely to have a stronger intention to
adopt and utilize these technologies. Therefore, hypothesis
12 (12) is suggested as follows:

• H12: There is a significant relationship between
domain-specific knowledge and BISC.

Furthermore, habit refers to the automatic and repetitive
behaviors that individuals develop over time, often driven by
their previous experiences and established routines [86], [92].
Hence, understanding the influence of habit on behavioral
intention is essential for identifying the factors that shape
individuals’ adoption patterns and promoting the sustained
use of IoT-based Smart Campus technologies. Research
examining the impact of habit on behavioral intention
in technology adoption contexts [86], [92], has provided
valuable insights into the relationship between habit and
behavioral intention. The studies consistently demonstrate
a relationship between habit and behavioral intention [86],
[92]. This indicates that individuals with a strong habit of
using technology are more likely to have a higher intention
to adopt and utilize IoT-based Smart Campus solutions.
Therefore, this study suggests that the extent to which users
perform a particular behavior automatically or instinctively
as a result of experience influences their behavioral intention
to adopt IoT-based smart campus technologies. As a result,
this study proposed hypothesis 13 (H13) as follows:

• H13: There is a significant relationship between habit
and BISC.

Finally, innovativeness refers to individuals’ propensity
to adopt and embrace new technologies and innovations
[110], [111], [112]. Similarly, understanding the influence of
innovativeness on behavioral intention is crucial for identi-
fying the factors that shape individuals’ readiness to adopt
and utilize IoT-based Smart Campus technologies. Existing
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research that investigated the impact of innovativeness on
behavioral intention in technology adoption contexts, has
provided valuable insights to suggest a relationship between
innovativeness and behavioral intention [73], [90], [95],
[110], [111], [112]. These studies suggest that individuals
with a higher degree of innovativeness are more likely
to have a stronger intention to adopt and utilize IoT
smart technologies. Therefore, this study highlights that the
willingness to accept IoT-based smart technology or service
can influence users’ behavioral intentions. Thus, this study
posits hypothesis 14 (H14) as follows:

• H14: There is a significant relationship between inno-
vativeness and BISC.

III. METHOD
This study proposes and analyzes a model that focuses on the
adoption of IoT-based smart campuses. To achieve this objec-
tive, the study employs confirmatory factor analysis through
the use of PLS-SEM, which stands for partial least squares
structural equation modeling. In order to lay the groundwork
for this research, a systematic literature review (SLR) of
existing literature on technology adoption was conducted,
focusing on identifying the influencing factors of IoT smart
devices. The literature review conducted by Ref erence [17]
provides a comprehensive list of influencing factors related to
smart campus applications and implementations. To further
evaluate the identified influencing factors and to facilitate the
selection of the factors objectively, the researchers utilized
an Analytical Hierarchy Process (AHP) [28], which is a
widely recognized multi-criteria decision-making technique
[70], [113]. By employing AHP, the study systematically
evaluated and prioritized various factors involved in the
selection process. This allowed for a structured and rigorous
analysis, enabling the selection of the most suitable options
based on their relative importance and performance according
to the defined criteria [70]. This process involved classifying
and ranking 25 technology adoption factors according to the
influencing factors identified in Sneesl [28], a conceptual
model consisting of 14 factors was developed to examine the
proposed model. Furthermore, the model was then analyzed
using PLS-SEM. It is worth mentioning that previous studies
[24], [90], [95], [111], [114] have also utilized this approach.
The proposed research method consists of three phases,
as depicted in Figure 3, which are discussed in the proceeding
subsections. The current study provides a further discussion
of the chosen method.

A. PHASE 1: LITERATURE REVIEW THROUGH SLR
The literature review was conducted following the guidelines
of SLR as reported in previous SLR studies [115], [116],
[117]. The SLR process was divided into four stages,
as depicted in Figure 3 (see Sneesl [17] for more detail).
Nevertheless, in the first stage, a comprehensive search for
relevant research articles was conducted. Keywords identified
from the existing literature were used to generate a query
for searching research articles. The second stage involved

the screening of articles based on their titles and abstracts,
which excluded articles that are not relevant from further
reading. Following the title and abstract screening, the
selected articles underwent a more detailed evaluation based
on criteria for inclusion and exclusion. Accordingly, the
inclusion criteria strictly comprised papers indexed in JCR or
Scopus and articles that incorporated technology acceptance
or adoption theories. After applying these criteria, a final
108 articles remained for full-text reading and analysis.
Finally, 59 articles were read in full. Accordingly, the
literature reading and data extraction identified and collated
various technology adoption factors. This study made a
significant finding by identifying a total of 112 factors, which
were classified into four themes [17] (see Figure 2). However,
to ensure accuracy and avoid redundancy, duplicate factors
were identified and filtered, resulting in a refined set of
77 factors. Further refinement was achieved through a second
round of duplicate filtering using thematic analysis, which
ultimately yielded 52 factors.

B. PHASE 2: RANKING OF FACTORS THROUGH AHP
In order to delve deeper into the 52 factors identified in a
previous study [17], the AHP technique was employed in
Reference [28]. The purpose was to simplify the analysis
and focus on the most crucial factors for the implementation
of smart campuses. Initially, an objective analysis was
conducted using the frequency technique, which helped
narrow down the selection to 25 factors for the subsequent
AHP analysis [28]. The AHPmethodology involves breaking
down the decision-making problem into three levels, namely
the objective, criteria, and alternatives [113]. By applying the
AHP in the aforementioned study [28], the study was able to
identify and determine the most significant contributing fac-
tors for the successful adoption of smart campuses. The AHP
technique played a crucial role in systematically evaluating
and prioritizing the identified factors, providing valuable
insights for decision-makers and stakeholders involved in
implementing smart campuses. Hence, the application of the
AHP technique proved instrumental in identifying the key
factors that contribute to the successful implementation of
smart campuses. Notably, the global ranking of the factors
suggested that twelve factors from various categories led to
the conceptualization of the IoT-based smart campus model
proposed in this study.

C. PHASE 3: EMPIRICAL STUDY
In this stage, two preliminary activities were performed
before the data collection for the empirical study. These
activities are briefly discussed which comprise instrumen-
tation such as expert evaluation and pilot test. Moreover,
the PLS-SEM analysis and artificial neural network analysis
(ANN) methods are discussed accordingly.

1) INSTRUMENTATION THROUGH EXPERT REVIEW
Based on the literature for technology adoption for IoT
and smart devices [82], [83], [85]. The instrument for this
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FIGURE 3. Proposed research methodology.

study is developed, adapted, or adopted in accordance with
academic research practice. Then, an expert review document
was created for early content validity from a group of
expert panels in the information systems, smart campus,
IoT, and smart technologies fields. This involves seeking
expert opinions in the relevant field of study [118], [119].
By incorporating expert judgments and recommendations,
the proposed model is further validated by five experts.
14 factors were derived from technology adoption literature
and AHP, as factors affecting the adoption intention of Smart
Campus. The expert evaluation form was designed according
to the classification of the factors proposed previously [17],
[28]. The expert evaluation form was designed in such a
way that the responses provide a valuable report on the
content, face, and construct validity of the proposed model.
Accordingly, the expert review form indicates the rating
of each factor based on a 4-point Likert scale. Moreover,
the form is divided into key sections. PART A covered the
participant information. PART B: covered the construct and
face validity of the IoT-based Smart Campus adoption model
as well as a text box for experts to provide comments. Finally,
PART C covered the content validity for each construct as
well as the items. Accordingly, the expert response was
evaluated through the content validity index (CVI) with a
modified kappa statistical coefficient. By following these
content validity recommendations and employing appropriate

statistical measures like the CVI and kappa statistics, the
reliability, as well as validity of the research items, are
ensured for subsequent analyses.

2) PILOT TEST DESIGN
The pilot test, often considered a crucial component of a
good research design, plays a significant role in evaluating
the research instrument’s effectiveness [120]. Its purpose,
as a preliminary investigation, is to test the viability and
significance of the research instrument before conducting
a full-scale study [120], [121]. In this study, after the
instrument passes the content validity test is then adopted
for the pilot test. The pilot test questionnaire includes
multiple-choice questions and sections. The first section
focuses on participant demographics which covers years of
experience in the university. Accordingly, the validity of
the instrument is thoroughly investigated, which is done to
determine the instrument’s reliability in order to ascertain
the effectiveness of the items associated to each construct.
To evaluate the instrument’s reliability of the variables as well
as the correlation between the variables, Cronbach’s alpha
and regression models were employed. Hence, the direct
effect was tested through percentile bootstrapping (5000
samples) [122] using SPSS 24 with 35 participants. The
decision to employ these indexes and analysis methods was
influenced by their widespread use in the literatures [123],
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[124], and [125]. In particular, Cronbach’s alpha was utilized
to verify the item’s reliability, which ranged from 0.7 to 0.9,
an indication that the reliability of the research instrument is
acceptable [126].

3) SURVEY PROCEDURE
Staff from all the public universities in Iraq were the target
participants in this study. Detailed demographic information
about the participants is recorded in Table 2. The survey
questionnaire was translated into the Arabic language of the
target participants. The Arabic version of the questionnaire
can be accessed through an electronic medium, particularly
Google Forms, to collect the data. It can be found at
the following link: online survey for a smart campus.
Nevertheless, the survey questionnaire is presented in the
Appendix. Accordingly, the survey methodology played a
pivotal role in data collection and analysis. This study
meticulously designed the data collection process, targeting a
representative sample of participants from all the universities
in Iraq. The survey instrument, a structured questionnaire
tailored to the study’s objectives about a smart campus,
was crafted with precision to ensure that it would be
easily understood by the participants. The questionnaire
structure and content were fine-tuned to ensure it gathered
the necessary data. As mentioned earlier, the study conducted
a pilot test to refine the survey instrument before its full
deployment, which is an essential step in optimizing the sur-
vey’s effectiveness. The data collection procedure, primarily
administered through online platforms, incorporated ethical
considerations such as informed consent and data privacy
statements. Throughout the survey, ethical considerations
remained paramount, ensuring participant anonymity and
adherence to ethical guidelines and regulations. To maintain
data quality and reliability, rigorous data validation and
quality control processes were in place. Statistical analysis
was conducted to derive meaningful insights from the
collected data, as discussed in the proceeding section.
This transparent and well-documented survey procedure
underpins the credibility and validity of our research findings.

4) DATA ANALYSIS PROCEDURE
After the data collected is completed, the analysis sec-
tion covers the data screening procedures, measurement
assessment, structural models, and ANN analysis. The data
screening was specifically used to check the multicollinearity
issues and common method bias (CMB). Additionally, the
reflective measurement models deal with the models’ relia-
bility and validity, by analyzing the different types of tests
via composite reliability (CR), convergent and discriminant
validity, while the structural models test the hypotheses
through path analysis, and model fit and prediction capacities
through coefficients of determination (R2), model fit indices,
and F-test statistics (F2).
Choosing an appropriate statistical model to analyze

survey research has remained a challenge for researchers.

TABLE 2. Demographic distribution of the respondents.

Covariance-based structural equation modeling (CB-SEM)
has traditionally been the dominant approach [127], but
the PLS-SEM has gained popularity in recent years [127],
[128]. In the current study, the proposed model was
evaluated using SmartPLS 4.0 program, which employed the
PLS-SEMmethod [127]. The model was computed using the
bootstrapping method with 10000 samples [129]. PLS-SEM,
a variance-based approach, accounts for all the variance and
uses the sum of the variance to estimate model parameters.
This choice is guided by the literature recommendation,
which is suitable for testing the theoretical framework and
predicting outcomes [127].

Finally, to assess the predictive capacity of the model,
an ANN was employed. ANN modeling tool simulate
human-like neural systems and learn the behavior of the
agent under investigation [34]. To enhance the performance
of neural networks, their learning capabilities can be trained
[33], [35]. For the ANN analysis, SPSS v24 was utilized,
following previous studies [20], [21], [22], [23], [24].
Specifically, an ANN using a feed-forward back-propagation
algorithm was employed to estimate the relative significance
of the independent variables against the dependent variable
through the Multilayer Perceptron (MLP) method. A tenfold
cross-validation procedure was performed on the dataset,
resulting in 10 ANN models. Accordingly, the training phase
utilized 70% of the data, while the remaining 30% was used
to assess the projected fitness of the trained network, thereby
minimizing the risk of overfitting.

IV. RESULT
The structural assessment model plays a crucial role in
analyzing the relationships and dynamics among variables
within a research study [130]. Hence, the structural model
allows this study to assess and predict the outcome variable.
It examines the causal relationships to determine the strength
and significance of the variables [131]. The structural
assessment model aids in understanding how different
factors interact and influence the outcome variable under
investigation. Utilizing SEM, researchers can assess the
overall fit of a given model and evaluate the significance and
effect sizes of the hypothesized relationships [131]. These
techniques provide insights into the complex relationships
between variables, contributing to a deeper understanding of
the underlying mechanisms and supporting evidence-based
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decision-making [132]. In this study, the assessment of the
IoT-based smart campus model employed in the current study
is presented, which includes the measurement model, path
analysis, and the assessment of model fit and effect sizes.
In addition, the assessment of ANN analysis was covered
in this section. By applying these techniques, we aim to
gain insight on the relationships between variables and their
impact on IoT-based smart campus adoption.

A. DATA NORMALITY
Before examining the proposed model, the collected data
underwent several normality tests to assess whether any
normality issues were present. Firstly, the data was subjected
to Harman’s single factor test, a commonly used method
for evaluating common method bias (CMB) [133]. The test
was conducted on all variables to determine the presence of
CMB. The findings revealed that after rotating 79 factors, one
factor accounted for approximately 26.75% of the variance.
This value is below the established threshold of 50% ( [133],
[134], [135]. Consequently, it can be inferred that the data
does not exhibit any concerns related to CMB. Secondly, the
Bartlett Sphericity test was employed to examine whether the
correlation matrix was formed by two or more independent
sources. The obtained result yielded a significance level of
0.00, the data collected from universities staffs to determine
their behavioral intention to use IoT-based smart campus,
follows a normal distribution. Additionally, the Kaiser-
Meyer-Olkin (KMO) measure of sample adequacy was also
utilized to check the normality, resulting in a satisfactory
value of 0.897 for the total correlation matrix (commonly
referred to as ‘‘marvelous’’). By considering these normality
coefficients, it can be concluded that there are no normality
issues present in this study, indicating that the model can be
further analyzed.

B. MEASUREMENT MODEL ASSESSMENT
After assessing the data for normality issues and obtaining
satisfactory results, the next step involved subjecting the
data to a reliability test to determine the convergent validity
techniques. The result obtained for convergent validity
analysis revealed that all item loading’s exceeded 0.500,
specifically ranging from 0.556 to 0.918, as depicted in
Table 3 and Table 4. These results indicate that the items
and their related constructs exhibit a significant degree of
variance [127], [136]. However, it was observed that a few
item loading values significantly impacted the reliability and
validity coefficients, such as Cronbach’s alpha, coefficients A
and C, and average variance extracted (AVE). Consequently,
these items were systematically eliminated one at a time,
resulting in the removal of a total of 15 items (PU1,GS2, GS3,
GS6, PC4, PC5, PC7, SF6, SF7, DK5, PG1, FC6, FC7, FC8,
and BISC1). The reliability metrics for the latent variables of
the model are summarized in Table 3. Moreover, Cronbach’s
alpha values ranged from 0.714 to 0.937, all exceeding the
recommended threshold of 0.70, indicating a strong level

of item reliability. Additionally, to demonstrate composite
reliability, the CR-rho_a coefficient should surpass 0.7, and
in this study, it ranged from 0.747 to 0.971. Similarly, the
composite reliability (CR-rho_c) values were also higher
than 0.700, ranging from 0.818 to 0.955. Furthermore, all
AVE metrics were greater than 0.500, with values ranging
from 0.534 to 0.841 [127], [136]. Therefore, the reliability
test results, along with the convergent validity techniques,
provide evidence that the measurement model employed in
this study is robust and accurately captures the underlying
constructs of the data.

The discriminant validity of the measures was assessed
by comparing the indicator loadings of each construct to
the others. As depicted in Table 4, the results indicate
that all indicators loaded at or above the loading of
the other constructs, demonstrate significant discriminant
validity. Furthermore, the loadings of each indicator on
its corresponding construct were significantly greater and
more significant than the loadings of the indicators on
the other variables in the sample, further supporting the
presence of discriminant validity. In addition to the cross-
loading analysis, the Fornell-Larcker criterion was utilized to
evaluate the discriminant validity of the measurement model,
as presented in Table 5.

The Fornell and Larcker criterion is widely recommended
for assessing the degree of shared variance among constructs
[137], [138]. While it does not provide a definitive measure
of differences between constructs, it is commonly employed
due to its extensive use in the literature [131], [138], [139].
The Fornell and Larcker criterion was applied to evaluate
discriminant validity. Accordingly, discriminant validity is
evaluated by comparing the square roots of the AVE and the
correlation coefficients between the constructs. Accordingly,
the results obtained for the Fornell and Larcker criterion (see
Table 5), indicates that the AVE values for all constructs
exceed the threshold value, a criterion satisfied by this
study findings [137]. Furthermore, the Fornell-Larcker index
requires two criteria to establish discriminant validity. Firstly,
the square root of each construct’s AVE must be greater
than its correlation with another construct. Secondly, each
item must load disproportionately on the construct with
which it is most closely correlated [136], [137]. Based on
the Fornell-Larcker index results, all values are statistically
significantly larger than the correlated constructs, indicating
acceptable discriminant validity.

Moreover, the Heterotrait-Monotrait Ratio of Correlation
(HTMT) was employed as a method to assess the correlation
ratios between constructs [131]. HTMT is used to measure
discriminant validity among variables [138]. In HTMT,
a value of 0.90 or higher suggests a lack of discriminant
validity, while a value below 0.85 is considered acceptable for
demonstrating discriminant validity between two variables.
Additionally, the HTMT method evaluates the average
correlation of indicators among constructs in themodel [138],
[140]. It is worth noting that the HTMT confidence interval
should not include a value of one (1), as a value close

126008 VOLUME 11, 2023



R. Sneesl et al.: Examining IoT-Based Smart Campus Adoption Model

TABLE 3. Item loadings and reliability measures.

to 1 indicates a lack of discriminant validity [140]. The
correlations among the constructs based on the HTMT are
presented in Table 6. The results indicate that all values

obtained for the constructs in this study were below the
threshold of 0.85, suggesting that discriminant validity is
achieved in the measurement models. Consequently, the
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TABLE 4. Crossloadings of measurement items.
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TABLE 5. Fornell-Larcker criterion matrix.

TABLE 6. Heterotrait-Monotrait Ratio of Correlation (HTMT).

constructs can be considered distinct and unrelated to each
other, thus supporting the validity of the model.

C. STRUCTURAL MODEL ASSESSMENT
The structural assessment model employed in the current
study is presented in this section, which includes the path
analysis, and the assessment of model fit and effect sizes.
By applying these techniques, this study aims to gain insight
into the relationships between the variables. Hence, the
results of the research hypotheses are visually presented in
Figure 4, and further details and explanations are provided in
Tables 7, 8, and 9.

1) R-SQUARE AND EFFECT SIZE
In general, a low or moderate coefficient of determination
(R-square; R2) suggests that the endogenous variables in
the model have relatively weak to moderate explanatory
power. Additionally, in most cases, the values of Q-square
(Q2) obtained from blindfolding algorithms tend to be lower
than the values of R2 [127]. According to the result (see
Table 7), the model was able to explain a significant amount
of variation in respondents’ perceptions of the behavioral
intention regarding IoT-based smart campus (R2

= 0.632).
This indicates that the model accounts for 63.2% of the
explanatory capability. Moreover, the research model also

showed significant results and variation for the behavioral
intention of IoT-based smart campuses (Q2

= 0.351). These
results show that the research model successfully captures
and explains a considerable portion of the variance in
respondents’ behavioral intention related to IoT-based smart
campuses. The Q2 value further indicates that the model’s
predictive power is meaningful, providing additional support
for the research findings.

Moreover, the effect sizes of the endogenous variables for
the research model are summarized in Table 7. This measures
the magnitude or strength of the relationship between
variables and helps determine the practical significance
of the findings. According to prior studies [141], [142],
effect sizes can be categorized as small, medium, or large,
or very small, very large, and huge effect sizes, providing
a measure of practical significance in the interpretation of
research findings. Similarly, previous studies in the field
of technology adoption have reported effect sizes in the
range of very small to small [143], [144]. In this case,
the effect sizes are categorized as very small, small, or no
effect. Based on the table, most of the endogenous variables
show very small effect sizes. Variables such as DK, EP,
FC, GS, IN, PG, PU, SF, and SI have effect sizes ranging
from 0.010 to 0.022, indicating a very small impact on the
behavioral intention of IoT-based smart campuses. These
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FIGURE 4. Proposed structural model of IoT-based smart campus adoption intention.

variables, while statistically significant, have relatively weak
practical significance in explaining the variance in behavioral
intention. On the other hand, the variable PC (privacy
concern) shows a small effect size of 0.147. Although it
is categorized as small, it indicates a relatively stronger
impact compared to the other variables. This suggests that
privacy concern has a slightly more substantial influence
on behavioral intention in the context of IoT-based smart
campus adoption. Additionally, the variables HB, PE, SC,
and SE have effect sizes close to zero, indicating no
significant impact on behavioral intention. These variables
do not contribute meaningfully to the variance in behavioral
intention in the context of the research model.

2) MODEL FIT
There are several model fit indices that were recommended
in the literature to examine and assess the goodness-of-fit
of the saturated model and the estimated model (Hair et al.
[127] and Henseler et al. [138]) of the proposed IoT-based
Smart Campus adoption model. The model fit indices include
SRMR (Standardized Root Mean Square Residual), d_ULS
(d-value based on unweighted least squares), d_G (d-value
based on geodesic distances), and Chi-square, as presented
in Table 8. Firstly, both the saturated model and the estimated
model have the same SRMR value of 0.077. A lower SRMR

value indicates a better fit, and since the SRMR values are the
same for bothmodels, it suggests that the estimatedmodel fits
the data reasonably well. Secondly, similar to the SRMR, the
d_ULS values are the same for both the saturated model and
the estimatedmodel (12.331). A lower d_ULS value indicates
a better fit, and since the values are the same, it suggests
that the estimated model provides a comparable fit to the
saturatedmodel. Thirdly, the d_G values are identical for both
the saturated model and the estimated model (3.970). A lower
d_G value indicates a better fit, and since the values are the
same, it suggests that the estimated model is comparable to
the saturated model in terms of fit. Finally, Chi-square is a
traditional measure used to evaluate the fit of a structural
equation model [139]. However, it is known to be sensitive
to sample size, and in large samples, even minor model
misspecifications can lead to a significant Chi-square value.
In this case, both the saturated model and the estimatedmodel
have the same Chi-square value of 9061.057. Hence, based on
these fit indices, the estimated model provides a reasonably
good fit to the data, as indicated by the comparable values to
the saturated model.

3) HYPOTHESIS TESTING
The hypothesized relationship was assessed through the path
coefficient, which is presented in Table 9. Similarly, Table 9
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TABLE 7. PLS Measures (R Square and F Square).

TABLE 8. Model fit indices of the Proposed Model.

also contains results for t-values and p-values, indicating that
the hypothesis is examined statistically. Firstly, the result of
the structural model examines the multicollinearity in the
data through the variance inflation factor (VIF). Accordingly,
the result observed that the VIF values are significantly less
than 5. This shows that multicollinearity is not a concern in
this study [127]. Remarkably, this supports the CMB results,
as well as the KMO and Bartlett’s test of sphericity under
the normality test. Hence, it is now statistically practical
to discuss the outputs obtained for the formulated research
hypotheses.

The technology specifics factors that were derived from
TAM have two constructs; PE and PU which are H1 and
H2. The finding shows that hypothesis 1 was not supported,
as there was an insignificant relationship between PE and
behavioral intention of IoT-based smart campuses (t =

0.697, p = 0.486). Hypothesis 2 is supported, with a
positive relationship between PU and behavioral intention of
IoT-based smart campuses (t = 2.609, p = 0.009). In the
organizational-specific factors, results were obtained for H3,
H4, andH5, which stated that FC has a statistically significant
impact on the behavioral intention of IoT-based smart campus
(t= 2.157, p= 0.031), service collaboration is not significant
on the behavioral intention of IoT-based smart campus (t
= 0.199, p = 0.842), and propagation has a statistically
significant impact on behavioral intention of IoT-based smart
campus (t = 2.724, p = 0.006).
In addition, the findings of this study support all the

hypotheses for the environmental specifics factors; H6,
H7, and H8. The result shows that government support,
social influence, and external pressure have a statistically
significant impact on the behavioral intention of IoT-based
smart campuses (t = 2.474, p = 0.013; t = 2.209, p =

0.027; t = 2.271, p = 0.023). In the end-user-specific

factors, six hypotheses were tested. The result shows that the
impact of privacy concern, self-efficacy, and domain-specific
knowledge was positive and significant on the behavioral
intention of IoT-based smart campus, indicating support for
H9, H11, and H12 (t = 7.714, p = 0.000; t = 3.779, p =

0.000; t = 1.981, p = 0.048), and satisfaction is negative
and significant on the behavioral intention of IoT-based smart
campus, indicating support for hypothesis H10 (t = 2.803, p
= 0.005). However, the impact of habit and innovativeness
on the behavioral intention of IoT-based smart campuses was
not significant (t= 0.602, p= 0.547; t= 1.917, p= 0. 0.055),
rejecting support for H13 and H14. Table 8 summarised the
hypotheses test and the corresponding outcome.

D. ANN RESULT AND ANALYSIS
The ANN analysis allows for the prediction of outcomes
based on complex relationships and patterns in the data.
This captures non-linear relationships and interactions among
variables, making it a powerful tool for forecasting and
predicting smart campus adoption. By training the neural
network on a dataset, the model learns the underlying
patterns and makes accurate predictions on new, unseen
data. Accordingly, a specific number of hidden neurons
were created. These neurons were then activated using the
hyperbolic tangent activation function, which is commonly
used to introduce non-linearity and capture complex patterns
in data. On the other hand, the output layers of the model
were activated using the sigmoid activation function, which
maps the output values between 0 and 1, often used in binary
classification tasks. To evaluate the predictive accuracy of
the ANN model, the researchers employed the root mean
square error (RMSE) metric. RMSE calculates the average
difference between the predicted and actual values, providing
a measure of the model’s performance in terms of the
error between the predicted and observed data points. The
calculation of RMSE was performed for each network within
the ANN model. The selection of the hyperbolic tangent
and sigmoid activation functions, along with the use of
RMSE as an evaluation metric, is supported by previous
studies (References [21], [23], and [35]). These studies likely
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TABLE 9. PLS structural model results and hypotheses test.

TABLE 10. Root-mean-square error (RMSE) values for training and
testing.

demonstrated the effectiveness of these choices in similar
analysis scenarios or data domains. Table 10 presents the
RMSE values for the ANN model, indicating an average
RMSE of 0.485 for the training data and 0.499 for the
testing data. These values suggest that the error is small,
demonstrating the model’s satisfactory prediction power.
A smaller RMSE indicates a more precise fit and forecast of
the data, indicating higher predictive accuracy. Furthermore,
the number of hidden neurons with non-zero synaptic weights
in the ANN model was utilized to estimate the significance
of the factors in the model. Accordingly, Figure 5 provides a
visual representation of one of the 10-fold cross-validation
iterations of the ANN model based on Reference [145]
guidelines.

ANN analysis allows for the identification of important
features or variables that contribute significantly to the
predicted outcomes. By calculating the relative importance
or weights of the input variables, it provides insights into
the factors that have the most influence on the dependent
variable. This information can be valuable in understanding
the key drivers and making informed decisions. Accordingly,
after establishing the predictive relevance of the ANNmodel,
a sensitivity analysis was conducted to assess the predictive
potential of the exogenous variables in relation to the

endogenous variables [35], [146]. The relative importance of
each exogenous variable was calculated, and the normalized
relative values were derived, as displayed in Table 11.
Notably, when examining the 14 factors using theNNmodels,
propagation emerged as the most influential predictor in the
model, with a normalized relative value of 81.14%. The
results also revealed that service collaboration (77.91%),
innovativeness (73.23%), self-efficacy (72.12%), external
pressure (71.29%), government support (60.97%), perceived
usefulness (59.95%), and social influence (59.93%) were all
significant predictors of IoT-based smart campus adoption,
albeit with varying degrees of importance. The table presents
the comprehensive relevance of each variable. Overall,
ANN analysis offers a robust and versatile approach to
understanding, predicting, and modeling complex systems,
making it a valuable tool in various fields, including
IoT-based smart campus models. It provides insights into
the relationships between variables, identifies important
predictors, and enables accurate predictions, ultimately
enhancing decision-making and understanding of the system
under investigation.

V. DISCUSSION
This study conducts empirical studies that explore the
perceptions, attitudes, and behaviors of key stakeholders
(such as faculty and administrators) towards IoT-based smart
campus solutions. The study employs quantitative research
methods (survey questionnaires) to collect data on the
identified factors and their relationship with the adoption of
smart campus solutions. The model was validated through
statistical analysis techniques such as structural equation
modeling (SEM). The study provides insights into the
specific relationships and strengths of the factors influencing
the behavioral intention to adopt IoT-based smart campus
solutions. Specifically, 14 hypotheses were tested in this
study (10 were supported and 4 were rejected); the findings
of the study are discussed accordingly.

Firstly, the factors under the technology-specific factors,
derived from TAM suggest that the relationship between
perceived ease of use and behavior intention of IoT-based
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FIGURE 5. ANN Model. Notes*: Hidden layer activation function: Hyperbolic tangent; Output layer activation function:
Sigmoid; Input neurons: PG, SC, IN, SE, EP, GS, PU, SI, SF, PE, HB, DK, FC, and PC.

TABLE 11. Sensitivity Analysis: Independent Variable Relative Importance.

Smart Campus adoption is not statistically significant. This
finding support existing studies [98], [112], [114], [147]
but contradict others [81], [111], [148], [149], [150], [151],
[152], [153] whose found a significant impact of ease
of use. Accordingly, it can be concluded that the study
did not find support for a significant relationship between
perceived ease of use and behavior intention of IoT-based
Smart Campus adoption. However, the study suggests that
the relationship between perceived usefulness and behavior
intention of IoT-based Smart Campus adoption is statistically
significant. This finding supports existing studies on the
significance of usefulness on IoT-related devices [81], [98],

[100], [111], [112], [114], [147], [149], [150], [151], [152],
[153], [154], [155], [156]. Although, this relation is not
supported by the work of [148]. Nevertheless, based on
this study’s findings, it can be concluded that the study
found a significant relationship between perceived useful-
ness and behavior intention of IoT-based Smart Campus
adoption. This suggests that individuals’ perception of
the usefulness of IoT-based Smart Campus technologies
influences their intention to adopt and use them. These results
contribute to the understanding of the factors that drive
behavior intention in the context of IoT-based Smart Campus
adoption.
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Secondly, in organizational factors, the study suggests that
the relationship between facilitating conditions and behavior
intention of IoT-based Smart Campus adoption is statistically
significant, which is supported by the existing literatures
[86], [109], and [150]. This suggests that the availability
of facilitating conditions may hinder or negatively influence
individuals’ intention to adopt and use IoT-based Smart Cam-
pus technologies. Overall, these findings contribute to the
understanding of the role of facilitating conditions in shaping
behavior intention in the context of IoT-based Smart Campus
adoption. Also, the relationship between propagation and
behavior intention of IoT-based Smart Campus adoption is
statistically significant. Accordingly, the finding of this study
emphasized the significance of propagation, as highlighted by
[3], with empirical evidence. Therefore, This suggests that the
extent to which information about the benefits and advantages
of IoT-based Smart Campus adoption is spread and com-
municated (propagation) positively influences individuals’
behavior and intention to adopt and use these technologies.
However, the finding suggests that the relationship between
service collaboration and behavioral intention of IoT-based
Smart Campus adoption is not statistically significant.
This finding does not support existing work regarding the
influence of service collaboration for the study of IoT service
orchestration in Smart Government [81]. This study finding
implies that in the context of IoT-based Smart Campus
adoption, service collaboration may not have a significant
impact on individuals’ behavior and intention to adopt and
use these technologies.

Thirdly, the finding suggests that the relationship between
government support, social influence, and external pressure
with behavior intention of IoT-based Smart Campus adoption
is statistically significant. This finding suggests that the
level of support and initiatives provided by the government
positively influence individuals’ behavior and intention to
adopt and use IoT-based Smart Campus technologies. This
study collaborates with Reference [73], who found that
government policy significantly influences embracing the
Smart-Home revolution. Accordingly, this study implies that
government policies, funding, and regulations that promote
the adoption and implementation of these technologies
can have a significant impact on individuals’ intention to
adopt and utilize them. These results highlight the role of
government support in fostering the adoption of IoT-based
Smart Campus technologies.

Similarly, the finding suggests that social influence, such
as opinions, recommendations, and perceptions of others,
has a significant impact on individuals’ behavioral intention
to adopt and use IoT-based Smart Campus technologies.
This finding supports existing studies on the significance
of social influence [109], [150] as well as subjective norm
[152] on IoT adoption. However, a study by Reference [86]
found social influence not significant for the IoT-Based
Smart Meter adoption. According to the findings of this
study, it implies that when individuals perceive a higher
level of social influence against the adoption of these

technologies, their behavioral intention to adopt and utilize
them decreases. In addition, this finding suggests that external
pressures, such as regulations, policies, or institutional
mandates, play a significant role in influencing individuals’
behavioral intention to adopt and use IoT-based Smart
Campus technologies. This finding does not support existing
literature on the influence of external pressure for a study
regarding Smart factory adoption for small and medium
enterprises [87]. It implies that when individuals perceive a
higher level of external pressure to adopt these technologies,
their behavioral intention to adopt and utilize them increases.
These results highlight the importance of external factors
and institutional context in shaping individuals’ intention to
adopt IoT-based Smart Campus technologies. Overall, the
findings emphasize the importance of organizational-specific
factors in shaping the adoption of IoT-based Smart Campus
technologies.

Furthermore, the findings of the end-user-specific factors
suggest support for privacy concerns, satisfaction, self-
efficacy, and domain-specific knowledge. The finding indi-
cates that individuals’ concerns regarding privacy in the
context of adopting and using IoT-based Smart Campus
technologies play a significant role in shaping their behavior
intention. This result supports existing literature regarding the
impact of privacy and trust in a study about Google Glass
adoption [149] as well concern for privacy [73], [89], [92],
[96], [98], [100], [156], [157]. This highlights the importance
of addressing privacy concerns when promoting the adoption
of IoT-based Smart Campus technologies. Nonetheless, the
findings emphasize the need to address privacy concerns and
ensure data protection in the implementation of IoT-based
Smart Campus technologies. Similarly, the study highlights
the importance of addressing user satisfaction in the imple-
mentation of IoT-based Smart Campus technologies as is also
significant in this study, which supported the existing work
on the IoT technology such as near field communication
(NFC) customer satisfaction and loyalty [102]. It implies
that organizations and institutions should focus on enhancing
user satisfaction by providing reliable, user-friendly, and
efficient technologies and services. This emphasizes the need
for continuous improvement, user feedback, and responsive
support mechanisms to ensure high levels of user satisfaction,
ultimately driving positive behavior intention and successful
implementation of these technologies on campus.

In addition, the study finding indicates that individuals’
self-efficacy, their belief in their own ability to adopt and
use IoT-based Smart Campus technologies, has a significant
impact on their behavioral intention. Similarly, this finding
supports existing studies about the impact of self-efficacy
for IoT-related devices [102], [109], [156]. This suggests
that when individuals have higher levels of self-efficacy,
they are more likely to have a positive behavior intention
toward adopting and utilizing these technologies. These
results highlight the importance of self-efficacy in shaping
individuals’ behavior intention and adoption of IoT-based
Smart Campus technologies. Moreover, the finding indicates
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that individuals’ domain-specific knowledge, expertise, and
understanding of the specific domain related to IoT-based
Smart Campus technologies, have a significant impact on
their behavioral intention. Similarly, this finding supports
existing studies about the positive impact of this construct
[110], [158]. Accordingly, the finding of this study suggests
that when individuals possess higher levels of domain-
specific knowledge, they are more likely to have a positive
behavior intention toward adopting and utilizing smart
campus technologies.

However, the relationship between habit and behavior
intention of IoT-based Smart Campus adoption is not
statistically significant. Likewise, the relationship between
innovativeness and behavior intention of IoT-based Smart
Campus adoption is not statistically significant. Specifically,
the finding indicates that habit, defined as the automatic
and routine behaviors individuals develop, does not play a
significant role in shaping their behavior intention to adopt
and utilize IoT-based Smart Campus technologies. The habit,
as part of the cluster of individual factors, was found to
be significant in IoT technologies adoption [92] as well as
in the study of IoT-Based Smart Meter [86]. This study
suggests that individuals’ behavior intention is not strongly
influenced by their existing habits when it comes to adopting
smart campus technologies. Also, the finding of the study
suggests that individuals’ level of innovativeness, which
refers to their willingness to adopt new technologies and
embrace change, may not have a strong influence on their
behavioral intention to adopt and utilize IoT-based Smart
Campus technologies. This result supports existing literature
regarding the insignificant influence of innovativeness on
behavioral intention [95], [148]. However, some studies [73],
[111] found innovativeness as a driving factor in smart home
technology adoption.

Nevertheless, it is important to note that although the
impact of perceived ease of use, service collaboration, habit,
and innovativeness on the behavioral intention of IoT-based
smart campuses are not statistically significant, it does not
necessarily imply that these variables have no influence at
all. Other factors and variables in the model may have a
more dominant impact on behavior intention, overshadowing
the role of ease of use, service collaboration, habit, and
innovativeness in this specific context. Nevertheless, the
findings obtained from SEM analysis support the earlier
study regarding the significance of perceived ease of
use, habit, and innovativeness, which have lower ranking
compared to other factors [28]. Further research and analysis
may be needed to explore additional variables or factors
that might explain the behavior intention of IoT-based Smart
Campus adoption more comprehensively. These findings
suggest that perceived ease of use, service collaboration,
habit, and innovativeness, may not be a strong predictor in
this context, and other factors such as perceived usefulness,
and other external influences may play a more prominent role
in shaping individuals’ behavior intention towards adopting
IoT-based Smart Campus technologies.

Additionally, the analysis of predictive power validates
the findings of the structural model regarding the fit of
the proposed model, revealing that the overall predictive
capability of the model is relatively adequate. Based on the
ANN analysis, the RMSE was small, suggesting that the
model demonstrates strong predictive ability. Subsequently,
the sensitivity analysis conducted using ANN identified
propagation as the most influential predictor in the model,
followed by service collaboration and innovativeness, in this
order. This order of importance associated with variables
may appear contradictory to the results obtained from the
path coefficient analysis, which suggested that the impact of
service collaboration and innovativeness lacked significance.
Nevertheless, it is worth noting that the core principle
underlying ANN is to enhance the performance and learning
capabilities of neural network (NN) models [33], [35].
Consequently, the utilization of ANN analysis has effectively
improved the significance of other variables, potentially
revealing a meaningful association between service collabo-
ration and innovativeness on the outcome of IoT-based smart
campus adoption intention.

A. PRACTICAL IMPLICATIONS
The findings of this study suggest several important impli-
cations for university administrators and decision-makers
aiming to enhance smart campus adoption. First and fore-
most, universities should provide adequate support to users
of smart campus solutions. This support may come in the
form of training programs and resources to improve users’
technological abilities and familiarity with smart campus
technologies, enabling them to use these solutions comfort-
ably and effectively. Additionally, government support is
crucial in promoting smart campus adoption. Governments
should develop enabling policies and provide financial
incentives to universities, facilitating the implementation
and integration of smart campus solutions. Such support
can significantly contribute to the successful adoption and
implementation of smart campus initiatives.

Secondly, addressing users’ privacy concerns is another
vital aspect to consider. Universities and administrators
should develop robust privacy policies and mechanisms to
protect users’ personal information and ensure compliance
with relevant data protection regulations. By effectively
managing privacy-related issues, universities can foster trust
and confidence among users, encouraging their active partic-
ipation and engagement in the smart campus environment.
Moreover, promoting the use of smart campus solutions
among users is essential. Universities should create aware-
ness campaigns, highlighting the benefits and advantages of
using smart campus technologies. By showcasing the positive
impact and value of these solutions, users can be motivated to
embrace and utilize them more readily.

Additionally, attention should be given to factors asso-
ciated with users, such as self-efficacy, domain-specific
knowledge, habit, and innovativeness. Efforts should be
made to enhance these factors through targeted interventions,
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FIGURE 6. Summary of policy recommendations.

training programs, and continuous learning opportunities.
By empowering users and building their confidence, uni-
versities can drive higher levels of smart campus adoption
and engagement. Lastly, universities should ensure that smart
campus solutions are easily accessible and user-friendly.
Quick and convenient access to these technologies enables
users to fulfill their responsibilities efficiently, leading to
enhanced satisfaction and overall positive experiences with
the smart campus environment. By implementing these rec-
ommendations, universities can pave the way for successful
smart campus adoption, fostering a technologically advanced
and innovative educational environment that benefits both the
institutions and their users.

B. POLICY IMPLICATIONS
Based on the findings of the study, several policy recommen-
dations can be made to promote the adoption of IoT-based
smart campus solutions in higher education institutions.
These recommendations aim to address the identified factors
that influence adoption and create an enabling environment
for the successful implementation of smart campus initiatives,
as illustrated in Figure 6. Firstly, governments should provide
strong support to universities in the form of policies,
funding, and infrastructure development. This support can
encourage universities to invest in smart campus solutions
and ensure their effective implementation. Governments can
establish dedicated funding programs for universities to
adopt and implement smart campus technologies, as well as
provide regulatory frameworks to facilitate the integration
of IoT-based solutions in higher education institutions.
Secondly, policy frameworks should be established to address
privacy concerns related to the collection and use of personal
data in smart campus environments. Clear guidelines and
regulations should be developed to ensure data protection,
user consent, and secure data management practices. This
can help build trust among users and alleviate privacy
concerns, ultimately fostering greater adoption of smart
campus solutions.

Thirdly, higher education institutions should priori-
tize training programs and capacity-building initiatives to
enhance the technological abilities of users and stakeholders.
Workshops, seminars, and training sessions can be organized
to educate students, faculty, and staff on the benefits and func-
tionalities of smart campus solutions. This can improve their
skills and confidence in utilizing these technologies, leading
to increased adoption and usage. Moreover, collaboration
among universities, industry stakeholders, and technology
providers is essential to drive smart campus adoption. Policy
recommendations should encourage universities to establish
partnerships with technology companies, start-ups, and other
relevant organizations. These collaborations can facilitate the
development of innovative solutions, knowledge sharing, and
resource pooling, thereby accelerating the adoption of smart
campus technologies.

In addition, policy frameworks should emphasize the
importance of user-centric design principles in the devel-
opment and implementation of smart campus solutions.
Solutions should be intuitive, user-friendly, and tailored to
the specific needs and preferences of the higher education
community. User involvement in the design and evaluation
process should be encouraged to ensure that the solutions
meet their expectations and requirements. Furthermore, it is
crucial to establish mechanisms for ongoing monitoring and
evaluation of smart campus initiatives. Policy recommenda-
tions should encourage universities to regularly assess the
effectiveness and impact of implemented solutions. This can
help identify areas for improvement, address any challenges
or issues that arise, and ensure continuous enhancement of
the smart campus environment. Hence, by implementing
these policy recommendations, higher education institutions
and policymakers can create a supportive ecosystem for
the adoption of IoT-based smart campus solutions. These
recommendations address key factors identified in the study
and can pave the way for a more technologically advanced
and innovative higher education landscape.

VI. CONCLUSION
This study was conducted to examine the factors that
influence the adoption of smart campus solutions. The study
is important in this area to adapt and customize the factors
identified in the literature to the specific context of Iraq’s
higher education system. The insights from the literature
inform the development of a comprehensive framework
for IoT-based Smart Campus. Considering the lack of
existing studies on the relationship between factors of
IoT-based smart campuses and the adoption of smart campus
solutions in Iraq’s higher education, this study proposes
a theoretical foundation for Smart Campus adoption. The
component of the conceptualized framework was screened
through duplicate screening, thematic analysis, frequency
techniques, and AHP. Furthermore, the study employed
structural equation modeling based on PLS-SEM to analyze
the collected data and examine the relationships between the
identified factors and the adoption of smart campus solutions.
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TABLE 12. Survey instrument.
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TABLE 12. (Continued.) Survey instrument.
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TABLE 12. (Continued.) Survey instrument.
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TABLE 12. (Continued.) Survey instrument.

The findings of this study provide insights into the specific
factors that influence the adoption of smart campus solutions
in Iraq’s higher education context. Specifically, significant
factors include perceived usefulness, government support,
social influence, privacy concern, facilitating conditions,
satisfaction, self-efficacy, external pressure, propagation,
and domain-specific knowledge. However, factors such as
perceived ease of use, service collaboration, habit, and
innovativeness were not significant based on the findings of
this study. Nevertheless, this study is not without limitations.
The model fit reported in this study is based on PLS-SEM
model fit indices. Since CB-SEM was not utilized in this
study, the model fit indices for CB-SEM (TLI, RMR, GFI,
AGFI, CFI, or RMSEA) could not be reported. Consequently,
it raises the question of why the researcher did not use
CB-SEM in the first place to estimate and evaluate the model
fit when assuming common factor models for all constructs in
the PLS path model. It is important to note that the literature
on PLS-SEM about model fit differs from CB-SEM, which
is a full information method, while PLS-SEM is not [159].
Therefore, reporting CB-SEM model fits (TLI, RMR, GFI,
AGFI, CFI, or RMSEA) is not considered in this study.
As a result, future research could replicate the study using
a different method, particularly CB-SEM, to analyze the
model.

APPENDIX A
Refer to Table 12.
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