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Abstract: Cybersecurity has become a prominent issue in regard to ensuring information privacy and
integrity in the internet age particularly with the rise of interconnected devices. However, advanced
persistent threats (APTs) pose a significant danger to the current contemporary way of life, and
effective APT detection and defense are vital. Game theory is one of the most sought-after approaches
adopted against APTs, providing a framework for understanding and analyzing the strategic interac-
tions between attackers and defenders. However, what are the most recent developments in game
theory frameworks against APTs, and what approaches and contexts are applied in game theory
frameworks to address APTs? In this systematic literature review, 48 articles published between 2017
and 2022 in various journals were extracted and analyzed according to PRISMA procedures and our
formulated research questions. This review found that game-theory approaches have been optimized
for the defensive performance of security measures and implemented to anticipate and prepare for
countermeasures. Many have been designed as part of incentive-compatible and welfare-maximizing
contracts and then applied to cyber–physical systems, social networks, and transportation systems,
among others. The trends indicate that game theory provides the means to analyze and understand
complex security scenarios based on technological advances, changes in the threat landscape, and
the emergence of new trends in cyber-crime. In this study, new opportunities and challenges against
APTs are outlined, such as the ways in which tactics and techniques to bypass defenses are likely to
evolve in order to evade detection, and we focused on specific industries and sectors of high interest
or value (e.g., healthcare, finance, critical infrastructure, and the government).

Keywords: cybersecurity; attacks; behavior; network security; mobile; smartphone; trend;
systematic review

MSC: 68M25

1. Introduction

In the post-PC era [1], mobile and internet-of-things (IoT) devices have become ubiq-
uitous, prompting sensitive and personal information to be moved into cyberspace [2].
For example, smartphones are involved in our daily activities and are used for countless
purposes [3]. For instance, a trend in an organizations, known as “bring your own device”
(BYOD), permits the use of personal computers and smartphones for corporate work [4,5],
and in smart cities, personalized services adapt directions based on the user’s health sta-
tus [6]. The relevance of such trends and services is due to the expansion and evolution of
various techniques that have blurred the boundary of cyberspace and the real world [7].
Such conditions lead to a plethora of cyber attacks that exploit various areas or “surfaces”
of information via exposed or vulnerable heterogeneous elements [8].
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As these kinds of devices are sophisticated devices that comprise multiple sensors (e.g.,
gyroscope, magnetometer, GPS, and microphone) and offer a plethora of services, valuable
information assets are stored that are either personalized or corporate-related, placing
individuals and organizations at risk of becoming targets for cyber attacks [4]. In addition,
the traditional design of security mechanisms relies heavily on cryptographic techniques
and the secrecy of cryptographic keys and system states [9]. However, the landscape of
system security has evolved considerably, and attacks have become more sophisticated,
persistent, and organized over the years. As a result, attackers use arrays of tools, such as
social engineering and side-channel information, making it a fertile ground for specialized,
yet stealthy, cyber attacks that require non-generic approaches to counter them.

One of the prominent cyber-attack types that fits such a profile is the advanced
persistent threat (APT), which can be defined generically as a human-targeted attack
that relies not only on social engineering and information collection but also on a broad
spectrum of attack vectors. While characterized by its sophistication and complexity, it
deliberately persists over a long time, a strategic motivation that is intelligence-driven and
stealth-based to avoid detection [10–14].

According to the National Institute of Standards and Technology (NIST), the Computer
Security Resource Center (CSRC) [15] defined an APT as “an adversary with a wealth of
expertise and resources that can create opportunities to achieve its goals by using multiple
attack methods. Advanced persistent threat attacks repeatedly pursue their objectives over
a long period of time; adapt to the efforts of the defenders to resist it; and are determined to
maintain the level of interaction necessary to implement its objectives.” APT has also been
described as a sustained and targeted attack that seeks to compromise the confidentiality,
integrity, and availability (CIA) of information [8,16].

Moreover, an APT could also leverage zero-day vulnerabilities to ultimately compro-
mise a system without detection by the system administrator [17]. In the context of mobile
devices (e.g., smartphones), APT attacks were defined by Zulkefli and Singh [4] as sophisti-
cated data-leak attacks via social engineering that benefit from their reliance on sensors
(e.g., inertial, positioning, and ambient) and services (e.g., telephony, telecommunication,
and utilities) that support information management.

Recently, game theory has had a growing number of applications in cybersecurity,
where it has been utilized to better understand attackers and, consequently, to slow their
progress. In addition, approaches underscored by game theory were able to develop
a predictive model of human behavior for both targets and attackers [18]. A common
assumption in standard game-theory models is that players are rational, and their goal is
to seek an optimal strategy in the form of a Nash equilibrium [19].

The rationale of adopting game theory for APTs represents a paradigm shift from
focusing on perfected preventive security measures to a strategic plan and the design of
security mechanisms capable of adapting and mitigating losses over time. Such a situation
can be achieved by modeling the interactions between a stealthy attacker who attempts to
advance at each stage of the game and the system admin/designer attempting to detect and
thwart the attack from reaching critical assets through a zero-sum game. This approach has
featured the dynamic behaviors of APTs and their dynamic interactions between different
layers and/or stages of the system, allowing for automated adjustments and responses,
leading to more effective protection [9].

Previous review studies have made significant contributions to the cybersecurity
field (Table 1). For instance, possible enhancements on threat-modeling approaches for
sophisticated attacks, such as the APT, were outlined in Tatam et al. [20]. The review
identified the complexity of the current systems, which require a hybrid approach to threat
modeling and the visibility of the threats at all stages and levels. However, there is no
one threat-modeling approach that can account for every situation. Therefore, Xing et al.
[15] discussed the progress of detection and defense strategies against APTs using social
engineering, machine learning, and anomalous flow-based methods. Defensive strategies
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using game theory were identified, including limited resources, dynamic information flow
tracking, and cloud platforms.

Table 1. Summary of the differences between the current review and previous review studies.

References APT Studies? Game Theory? Review Scope

Tatam et al. [20] Yes No Threat and visibility modeling of complex security system
Xing et al. [15] Yes Yes Progress of general strategies in detection and defense against APTs
Hejase et al. [21] Yes No Descriptive analytics of APT awareness and its institutional impacts
Stojanović et al. [22] Yes No Dataset creation, machine learning feature extractions, attack models, and

detection system
Bhat and Kumar [23] Yes No Analysis of bibliometric indicators to establish common research themes

and aggregated communities
Kumar et al. [8] Yes Yes Application-based and metric-based classification that balance between

security, cost, and usability
Khaleefa and Abdulah [24] Yes No Monitoring, detection, mitigation, and essential datasets classification
Jabar and Mahinderjit Singh [16] Yes No Situational awareness modeling and behavioral monitoring with a pro-

posed conceptual framework
This review Yes Yes Trend and development, as well as benefit and challenges of game-theory

approaches in APT detection and defense

Moreover, the awareness of APTs and their institutional impact according to descrip-
tive analysis were reported in Hejase et al. [21], according to the secondary data reported
in books, journals, websites, and blogs. Furthermore, Stojanović et al. [22] reviewed the
literature concerning datasets and their creation for APT detection, particularly where
machine-learning algorithms were utilized, and the study focused on the description and
analysis of existing feature-extraction methodologies, attack models, and their relevance to
network-based, cyber–physical-based, and anomaly-based intrusion-detection systems.

Furthermore, Bhat and Kumar [23] performed a bibliometric analysis of 1205 peer-
reviewed articles on APTs from 2010 to 2020, from multidisciplinary perspectives, and
common research themes and closely aggregated communities were reported based on
bibliometric indicators (e.g., co-author graph, prolific authors, citation analysis, co-author
analysis, and publication forums) and analyzed using an unsupervised Louvain algorithm.

In addition, Kumar et al. [8] provided critical reviews of application-based and metric-
based classifications of game-theory approaches, which has potential for promoting objec-
tive decisions concerning countermeasures against APTs that consider the balance among
security, cost, and usability. This review outlined the limitations of using game theory,
including its assumptions about the behaviors of the parties involved and the complexity
of analyzing large-scale games with many players. The study provided valuable insights
into APT behavior, supported resource-optimal decision-making, and highlighted the
importance of integrating practitioner perspectives to improve the risk management of
information security.

The research in Khaleefa and Abdulah [24] provided detailed accounts of APT usage
based on term definitions, its methodology, and classifying APT defensive strategies, which
included monitoring, detection, and mitigation. Furthermore, the technical background of
current APT detection and mitigation procedures, evaluation procedures of effective defen-
sive strategies, the classification of an essential dataset, and the current state of progress in
this field were described. Finally, Jabar and Mahinderjit Singh [16] provided a systematic
literature review of 112 papers published from 2011 to 2022 that focused on various defense
mechanisms to protect against APTs, including traditional security solutions and more
advanced approaches, such as machine learning. A situational-awareness model, namely
the observe-orient-decide-act (OODA), was introduced, which is a practical conceptual
model for monitoring device behavior and mitigating APTs.

1.1. Practical Motivation

Between November 2021 and October 2022, ransomware Trojans attacked 271,215
unique users, including 77,256 corporate users and 8931 users associated with small- and
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medium-sized businesses [25]. During the reporting period, more than 23,807 ransomware
modifications and 41 new families were identified. In addition, the emerging trend of
electronic communications that take advantage of the internet through networked, mobile,
and heterogeneous devices (i.e., the internet of things) was noted. As a result, addressing
cyber attacks requires more than traditional defenses to resist known threats since it is no
longer sufficient to protect against the exploits and the plethora of attack vectors [10].

When APTs were first identified, this initiated an arms race between APTs and cyberse-
curity organizations, and various vulnerabilities, defenses, detection methods, assessments,
and awareness-based solutions have been identified. As a result, several APT case studies
were found in the literature (see Table 2). However, current game-theory-based approaches
for addressing APTs require in-depth investigation, while the APT trends, benefits, and
challenges remain poorly understood.

1.2. Theoretical Motivation

Research conducted on APTs has utilized game theory for its capability to analyze
the effects of attacks and defensive actions related to cybersecurity in various information
and communication environments throughout society [26]. However, there remains a gap
in the comprehensive understanding for quantifying the effects of behaviors and their
implications for performance, organization, and security, in general.

A game comprises three essential elements: the players, action, and payoff. Deter-
mining the players and their payoff based on their actions and behaviors are the essential
elements of game theory. However, a challenge arises when applying a game-theory ap-
proach to cybersecurity, as many variables exist that have to be considered, such as the
system structure, the parties involved, network configuration environments, and the use of
security assets and resources. Reliability, objectivity, and safety are the assessment criteria
elicited through the various combinations and permutations that form the game-theory
elements. A systematic literature review (SLR) was conducted to identify these elements.

1.3. Research Questions and Contributions

To this end, our study aimed to understand the prospective trends of game-theory
approaches in the defense against APT attacks, where the target domain for future research
and investigation was identified. This study was interested in identifying the answers for
the following research questions:

1. What are the trends in current game-theory approaches (i.e., models, strategies, and
features) that have been identified in the last half of this decade (2017–2022) for APT
detection and defense?

2. What are the major benefits and challenges of adopting game-theory approaches in
APT detection and defense?

3. What are the implications and converging topics for future research concerning APT
detection and defense?

In summary, the key contributions of this study are, as follows:

• This study conducts a systematic literature review of game-theory-based approaches
that have been identified in the last half of this decade (2017–2022) for APT detection
and defense.

• This study outlines the latest trends that illustrate elements and factors that improve
the application of game theory in cybersecurity.

• This paper also leverages the benefits and challenges of adopting game-theory ap-
proaches to identify the implications and converging topics for future research con-
cerning APT detection and defense.
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2. Theoretical Background
2.1. Advanced Persistent Threats (APTs)

APTs refer to malicious and well-thought-out cyber attacks by highly skilled ac-
tors with objectives that are strategically or operationally motivated [27]. They focus on
particular businesses for long-term network access and employ tactics, techniques, and
procedures (TTP) that are challenging to detect. APTs originated as a military term for
attacks conducted by nation-states, and the term has been adapted and expanded to the
information-security context by [5,16,27,28], as follows:

• Advanced: The adversary is accustomed to advanced infiltration tools, exploiting vul-
nerabilities, and may be multi-staged, and they intend to complete a task, instructions,
or specific goals.

• Persistent: The adversary is stealthy and evasive with a long-term focus, as well as
organized, well-resourced, and highly motivated.

• Threat: The adversary attacks cause either sensitive data loss or impede critical
components, leading to considerable, and sometimes irreparable, damage.

As APTs pose a severe threat to modern society, several APT campaigns have been
identified (Table 2), and these have raised significant concerns in cybersecurity and elevated
the adoption of various effective APT detection and defense strategies. APTs typically
involve targeted human-focused attacks, and thus they rely on social engineering, informa-
tion collection, and a broad spectrum of attack vectors [10–14].

APTs have also been characterized by their sophistication, stealth, and complexity
that is deliberately persistent over a long time period with an intelligence-driven strategic
motivation. In summary, APTs have been used against different targets and organizations,
where stealthy attack techniques were applied that evolved from stealing, exploiting, and
compromising to more advanced techniques, including masquerading, social engineer-
ing, and deception, which has made it more difficult to design detection and defense
mechanisms against APTs.

Table 2. Several APT case studies.

APT Campaign Brief Descriptions

Titan Rain [28]
From 2003 to 2005, a series of coordinated cyber attacks that
infiltrated a U.S. defense contractor’s resources with the goal of
stealing sensitive data concerning multiple attack vectors

Hydraq [28]

“Operation Aurora,” involving a coordinated attack lunched in
2009 that used several malware components that were encrypted
in multiple layers to remain undetected using the zero-day
exploit in Internet Explorer

Stuxnet [29]
In June 2010, physically destroying part of the critical
infrastructure (approximately one-fifth of nuclear centrifuges
in Iran)

RSA SecureID Attack [28]

In 2011, a sophisticated cyber attack involving the compromise of
information by installing a backdoor for remotely accessing an
employee’s machine and then harvesting the credentials of
employees in an effort to reach the target system

Duqu [30]
In October 2011, a malware with striking similarities to Stuxnet,
aimed at information collecting malware used for
cyber-espionage

Flame [31]
In May 2012, “Flame” (at the time known as sKyWIper), an
information-collecting malware using advanced spreading
techniques masqueraded as a proxy for a Windows Update

Carbanak [28]
From 2013 to 2014, a cyber attack infiltrated the internal network
of target banking/financial institutions through spear-phishing
attacks to steal money

Red October [32]
Compromised the network systems of a large number of
diplomatic, governmental, and scientific research organizations to
steal credential data from various countries around the world
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Table 2. Cont.

APT Campaign Brief Descriptions

Naikon APT [33]
Targeted governments around the South China Sea in 2010–2015
used a bait document disguised as a Microsoft Word file to install
spyware through a malicious executable

WannaCry [34]

A zero-day ransomware that caused world-wide catastrophes,
from taking the United Kingdom National Health Service
hospitals offline to shutting down the Honda Motor Company in
Japan and demanded ransom payments to unlock the infected
systems once it was activated

SolarWind [35]

Attackers smuggled malware within a legitimate signed update
of SolarWind’s sets of network and infrastructure monitoring
services, acquiring high-level privileges and polluting
authentication infrastructures

ZeroCleare [36]

Established trust and privilege given to signed binaries by system
protections, such as a signed driver, to bypass a Windows
hardware abstraction layer causing significant damage to energy
and industry organizations in the Middle East

BlackEnergy [37] In the summer of 2014, a BlackEnergy malware targeted
Ukrainian governmental organizations for information harvesting

Every APT campaign behaves differently, and attacks are tailored to a particular victim or
organization [16,27]. Typically, the first stage in an APT attack is establishing a point of entry
into the network after gathering the necessary target information [5,8,38–40] (see Figure 1).
After that, malicious software explicitly made for a target establishes a communication
network through which attackers can introduce malicious code. This malicious software
sneaks through the system laterally, seeking security vulnerabilities that it can use to infect
other network systems (second stage). The malicious software also copies itself to maintain
persistence inside the targeted system. As a result, APTs can create new connections by
conducting surveillance until they succeed in disrupting the targeted system and steal data
(third stage).

Reconnaissance Post Exfiltration

First Stage 

(Initial Penetration & 

Establishment)

Third Stage 

(Damage)

Additional:

• Development

• Weaponization

• Delivery

Additional:

• Command & Control

• Actions on Target

Second Stage (Learning & Propagation)

Exfiltration

Foothold 

Establishment

Lateral 

Movement

Additional:

• Privilege Escalation

• Exploitation

• Installation

End-User Layer

Storage & Processing Layer

Networking Layer

Perception Layer

End-User Layer

Figure 1. Advanced persistent threat (APT) attack stages (adapted from [8,38–40]), where some
stages may have concurrent/parallel steps. The APT stages may be supplemented with additional
steps/procedures to compensate for emerging technologies and defense mechanisms [38,39]. The
boundary between physical and virtual layers may also be crossed between the APT stages, depending
on the attack behaviors and target system [40].
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Some industry standards, practitioner manuals, and vulnerability catalogs are avail-
able, including the NIST ICS guidelines [41], CAPEC [42], NVD CVSS [43], ATT&CK [44],
and RISI [45]. These catalogs of threat and vulnerability patterns serve as a shared knowl-
edge repository for current and future APTs. However, the study and development of
solutions against APTs should be more cohesive within the literature, as workable and
failed solutions have been inconsistently reported and described. Therefore, this systematic
literature review was focused on niche solutions for detecting and defending against APTs.

2.2. Game Theory in Cybersecurity
2.2.1. Brief History and Classification

The strategic interaction between competing or cooperating interests where the limita-
tions and payoff for actions are considered define a game [46]. Furthermore, a player is a
fundamental character in a game who must decide on a course of action. A player may be a
person, a machine, or a collection of people in a game. According to game theory, situations
involving multiple players involve games in which each participant makes decisions that
maximize their rewards while anticipating the rational choices of the other participants.

Since the seminal work by Van Dijk et al. [47] proposed a game theory formulation to
address the APT challenge, other studies have followed suit. Game theory has been used
to investigate the mathematical models of conflict and cooperation between rational and
intelligent decision makers [48]. It offers a sophisticated framework for comprehending the
characteristics of APTs, such as stealth and uncertainty. Since attacker incentives, defense
resource allocations, and attack impacts are all subject to constraints, game theory is a
logical choice for the formal reasoning of strategic interactions.

Game theory has a long and varied history in the field of security, from the design of
real-time military systems (e.g., those used for missile interception) to promoting strategic
choices regarding substantial defense investments and acquisitions [49]. Two causes have
contributed to this condition. First, by framing it in quantitative terms, such as a payoff,
cost, gain or loss, and risk, game theory offers a natural framework to quickly translate a
high-level policy decision into the best course of action. Decision-makers have a unified
basis to support making a particular choice. Second, it offers a rigorous mathematical
framework for analyzing and maximizing various scenarios following predetermined
criteria. As a result, this evaluation has frequently been a crucial factor in successful
security operations and enabled superior decision-making under time constraints.

In cybersecurity, the strategic interaction between two players, in which each attempts
to maximize their interests, was outlined by game theory to determine the defender’s re-
sponse to their attacker, and vice versa [50]. The tactics of both the defender and the attacker
heavily influenced the opposing side. Therefore, both the defender’s and the attacker’s
strategic actions affected the effectiveness of a defense mechanism. The game-theory ap-
proach was used to conduct a tactical analysis of various attack vectors. Furthermore, game
theory has been used to investigate the defender’s strategic decision-making contexts and
assess the attackers’ incentives. Thus, game-theory approaches have provided several key
advantages [49,50]:

1. Proven mathematics: Heuristics are used in most traditional security solutions,
whether implemented in proactive (e.g., firewalls) or reactive (e.g., anti-virus pro-
grams) hardware. Game theory, however, methodically and mathematically investi-
gates security choices.

2. Reliable defense: Based on the game’s analytical results, researchers can create defense
mechanisms for reliable cyber-systems to be used against self-centered behaviors (or
attacks) by malicious users/nodes.

3. Timely action: Adopting traditional security solutions may be faster because these
methods do not consider the incentives for participants. Game-theory approaches
support defenders by using underlying incentive mechanisms to allocate limited
resources in order to balance the perceived risks.
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4. Distributed solutions: Instead of making decisions on an individual (or distributed)
basis, most traditional defense mechanisms use a centralized model. However, the
need for a coordinator in an autonomous system makes the centralized approach
in a network security game challenging. Therefore, security solutions using the
appropriate game models are required for distributed systems.

2.2.2. Game Concepts and Nash Equilibrium

A solution is a methodical explanation of the game-play using the optimal strategies
possible and predicting the results. The consequence function links an outcome to each
executed decision. Furthermore, a preference relation links together the consequences
that model each player’s preferences in a game. Finally, a player’s strategy is a compre-
hensive action plan for all potential game scenarios. A pure strategy calls for a specific
course of action in a given set of circumstances. A mixed strategy is when the plan spec-
ifies a probability distribution for every action that could be taken based on a given set
of circumstances.

The Nash-equilibrium point is a critical concept in game theory. The intersection of
the best responses, or when each player is playing in response to another player’s actions,
is known as a Nash equilibrium [46]. No player would choose to change their strategy
because doing so would reduce their payoffs, assuming that all other players follow the
recommended strategy, which is defined as the Nash equilibrium [48,50]. This concept
describes the steady-state condition of the game. However, it only describes the steady state;
it does not consider the methods by which the game reaches that steady state. Numerous
other concepts exist; however, the Nash equilibrium is the most well-known.

A Pareto-efficient Nash equilibrium, another well-known game concept, is only oc-
casionally valid. A strategy profile is Pareto efficient if no player can raise their payoff
without lowering another player’s payoff [50]. Every game is based on two key ideas:
Common sense and rationality [46]. The likes and dislikes of each participant in a game are
disregarded by rationality, which is required for consistent decision-making. Instead, both
prior knowledge of the results and the shared understanding of each player regarding the
results comprise common knowledge.

2.2.3. Game-Theory Types

The interaction between malicious attackers and defenders was modeled using game-
theory methods. In addition, different game types have been examined regarding how the
defender and attacker act. Finally, some key elements that categorize the various mechanics
of games in the context of cybersecurity have been discussed, as follows [50]:

• Complete versus incomplete information: All players’ payoff functions and strategies
are known in a complete information game. However, in a game with incomplete
information, at least one player cannot observe another player’s payoff mechanisms
and game plans. Therefore, we can use Bayesian rules to foretell the game’s outcome.

• Perfect versus imperfect information: A game is referred to as a perfect information
game if each player can ascertain the strategies selected by other players after each step.
In a game with perfect information, each player can see every other player’s previous
move after it is made. However, with incomplete information, it is not possible to
accurately predict the action of other players in a game. Therefore, players can only
apply stochastic methods to a noisy observation of the past behaviors of other players.

• Static: The players are thought to make their own decisions simultaneously in a static
game (e.g., strategic game). Static prisoner’s dilemma games (PDGs), zero-sum games,
and Stackelberg games are typical static security games. Even if a player makes an
unreasonable action, the best choice may still be made (Nash equilibrium has no
Pareto efficient in a one-shot game). Players’ cooperation may develop in subsequent
games to achieve the anticipated future gains.

• Dynamic: This is a game with numerous levels that are created by repeatedly playing
a static game, definitely or indefinitely. A common strategy for arriving at a sub-
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game-perfect equilibrium, the standard resolution of a dynamic game, is through
backward induction. An instance of a dynamic game is a repeated game having two
categories: Perfect and imperfect information. If one player can observe the tactics
used by other players, then a repeated game is the perfect information game. The
players’ pure strategy in the repeated game corresponds to the current stage’s strategy
for all possible game histories. Therefore, even though it might not be Pareto efficient,
it is best to play a game according to the Nash equilibria of the stages in finite repeated
games if the total number of stages is known.

• Stochastic: This is also derived from dynamic games. Stochastic games transition
from one stage to another according to the transition probabilities. The game’s stages
occasionally change deterministically or randomly, depending on the past behavior
of a fixed group of players. The likelihood of the present state is typically influenced
by the past state and the players’ actions. The stochastic game repeats with random
states when the current state is unrelated to the previous state and players’ actions.
The Markovian game is a specific type of stochastic game. Its state-changing process
is a Markov process (i.e., probability distribution on the next state is determined only
by the previous state and actions). Nash equilibria are obtained in a Markovian game
using the solution of a chain of Markov-decision processes.

• Evolutionary: The model population changes over a long period, similar to the selec-
tion and mutation occurrences in the natural world. Mutations increase population
diversity, whereas selection favors some varieties over others. Players are presumed to
be rational in general game theory; however, this assumption is relaxed in evolution-
ary game theory. Due to this circumstance, a few mutants may use irrational tactics
to win an evolutionary game. Players are not assumed to be familiar with the game
in a large population. Instead, players attempt to increase their self-interest or the
average number of surviving offspring. The mutagenic evolutionary stable strategy
(ESS) is the standard equilibrium solution in evolutionary game theory. As a result,
when using ESS, a population can remain stable over time.

• Non-cooperative versus cooperative: Players in a non-cooperative game-theory ap-
proach choose a plan of action to advance their interests. However, in a cooperative
game, players work together to develop strategies that benefit both parties. Last but
not least, a coalition game is a cooperative game in which players band together to
achieve a shared goal. Players must coordinate their actions to form a coalition, and
then they agree to split the coalition’s total reward equally. In addition, an equilib-
rium of a coalition game should be resistant to any class of players deviating from an
established game solution to ensure no players are motivated to change their coalition.

3. Literature Search Methodology

Our approach for conducting this literature survey study consisted of three stages:
(1) information gathering, (2) article filtering, and (3) article reviewing. In the first stage,
relevant search terms were identified from the topic of interest using seed words (“advanced
persistent threat” and “game theory”), and relevant search terms were determined, where
relevant research articles were extracted from the selected databases. In the second stage,
the retrieved articles were filtered according to their titles and abstracts if they fulfilled
either the inclusion or the exclusion criteria. Finally, the third stage focused on reviewing
the content of each research article.

Five primary scientific databases were used to identify articles concerning APT studies
that used a game-theory approach. The databases included the Scopus abstract and citation
database, the Web of Science core collection, the ACM digital library, the IEEE Xplore digital
library, and ScienceDirect. These databases provided a variety of peer-reviewed research
articles relevant to artificial intelligence, human–computer interactions, cybersecurity, and
mobile computing. The search strategy involved developing a search string with a strong
connection to the terms related to the research questions and included synonyms of the
search terms [51].
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The initial search string used to query the selected databases was the seed search
term “advanced persistent threat”, which broadly described the target subject matter. Then,
based on the articles identified using the seed term, the following search terms were used to
narrow the scope of target topics and subjects: “game theory”, “cybersecurity”, “computer
crime”, “security”, and “network security”. In addition, additional search terms included
“mobile” and “smartphone”, where the application of the subject matter was found as well.
Finally, all the search terms were searched for within the article titles, abstracts, and text
(if available).

To ensure the quality of the publication sample, an initial screening was conducted
to filter relevant articles based on: (a) articles that included the search terms related to
the topics and subject matters; (b) articles published in peer-reviewed journals to ensure
quality; (c) articles that provided access to the full text; (d) articles that were published in
the English language (to ensure understanding); and (e) articles published within the past
five years, excluding this year, during January 2017 to October 2022 (to ensure relevance). In
addition, duplicate articles, such as those found in more than one database, were removed.

As a result of the initial screening, 123 papers were selected. Table 3 presents the
results of the keyword search (and associated criteria) for each database. The literature
search results based on content-related inclusion/exclusion criteria are presented in Table 4.
At the end of the entire literature-selection procedure, a total of 48 articles were included
in the final literature sample. Figure 2 presents the process of the online literature search
using a PRISMA 2020 flow diagram [52].

Table 3. The results of the keyword search by scientific database.

Database Initial Hits Screening Eligibility

Sources (Keywords) Initial Typology Scope (Title and
Abstract)

SCOPUS 297 177 68 52 25
WoS 18 10 8 5 4
ACM 156 103 4 3 2
ScienceDirect 109 59 20 18 10
IEEE Xplore 79 25 23 20 7

Total 659 374 123 98 48

Table 4. Inclusion and exclusion criteria for the relevant literature search (article filtering).

Inclusion Criteria Exclusion Criteria

(a) Answered the research question (a) Did not directly answer the research question
(b) Only academic publications (b) Non-academic publications
(c) Focused on APT-based investigation in security context
(e.g., network and cloud storage, cyber–physical systems,
and internet of things)

(c) Focused on other aspects of APT-based investigations
in security context (e.g., vulnerability studies, threat mod-
eling, and risk management)

(d) Focused on APT-based investigations using a contem-
porary game-theory approach

(d) Focused on other aspects of APT-based investigations
not using acontemporary game-theory approach

(e) Only primary studies that included empirical results
based on a specified research methodology

(e) Studies, such as literature reviews and other APT-
based investigations (e.g., vulnerability studies, threat
modeling, and risk management)
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Figure 2. PRISMA flow diagram for the selection of the 48 main articles reviewed. The initial search
was identified from five major scientific databases, screened through several filtering criteria, and the
final selection was determined from an eligibility assessment.

Finally, the considered articles were reviewed for information relevant to the goal
and the research questions for further synthesizing. This process involved two essential
steps [53,54]: (a) the extraction of data and (b) an evaluation and appraisal of the article
quality. These steps were performed on the final 48 articles, and they were reviewed and
guided by an extraction form developed according to two models [55], which accommo-
dated the multidisciplinary character of the current study. These models originated from
two different but interrelated focuses in the security field: detection and defense.

The extraction form was developed to identify and organize important, relevant
information in the reviewed articles while evaluating and determining their quality. For
these purposes, the extraction form included information, such as the article identification
data (i.e., title, journal, author, origin of authors, year of publication, and publication source)
as well as detailed information regarding both methodological considerations and the results
of the study. Therefore, based on the extraction method of Nicolescu and Tudorache [54],
Table A1 presents the extraction method used in the present study for the information
synthesis and the quality evaluation of the considered articles.

A detailed presentation of the methodological organization and data analysis methods
was used as a dichotomous criterion to evaluate the quality of the studies and accept
them for the final sample. The publication sample included articles that had described
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their empirical findings in detail and studies with empirical results related to our research
questions (i.e., APT detection and defense). All publications in the final sample underwent
a synthesizing procedure to determine the converging trends by aggregating, discussing,
organizing, and comparing the selected publications; tabulating their study samples; and
highlighting recurrent topics for future works, which followed the narrative synthesis (c.f.,
further on the topic of narrative synthesis by Okoli [53]).

4. Results and Discussion

The present narrative synthesis included two types of analyses: (a) an empirical
description of the publications selected for review (e.g., countries, frequencies, years, and
subject category) and (b) the thematic analysis of the publications according to the research
questions and based on the proposed theoretical framework.

4.1. Descriptive Analysis–The Organization of the Studies

The descriptive analysis presented the results from evaluating 48 articles that empiri-
cally investigated APT detection and prevention using a game-theory approach, according
to (a) the year of publication, (b) the countries of origin where the empirical research was
conducted, (c) the subject domain of the publication sources, and (d) the industries involved
in the studies.

The increased development of APT detection and prevention methods using a game-
theory approach (after 2018 ) as well as the increased use of game theory, overall, was
reflected in the increased research interest in this topic—approximately 77% of the articles
were published between 2019 and 2022 (Figure 3). Further investigation of the topic
is expected in the future, as the use of game-theory approaches for the detection and
prevention of APTs is likely to steadily increase. The industrial application of the game-
theory approach in APT detection and prevention was primarily utilized in the field
of enterprise networks, cyber–physical systems (CPSs), and industrial control systems
(ICSs), where this accounted for approximately 40%, 25%, and 21%, respectively, of the 48
published articles (Figure 4).

In addition, the secondary industrial application included cloud storage and the
internet of things (IoT), which comprised approximately 38% of the 48 published articles.
This indicated the importance of these emerging areas of the investigated topic. Other areas
included network-related (e.g., fog, wireless, and mobile computing) and utility-related
(e.g., smart home, power grid, and data recovery) applications for addressing APTs using a
game-theory approach, accounting for approximately 23% of the 48 published articles.

Most articles (94%) were authored by researchers from the United States of America
(U.S.) and China, while authors from Australia, Austria, and South Korea were the second
highest (approximately 21%). In addition, based on the years considered, although the
U.S. had the highest number of publications between 2017 and 2020, authors from China
published the highest number in 2021. Cumulatively, approximately one-third of the
empirical research (approximately 29%) were conducted in European, Middle Eastern, and
Asian countries (Table 5). This indicates that the application of game-theory approaches
has increased in other countries, apart from the U.S. and China, and multiple countries
have investigated this approach to APT detection and prevention.

The major venues of publication were represented by journals from the subject do-
mains of computer science and information systems (Figure 5), at 75% and 44%, respectively,
of the published articles. Moreover, subjects, such as multidisciplinary sciences, theory
and methods, and engineering were also main subjects of focus among the journals, ac-
counting for approximately 25%, 19%, and 19%, respectively, of the articles published. In
addition, these five subject categories reflected the majority of the output, accounting for
approximately 42% and 67% out of the total output during 2020 and 2021, respectively. This
indicates that APT topics using a game-theory approach were not limited to computing-
related fields but were also useful in theoretical works and other complementary fields
(e.g., business and service).
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Figure 3. Publication by year (for the 48 total articles).
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Figure 4. Publication by industrial application area (for the 48 total articles).

Table 5. Publication country of origin aggregated by their year of publication (note: one publication
may be attributable to multiple countries).

Country 2017 2018 2019 2020 2021 2022 Total

China 2 3 4 5 8 1 23
U.S. 5 4 4 5 3 1 22

Australia 0 0 1 1 2 0 4
Korea 0 1 0 0 2 0 3

Austria 2 1 0 0 0 0 3
Canada 0 0 0 0 2 0 2

Germany 1 0 0 0 1 0 2
U.A.E. 0 0 0 0 1 1 2

Pakistan 0 0 1 0 0 0 1
U.K. 0 0 0 0 1 0 1

Singapore 0 0 0 0 1 0 1
Macau 0 0 0 0 1 0 1
Spain 0 0 0 0 1 0 1
Iraq 1 0 0 0 0 0 1

Czech
Rep. 0 0 1 0 0 0 1
New

Zealand 0 0 0 0 1 0 1

Furthermore, other important publication venues were represented by journals from
the fields of telecommunications, engineering, and automation and control systems, which
demonstrated the topic’s relevance to specific industries (e.g., control systems, engineering
processes, and communication media/networks). Some publication venues had little
relevance to the topic as they were focused outside of computing-related fields; however,
they emphasized the broad implementation of game-theory approaches (for instance,
applying a game-theory approach to the prevention of APT attacks on the internet of
vehicles [56]). Finally, the highest publication distribution in the different subject categories
was observed in 2021, where approximately 90% of the publication output was found.
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Figure 5. Subject domain of the publication sources of the included articles (note: one publication
may be attributable to multiple subjects, and one source may have more than one subject domain).

4.2. Thematic Analysis—Narrative Description

Based on the search and extraction methodologies described in Section 3, a comprehen-
sive analysis and evaluation of the 48 selected articles was conducted, relating to the three
research questions presented at the end of Section 1. The narrative intention of this study
focused on the frequency of the themes and elements throughout the studies. The themes
commonly found in all the studies were centralized on detection and defense modalities
against APTs. Furthermore, the context of these modalities was investigated, and the com-
mon focus between the considered studies was outlined. Subsequently, several elements of
APT approaches in the considered studies involved the detailed design of their game-theory
methodology, such as the game process, game types, game structure, and game strategies.

4.2.1. Current Trends of Game-Theory Approaches in APT Detection and Prevention

The current trends of game-theory approaches for addressing APTs are summarized
in Table 6. Overall, the approaches were diverse and provided significant coverage of the
different APT studies. Most of the studies focused on the objective of APT detection through
increased awareness, including [26,32–34,36,38–40,56–90]. Most of them adopted multi-stage
game processes to model the adversarial interactions between the attackers and the defenders
(or multiple entities) and differentiated between different levels (or phases) and timing (or
circumstances) [56–58,63,68,71,73,81,84,87,88,90].

In addition, some studies adopted mixed strategies to solve these game processes and
reach an optimal payoff equilibrium, depending upon the perspective of the game state
(defender or attacker point-of-view) by improving the possible outcomes through randomizing
the moves made [56,57,81,84,90]; however, some studies employed pure strategies when the
best payoffs were the only options determined to achieve the maximum profit or the best
outcome [87,88].
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Table 6. Summary of game-theory approaches for APT detection and prevention, aggregated by objectives, game features, and added values.
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Xiao et al. [91] 2017 3 3 3 3 3 3 PT
Rass et al. [92] 2017 3 3 3 3 3 Attack tree/graph

Abass et al. [93] 2017 3 3 3 3 3 3 3 ESS, resist small perturbations
Rass et al. [57] 2017 3 3 3 3 3 3 BR

Chen and Zhu [32] 2017 3 3 3 3 3 FlipIt, Contract theory
Pawlick and Zhu [58] 2017 3 3 3 3 3 3 3 3 FlipIt

Xiao et al. [59] 2018 3 3 3 3 3 3 Cumulative PT, PHC
Min et al. [60] 2018 3 3 3 3 3 3 CBG, Strict resource, PHC
Lee et al. [26] 2018 3 3 3 3 3 3 Attack tree/graph, CVE

Huang et al. [61] 2018 3 3 3 3 3 3 DG
Zhu and Rass [38] 2018 3 3 3 3 3 3 3 Multi-layer Nested games
Laszka et al. [62] 2019 3 3 3 3 3 3 AD, SA

Lv et al. [63] 2019 3 3 3 3 3 3 Data fusion
Yang et al. [64] 2019 3 3 3 3 3 3 Repair Problem, ESS, DG

Pawlick et al. [33] 2019 3 3 3 3 3 3 3 FlipIt, OC
Pawlick et al. [65] 2019 3 3 3 3 3 3 3 3 Cheap-talk, DD
Li and Yang [66] 2019 3 3 3 3 3 3 DG, PT
Wang et al. [67] 2019 3 3 3 3 3 3 3 3 NLP
Horák et al. [68] 2019 3 3 3 3 3 3 3 3 Lateral movement, Attack tree/graph

Huang and Zhu [39] 2020 3 3 3 3 3 3 3 Belief system, DP, DD
Moothedath et al. [69] 2020 3 3 3 3 3 3 3 IFT

Yang et al. [70] 2020 3 3 3 3 3 3 3 Greedy solver, DG
Li et al. [71] 2020 3 3 3 3 3 3 3 Anti-HP

Zhang et al. [72] 2020 3 3 3 3 3 3 3 3 Strict resource, DP
Zhang and Zhu [73] 2020 3 3 3 3 3 3 3 FlipIt, Insurability concept, TSS

Gill et al. [40] 2020 3 3 3 3 3 3 SD, AD, HP
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Table 6. Cont.
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Bakker et al. [74] 2020 3 3 3 3 3 Tractable NLP
Hu et al. [34] 2020 3 3 3 3 3 3 3 ESS, BR
Tan et al. [75] 2020 3 3 3 3 3 3 SIRM, CKC, MTD
Tian et al. [76] 2020 3 3 3 3 3 3 3 HP, PT, BR
Ye et al. [77] 2021 3 3 3 3 3 3 3 Differential privacy, DD
Xie et al. [78] 2021 3 3 3 3 3 3 3 3 Attack tree/graph

Yang et al. [79] 2021 3 3 3 3 3 3 DG
Gao et al. [80] 2021 3 3 3 3 3 3 DG, Hamilton OC

Huang and Zhu [81] 2021 3 3 3 3 3 3 3 Belief system, HP, DD
Feng et al. [82] 2021 3 3 3 3 3 3 OC, ESS, BR

Merlevede et al. [83] 2021 3 3 3 3 3 3 3 FlipIt, Time discounting
Nisioti et al. [84] 2021 3 3 3 3 3 Attack tree/graph

Tian et al. [36] 2021 3 3 3 3 3 3 3 BR, HP, PT, ESS
Joshi et al. [85] 2021 3 3 3 3 3 3 3 ARA, EUT

Bakker et al. [86] 2021 3 3 3 3 3 3 3 3 MG, HG, OC, BR, DD
Mi et al. [87] 2021 3 3 3 3 3 3 3 DG, NIRM
Tan et al. [88] 2021 3 3 3 3 3 3 3 FlipIt, DG, TSS, MTD

Halabi et al. [56] 2021 3 3 3 3 3 3 3 3 3 Strict resource, ARA, MILP
Liu et al. [89] 2021 3 3 3 3 3 3 PN, TPM

Seo and Kim [90] 2021 3 3 3 3 3 3 3 3 3 3 3 TSS, DD, Attack surface, MTD
Wan et al. [94] 2022 3 3 3 3 3 3 3 HG, Belief system, CKC, DD, EUT

Li et al. [95] 2022 3 3 3 3 3 3 3 Strict resource, DCNN

ARA: Adversarial Risk Analysis; NLP: Nonlinear Programming; MILP: Mixed-Integer Linear Program; DP: Dynamic Programming; TPM: Threat Propagation Matrix; BR: Bounded
Rationality; ESS: Evolutionary Stable Strategies; CKC: Cyber Kill Chain; CVE: Common Vulnerabilities and Exposures; PHC: Policy Hill Climbing; PT: Prospect Theory; PN: Petri Net;
EUT: Expected Utility Theory; AD: Anomaly Detection; SD: Signature Detection; DD: Deception Detection; HP: Honeypot; MG: Metagame; HG: Hypergame; DG: Differential Game;
CBG: Colonel Blotto Game; IFT: Information Flow Tracking; SIRM: Susceptible, Infectious, Recuperate, Malfunctioned; NIRM: Normal, Infected, Restored, Malfunctioned; MTD: Moving
Target Defense; TSS: Temporospatial Strategy; OTP: One-Time Password Mechanism; OC: Optimal Control (e.g., Hamilton); SA: Simulated Annealing; and DCNN: Deep Convolutional
Neural Network.
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Furthermore, many reviewed articles focused on identifying and detecting a potential
vulnerability in their study domain (or industrial application) against
APTs [33,38,56,58,67,71,72,75,78–80,83,85,88,90,91,94,95], whereas some more recent ones
concurrently provided improvement techniques on their APT detection method to over-
come these vulnerabilities [33,72,88,90,94]. While pure and mixed strategies were among
those most used by researchers throughout the years (Figure 6), they also tended to be
unrealistic and impractical due to the nature of APT stealth and human-focused attacks
(e.g., irrational, unpredictable, and adaptive). Therefore, different strategies have been
adapted by researchers to further enhance their game-theory approaches against APTs.
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Figure 6. Publication output by year based on game-theory strategies against APTs.

Before the 2000s, a prominent approach was the Gestalt strategy, which was inspired
by the psychological concept that a being is more than the sum of its experiences [96].
Such a strategy allowed for optimizing the equilibrium of a system with multiple phases
(temporal) and stages (spatial) simultaneously in a way that was determined elegantly and
holistically [38,58]. The strategy was also related to multi-layered games, and it required
solving each game optimally, given the results of the other games, without the need to
analyze one large game [33]. These multiple games or combinations of sub-games could
be structural variants of games (i.e., signaling games and FlipIt games) that ensured that
plug-and-play solutions were widely available.

Furthermore, several studies adopted hybrid strategies to address high-risk condi-
tions in APTs [63,71,83,94]. This strategy involved judging the availability of multiple
information sources (i.e., multiple levels and phases), ensuring different probabilities of
choice [63] and managing the diversity of capabilities and opportunities [71], as well as
belief systems [94]. In addition, when a critical resource was finite (e.g., time or cost), hybrid
strategies were a vital advantage, relative to the timing of its deployment: for instance,
fixed (a “periodic” strategy) and exponential (an “exponential” strategy). Under such
conditions, specific decision-making could be costly over time and disincentivize adverse
intentions [83]. Moreover, the hybrid strategy also provided diversity in resolving APT
problems when conflicting information or uncertainty was present [94].

In recent years, Stackelberg’s strategy was among the most popular strategies adopted
in game-theory approaches to address APT problems [56,70,72,82,90,95]. It is based on the
strategic leadership model in economics, where a leader and a follower compete on quantity by
moving sequentially (sometimes referred to as the “market leader”). The purpose was to focus
on minimizing potential loss or maximizing the payoff [70,72] when faced with an asymmetric
information structure (i.e., stealthy attacks) by using randomized policies [56,72,90] and
optimally allocating critical resources and judgments [82,90]. Moreover, the presence of a
leader allowed for the discovery of high rewards that would not affect the equilibrium [56].
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Considering the game processes of the game-theory approaches adopted against the
APTs, seven distinct process types were identified from the reviewed articles (Figure 7):
static, dynamic, Markov, Bayesian, signaling, Gaussian, and stochastic (refer to Section 2.2.3
for details). Among them, the Bayesian and stochastic game processes were frequently
adopted, accounting for about 29% and 23% of the reviewed articles, respectively. Such a
condition was the norm when addressing APTs, which dealt with incomplete information
and uncertain game states in an adversarial situation.

Moreover, this trend was also followed by Markov and signaling game processes,
which accounted for about 25% of the reviewed articles. This situation reflected the trend
of research articles incorporating such game processes where specific situations depended
on the previous states (decision chains) or triggers (signals) to effectively overcome APTs.
Nevertheless, dynamic game types were still a prominent game-theory approach when
dealing with APTs since those variations (Bayesian, Markov, signal, and stochastic) were
introduced to fit particular security needs and requirements.
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Figure 7. Publication output by year based on the game-theory process type adopted against APTs.

Moreover, several added-values dominated the final 48 articles considered in this
review. For instance, concepts, such as bounded rationality, were adopted by several
researchers [34,36,57,76,82,86], which imitates the decision-making of agents who have
limited rationality and information available in a given adverse situation (both in capacity
and time) in order to make satisfactory choices. Furthermore, some studies [36,59,66,76,91]
used prospect theory to imitate the actual behaviors of two opposing parties in a variety
of application domains. These were among the approaches that considered the practical
behaviors of the involved parties when operating with limited information (or uncertainty)
and overcoming (or valuating) the risk of aversion.

Another perspective of the study involved deterring adverse situations by being
deceptive—called defense deception. Defense deception utilizes several intuitive tech-
niques to mislead attackers. For instance, lying costs were optimized to determine the
privacy of partial information (i.e., revealing cues via “cheap-talking”) [65,77], thereby,
reducing the misalignment between different incentives [65,81], providing an alternative
perspective that tilts the information asymmetry (or cognitive bias) [39,86,90,94], encourag-
ing more conservative behaviors instead of aggressive ones [86,94], and discovering novel
rules to achieve a better trade-off between security and usability [39,86,90].

Several researchers adopted differential games to sufficiently describe and analyze
the dynamic process of adversarial conditions (i.e., attack versus defense). This condition
is particularly critical when operating with incomplete information since capturing the
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system information is complex and may cause many uncertain factors that result in random
changes to the system state or strategy [61,66,87].

Some researchers described it as a state-evolution model [66,70], where random factors
influence and change in intensity [87]. Differential games also rely on the optimal control
principles to attract either the global [70,80] or the saddle-point [87] of the system equilib-
rium. Typically, control and payoff functions are integrated to describe the algorithmic
selection of real-time responses [87], particularly when associated with shifting resource
vulnerabilities on a variety of attack surfaces (c.f., moving target defense with different
spatial dimensions and informational elements [88]).

Huang et al. [61] constructed a multi-stage and multi-state Markov differential game
model to analyze real-time attack–defense behaviors and resolve the persistent defense
decision-making challenge by calculating the strategy control function over time, thus,
allowing for a more guiding role in the timeliness of the decision-making. Furthermore, a
differential dynamical system was introduced to protect cloud storage systems [66] and
enterprise group systems [80] while mitigating loss and capturing the time-variance in
confrontations between the attackers and defenders.

Moreover, Yang et al. [64] and Yang et al. [70] modeled an APT repair problem as
a differential Nash-equilibrium game (the attacker attempted to maximize the potential
benefits, while the defender mitigated the potential losses) using an epidemic model based
on three practical situations: time-varying communication, the lateral movements of APTs,
and the changes of attack–repair strategies over time. Subsequently, the key to solving a
differential game was deriving the optimal system by using the associated Hamiltonian
principles and determining the Nash equilibrium conditions for the game [79,80].

It is worth noting that, among the adopted game-theory approaches for the defense and
detection against APTs, AI techniques were among the scarcely adopted techniques, even in
recent years. Only two of the 48 final articles reviewed adopted AI techniques to address
specific sub-problems of the game-theory approaches. For example, Laszka et al. [62] adopted
a simulated annealing algorithm to find a near-optimal detector configuration to mitigate the
attackers’ action in an intelligent traffic control game model.

Li et al. [95] incorporated a deep reinforcement-learning technique based on convolutional
neural networks and information-rich features to proactively addresses APTs. Nevertheless,
both AI techniques require data availability and were applied for a very narrow scope of
their respective uses, which can be counter-intuitive against the APT scenario. As game
theory provides a framework capable of proactive defense and detecting uncertainty caused
by APT [39], AI technique integration with game theory could potentially enhance the
system’s capability while mitigating adverse conditions, thus, providing a fertile topic for
future investigation.

4.2.2. Challenges and Benefits of Adopting Game-Theory Approaches in APT Detection
and Prevention

The challenges of game-theory approaches for addressing APTs are summarized in
Table 7. The major challenge found among the considered articles was the asymmetricity of
the informational structure between an attacker and a defender. Such a situation allowed
for risk or uncertainty to be managed and modeled as probability distributions instead of
real-value payoffs [73,92]. Such asymmetricity could also be dependent upon the types of
devices [32], the types of attacker influence [59,60], and the dynamic interactions between
different stages or phases of a modeled game structure [38,73,89]. However, this asymmetric
information focused on the context of the detection, which was related to the weighting or
the valuation of compromising those informational structures, which is typically costly at
the operational and tactical levels of an organization.
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Table 7. Summary of the challenges of game-theory approaches against APTs based on the research articles.

References Challenge Criteria

Xiao et al. [91]; Abass et al. [93]; Rass et al. [57]; Xiao et al. [59];
Min et al. [60]; Lee et al. [26]; Huang et al. [61]; Wang et al. [67];

Horák et al. [68]; Moothedath et al. [69]; Gill et al. [40]; Tan et al. [75];
Tian et al. [76]; Yang et al. [79]; Huang and Zhu [81]; Merlevede et al. [83];

Tan et al. [88]; Halabi et al. [56];

Cost Offshoot

Rass et al. [92]; Chen and Zhu [32]; Xiao et al. [59]; Min et al. [60]; Zhu and
Rass [38]; Lv et al. [63]; Yang et al. [64]; Pawlick et al. [33];

Pawlick et al. [65]; Li and Yang [66]; Wang et al. [67]; Horák et al. [68];
Huang and Zhu [39]; Moothedath et al. [69]; Yang et al. [70]; Li et al. [71];

Zhang et al. [72]; Zhang and Zhu [73]; Gill et al. [40]; Bakker et al. [74];
Hu et al. [34]; Tan et al. [75]; Tian et al. [76]; Ye et al. [77]; Xie et al. [78];
Gao et al. [80]; Huang and Zhu [81]; Feng et al. [82]; Nisioti et al. [84];

Tian et al. [36]; Joshi et al. [85]; Bakker et al. [86]; Tan et al. [88]; Halabi et al.
[56]; Liu et al. [89]; Seo and Kim [90]; Wan et al. [94]; Li et al. [95];

Asymmetricity

Rass et al. [57]; Pawlick and Zhu [58]; Huang et al. [61]; Laszka et al. [62];
Pawlick et al. [65]; Huang and Zhu [39]; Moothedath et al. [69];

Li et al. [71]; Hu et al. [34]; Yang et al. [79]; Joshi et al. [85]; Mi et al. [87];
Halabi et al. [56]; Liu et al. [89]; Wan et al. [94]; Li et al. [95];

Sensitivity

Xiao et al. [91]; Pawlick and Zhu [58]; Lee et al. [26]; Huang et al. [61];
Lv et al. [63]; Pawlick et al. [33]; Li and Yang [66]; Yang et al. [70];

Bakker et al. [74]; Hu et al. [34]; Tan et al. [75]; Tian et al. [76]; Ye et al. [77];
Gao et al. [80]; Feng et al. [82]; Merlevede et al. [83]; Nisioti et al. [84];

Mi et al. [87]; Tan et al. [88]; Liu et al. [89]; Li et al. [95];

Micro-
management

Another challenge to asymmetricity in informational structures that is also influen-
tial in the context of defense against APTs was generally identified as defense deception.
Such situations involved the fusion of different data sources [63,75,84,94]; the withhold-
ing of specifics about data (differential privacy) [77]; delay tactics by repairing [64]; a
multi-level interdependent mechanism that validates/justifies another [33,34,71,84,94]; the
exposure of a potential perpetrator by leaking some evidence [65] or a stage-wise judicial
decision [39,81]; the restriction of resources to starve a potential threat [72]; and the cor-
roboration of interaction levels with other factors [76,80,85,95]. These defense-deception
mechanisms demonstrated the level of complexity involved in defending against APTs,
where the disadvantages of the attackers in the form of missing or incomplete informa-
tion are used for the defender’s advantage via passive [63,65,75,77,84,94] or proactive
responses [33,34,39,64,71,72,76,80,81,84,85,94,95].

Furthermore, other studies addressed the challenge of asymmetricity in the infor-
mational structures by focusing on optimal defense strategies that mirrored the attack-
ers [56,67,78,80]; characterizing the best response [34,72,85,86,88]; delaying the attackers
by employing a honeypot (decoy mechanism) [36,68,76,81,90]; managing the expected loss
through dynamic recovery [66,70] or cyber-insurance [82]; tagging data to identify suspi-
cious information flows [69]; characterizing the signature or profile of the attack [40,75,78];
and managing misconceptions (i.e., suspicions of a nonexistent attack) [74,90].

This challenge involved subjective aspects of the threat, where both the defender and
attacker could adopt progressive, aggressive, or conservative strategies, depending on the
real-time situation at various stages of the game model. Such modeling has successfully
defended against APTs but requires careful consideration of the trade-offs between prac-
ticality and performance, particularly when mitigating insider threats (where they could
access privileged information for financial gain) [66].

Other challenges that consider the trade-offs between the two metrics were cost
offshoot and micro-management, where unexpected or compounding effects of the latter
were caused by the former. In contrast, the latter influenced the affinity of the former. For
example, the attacker’s cost overestimation could be the reason for such a condition due to
the defender’s uncertain scanning intervals [91,93] or balancing defense decision-making
against the state randomness of system security [61]. Furthermore, the defender could also
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vary its strategies (i.e., periodic strategy) and estimate the compromise probability based
on control incentives [58].

Another condition was the integration of security vulnerability quantification, involv-
ing an attack tree, the common vulnerability scoring system (CVSS), and game-theory
approaches to provide objective evaluations while anticipating and preparing counter-
measures against an adversary [26]. In addition to complementing the limitations of the
approaches, managing them requires specific calibrations relative to the identified vul-
nerability to avoid the over-fitting of anticipated countermeasures, which could lead to a
predictable routine.

Other challenges were related to the adoption of a periodic strategy, where the time
between consecutive moves in the game-theory model was constant; therefore, the player
“utility” of the game (attacker or defender) relies on the gains and costs of the available
resources over time, which requires characterizing and anticipating optimal strategies to
fend off the threat [83]. In contrast, random disturbances and stochastic times between
consecutive moves in the game-theory model require maximizing the defense effectiveness
and minimizing the cost.

This situation required efficient management that could be sensitive to any pertur-
bation [61,87]. Another aspect of the sensitivity that is challenging when related to APTs
is choosing an optimal defense strategy when the strategy space is massive and compu-
tationally exhaustive due to the sheer number of interactive elements within the system
(i.e., the IoT, transportation, and network node security) [62,79,94,95]. Such a situation is
similar to the cost-offshoot challenge and could further perpetuate the APT detection and
defense complexity.

In contrast, several benefits have been gained by adopting game-theory approaches
for addressing APTs as summarized in Table 8. One major benefit gained from game-theory
approaches was through their stability and reliability in the intended system, where the
defense performance could be efficiently determined [26,38,87] while capturing the essence
of the coordinated attacks [57] and providing locally asymptotically stable points of the
game states [87,93].

Furthermore, the timeliness of decision-making and the scope of the application were
improved by Huang et al. [61] through the application of the Markov decision-making method
in a continuous multi-dimensional phase space with problem variations while considering
payoff discounting. Furthermore, Zhu and Rass [38] offered a reasoning approach that
systematized the whole system based on local security assessments and defined scores
that could be tailored to specific contexts, leading to enhanced timeliness and a substantial
increase in reliability.

In another study, decision probability played a crucial role in addressing an APT, as
the computational performance was advantageous when the size of the strategy space
was computationally expensive [62], the decisions were multi-layered [65], and random
disturbances were considered [87]. In other words, it was advantageous to identify and
determine the best strategies to overcome the threat before it occurred [61,62].
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Table 8. Summary of the benefits of game-theory approaches against APTs based on the research articles.

References Beneficial Criteria

Xiao et al. [91]; Rass et al. [57]; Chen and Zhu [32]; Xiao et al. [59];
Min et al. [60]; Yang et al. [64]; Li and Yang [66]; Huang and Zhu [39];

Li et al. [71]; Zhang et al. [72]; Zhang and Zhu [73]; Gill et al. [40];
Ye et al. [77]; Xie et al. [78]; Gao et al. [80]; Huang and Zhu [81]; Joshi et al.

[85]; Bakker et al. [86]; Halabi et al. [56]; Liu et al. [89];

Utility Changes

Rass et al. [92]; Pawlick and Zhu [58]; Laszka et al. [62]; Pawlick et al. [65];
Wang et al. [67]; Horák et al. [68]; Huang and Zhu [39]; Yang et al. [70];

Li et al. [71]; Bakker et al. [74]; Tian et al. [76]; Ye et al. [77]; Xie et al. [78];
Yang et al. [79]; Huang and Zhu [81]; Feng et al. [82]; Merlevede et al. [83];
Nisioti et al. [84]; Bakker et al. [86]; Mi et al. [87]; Tan et al. [88]; Liu et al.

[89]; Wan et al. [94]; Li et al. [95];

Decision
Probability

Abass et al. [93]; Rass et al. [57]; Lee et al. [26]; Huang et al. [61]; Zhu and
Rass [38]; Laszka et al. [62]; Lv et al. [63]; Yang et al. [64]; Pawlick et al. [33];

Pawlick et al. [65]; Li and Yang [66]; Wang et al. [67]; Horák et al. [68];
Moothedath et al. [69]; Li et al. [71]; Zhang et al. [72]; Zhang and Zhu [73];

Gill et al. [40]; Hu et al. [34]; Tan et al. [75]; Tian et al. [76]; Ye et al. [77];
Yang et al. [79]; Feng et al. [82]; Merlevede et al. [83]; Nisioti et al. [84];

Tian et al. [36]; Joshi et al. [85]; Mi et al. [87]; Tan et al. [88];
Halabi et al. [56]; Liu et al. [89]; Seo and Kim [90]; Wan et al. [94];

Li et al. [95];

Stability/Reliability

Rass et al. [92]; Chen and Zhu [32]; Lee et al. [26]; Zhu and Rass [38];
Yang et al. [64]; Pawlick et al. [33]; Wang et al. [67]; Huang and Zhu [39];
Moothedath et al. [69]; Yang et al. [70]; Gill et al. [40]; Bakker et al. [74];

Hu et al. [34]; Tan et al. [75]; Tian et al. [76]; Xie et al. [78]; Yang et al. [79];
Nisioti et al. [84]; Tian et al. [36]; Joshi et al. [85]; Mi et al. [87]; Tan et al.

[88]; Seo and Kim [90];

Objective
Assessment

Zhu and Rass [38]; Lv et al. [63]; Yang et al. [64]; Horák et al. [68]; Huang
and Zhu [39]; Moothedath et al. [69]; Zhang and Zhu [73];

Bakker et al. [74]; Hu et al. [34]; Tan et al. [75]; Gao et al. [80];
Bakker et al. [86]; Tan et al. [88]; Halabi et al. [56]; Seo and Kim [90];

Wan et al. [94]; Li et al. [95];

General Pattern

The general pattern of detecting a malicious entity can be to fuse data from different
sources to compute a comprehensive payoff and optimally allocate constrained secure
resources [63], allocate the available repair (or recovery) resources to mitigate potential
losses [64,79], predict risk compensation via the effect of insurance [73,82], select suitable
defense timing [56,75,76,88], tag sensitive information flows [69], or actively expose vulner-
abilities (e.g., a honeypot) [36] while conducting an objective assessment on the expected
state of the target system [33,40,64,66,75,79].

An interdependent model of trust management decisions that involve multi-layered
optimization provided structural reliability when multiple or dynamic games were consid-
ered to cater to the diverse possibilities of APTs [33] and did not always strive to eliminate
leakage when deception cues could be used as deterrents [65]. In Hu et al. [34], they intro-
duced a more generalized approach that involved different social players by measuring and
quantifying their rational degrees and simulating their growth to reflect the randomness
and inertia of the population’s social behaviors for realistic attackers and defenders.

In Seo and Kim [90], they investigated a defender-deception method (e.g., honeypot
and decoy that induced cognitive bias and induction) that were formulated for the scenario
and attributed to the secure dominant organizational share, and they presented an optimal
strategy that minimized the performance degradation and maximized their efficiency while
constructing a deceptive container-management plan that yielded the highest defense and
the lowest cost for defenders with limited utilities.

Another approach to decision probability incorporated novel metrics to improve the
benefits of being reliable and objective in APT defense. For instance, Wang et al. [67]
introduced the concept of defense effectiveness that quantified the impact of a defense
strategy against an attack strategy when both sides had reached a balanced state, which
was based on the prior belief and payoff of the defender when selecting the optimal defense
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strategy. Another study by Horák et al. [68] modeled the uncertainty of the defender
using beliefs that mapped onto the probability distribution over the subsets of the possible
security states.

In Zhang et al. [72], they provided a response characterization in more general set-
tings where the challenges faced by the defender and attacker were a continuous convex
optimization and a fractional-knapsack problem, respectively, resulting in an effortless
determination of the response strategy. These conditions were also applicable when re-
sources were limited [67,68,72]. Furthermore, Ye et al. [77] adopted differential privacy
techniques that preserved the privacy of the systems in networks, mitigating utility gains
of the attackers while retaining the system performance under various conditions.

Some studies focused on the benefits of reliability and stability while providing good
frameworks for decision probability when addressing APTs. For example, Merlevede et al. [83]
assumed the strategies chosen by both sides (attacker and defender) were from restricted
strategy spaces and between exponential and periodic strategies, which was practical for the
incentive design for time-based security decisions. Furthermore, Nisioti et al. [84] proposed
a Bayesian Cyber-Investigation Game (BCIG) that assumed a probabilistic distribution
calculated from past incident reports and adopted an anti-forensic technique on the side of
the defender to increase the collected benefits across a wide range of investigations while
decreasing the costs.

Furthermore, a multidimensional transition of attack and detection surfaces was ana-
lyzed by Tan et al. [88] and Wan et al. [94], where the characteristics of stealth interactions
(stochastic, aggressive, and conservative) were represented, thus, allowing for a gener-
alized and objective view of the trends in the state transitions of a network system. In
addition, Liu et al. [89] quantitatively analyzed the safety in cyber–physical interactions
using a weighted, colored Petri net and attack models that calculated the attack weights
by using a threat-propagation matrix as well as a security-state vector. Explainability
was also integrated into dynamic and persistent risk-assessment schemes with resource-
allocation mechanisms [95]. Security awareness could also significantly accelerate security
monitoring, analysis, and comprehension.

Another benefit was found via utility change, such as the competitive strategy profile
proposed by Li and Yang [66], where the necessity system guided the defender to search
for an admissible set of strategies and randomly outperform the generated strategy profiles.
This situation allowed for the dynamic recovery strategy to be competitive and practical
when compared to relying on the dynamic attack strategy alone. Furthermore, in a one-shot
game model (where interactions only happened once), a trigger strategy (choosing a certain
strategy at the beginning and adapting later) was adopted to address the main priority of
the target system (maximize defenses or mitigate losses) [71], or the strategy incorporated
bounded rationality to influence the attacker’s appraisal [36,76].

In a system of centralized or distributed connectivity of the defenders (i.e., IoT devices
and fog computing), the optimal incentive-compatible insurance contract insured half of
the defender’s losses, which were quantitatively determined by the loss parameters of
the device ownership [73], and cyber-insurance-enabled security provided service cov-
erage [82]. Such conditions have allowed for an acceptable level of economic/financial
losses [40,73,82].

However, a study by Halabi et al. [56] focused on integrating a new layer of robust-
ness in the defense architecture designed to increase its tolerance of sophisticated attacks
resulting from APTs. Furthermore, an insider threat’s advantage in assisting APTs could
be deterred or mitigated by optimizing the initial defensive mechanism via modeling
the organizational culture (i.e., limiting the information that a defender could have and
diversifying its utility functions) [85].



Mathematics 2023, 11, 1353 24 of 34

4.2.3. Implications and Converging Topics for Future Work in Defense and Detection
against APTs

As the trends of APT detection and prevention have converged with game-theory
approaches, several implications were observed. These implications included optimized
protective performance, a full-fledged simulation tool for security scenarios, a security-as-
service paradigm, a form of trust framework, the prioritization of repair over protective
details, the conversion of deception into protection, and the encouragement of richer quality
interactions between the attacker and the defender.

Several studies focused on optimizing the protective performance of a game-theory
approach against APTs. In one study, the cloud storage system’s data protection level and
the defender utility were improved by learning faster and being more resistant to APT
attackers who chose an attack policy based on the estimated defense learning scheme [60].
In another article, a game-theory-based vulnerability quantification method allowed for
the objective calculation of the security vulnerabilities of a network system (e.g., social
IoTs [26] or moving-target defense (MTD) [75,88]) while anticipating and preparing for
countermeasures against adversarial attacks [26,34,38].

A differential game model was developed to analyze dynamic, continuous, and
real-time attack–defense processes to predict a multi-stage continuous attack–defense
process [61,67]. Repeated defense actions were used for employee awareness training based
on information gathered from APT incidents and enhanced model flexibility [38]. Some
studies investigated the spatiotemporal aspects of an attack [75,88], making this an essential
addition to the attack-surface transformation process.

Game theory and the consideration of time-evolved states [70] and Bayesian game
theory to infer incomplete information regarding an attacker’s behaviors was used to deter-
mine optimal defense strategies [89]. These approaches provided a more comprehensive,
dynamic, and practical approach to addressing APT attacks.

Some studies encouraged a game-theory approach as a simulation tool for recreating
the security scenario with subjective attacking behaviors [57,91]. Such a perspective allowed
for evaluating optimal risk mitigation strategies based on the available information while
easily addressing adversary modeling issues [36,91]. This condition was particularly
useful in defending against APTs because uncertainty exists in the attacker’s capabilities,
incentives, and induced damages.

Using matrix games with distributed payoffs, where the game is in discrete time for
one player but continuous time for the other, has allowed for the natural mitigation of
APTs [57,92]. In addition, a physical understanding of the infrastructure and theoretical
methods can be combined to create a practical solution; define appropriate model pa-
rameters, proper categories, and representative definitions; and design suitable payoff
modeling [57]. Due to the probability-weighting distortion, a subjective attacker tends to
overestimate the attack cost and, thus, attacks less frequently in cumulative prospect theory
(CPT)-based detection games, thus, improving the data protection and cloud utility [59].

Furthermore, the existence of Bayesian–Nash equilibrium strategies has been proven
under bounded rationality. At the same time, changing the strategy selection and utility,
improving the detection rate, and increasing the comprehension of adversarial behaviors
in a grid system [76] and the IoT [36] have also been addressed.

Using the security-as-service paradigm, the best contract design was investigated
for a cloud-enabled internet of controlled things (IoCT). Optimal contract design was
determined based on cloud security quality, where payoff compatibility and contract
penalty was utilized, alongside the payoff of the cloud service providers when optimizing
the security utility [32].

In one study, a game-theory approach based on the FlipIn framework was adopted
to design incentive-compatible, welfare-maximizing cyber-insurance contracts, and this
offered a theoretical foundation for the quantitative assessment of cyber-risks, the develop-
ment of cross-layer defense mechanisms, the design of cyber-insurance policies [73], and
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the development of the pricing problem as an optimal control problem via a hierarchical
dynamic game framework [82].

Moreover, a game-theory model of cyber attacks on traffic control was introduced to
provide a theoretical foundation for planning and improving the performance of delivered
services, as well as for implementing countermeasures against the risks posed by cyber
attacks on transportation networks and infrastructures (e.g., traffic signal tampering [62]
and the internet of vehicles [56]).

A unique take on countering APTs was provided in the form of a trust framework,
where vulnerabilities and risks were passively identified by integrating a trustful system
or a set of procedures as part of the game-theory elements. A framework of trust built
on incentives and costs for system control was incorporated. This allowed for continuous
decision-making, a better understanding of strategic trust, and multi-layer security [33,58].
In addition, such a framework improved the level of data protection and had a faster
learning speed for strategic defense selection [95].

A combination of different data sources (e.g., network protocols and log documents)
was used to precisely calculate the payoff of a game-theory approach. This situation allowed
the Nash equilibrium to be computed in order to detect the possibility of a malicious attack
while maintaining the target system functions and providing effective protection [63].
Another approach via differential privacy was designed to resist attacks regardless of the
attackers’ rationale and to increase the complexity of attack formulations, thereby, giving
administrators more time to build defense policies [77].

An effective dynamic-recovery (DR) strategy to mitigate the total loss of a cloud
defender in the face of an APT campaign was investigated by Li and Yang [66]. The concept
introduced a competitive strategy profile that outperformed other randomly generated
strategies and enhanced the APT defense capabilities [69] particularly in situations where
insiders with privileged access could facilitate the APT campaign for financial gain [81].
Moreover, an organization subjected to APT could flexibly divide a long repair time into
several relatively shorter repair periods.

The corresponding potential repair strategy in this time horizon was realized by
estimating its expected state. Although the APT repair game was open-loop and lacked
flexibility, the organization could handle the APT in a closed-loop manner for the most
part and mitigate its potential loss even further [64]. Another study by Yang et al. [79]
formulated a model based on a data backup-and-recovery system (DBARS) when defending
against APTs by proactively seeking out and eliminating the compromised portion of a
system via evolution, leading to a potentially cost-effective real-time solution [69].

Many studies focused on making deception an advantageous situation for the protector.
However, the techniques for detecting deception in cybersecurity should not always aim to
eliminate leakage, as revealing specific cues to deception could serve as a deterrent [65].
Such a condition could be used to design the detection mechanisms for implementing
online policies without requiring iterative numerical computations. In some situations,
game representation and algorithmic design encumbered the scalability of the solution [68]
and its interoperability [40]. Legitimate system users could also be compromised.

The use of defensive deception could also generate uncertainties for attackers and
motivate them to take more conservative behaviors [39]. A belief concept was introduced
as a proactive defensive response to provide a probabilistic detection system, achieve a
better payoff rate, and prevent effectual reconnaissance. However, the strict resources could
characterize their behavior as an adaptive strategy instead [72]. Moreover, a hypergame
was proposed as a valuable model to analyze the effects of adversarial perturbations
and stochastic conditions to better understand cyber attackers and defenders in control
systems [74,86].

The concepts of the motive and deterrence thresholds were introduced to assess
the average motive of the insider population and the adequacy of the honeypots [81,85].
Considering the incomplete and deceptive nature of the organizational environment and
information vulnerability, researchers constructed proactive deception strategies based on
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the organizational domain and simulated their related improvements in deception efficiency,
which was intended to minimize performance degradation and maximize security [90].

Finally, richer quality interactions between the attacker and the defender have been
realized in several studies. The real-world interactions between cyber attackers and de-
fenders were realistically modeled to predict the differences in their behaviors, strategies,
and tactics under various conditions [71,78]. In some cases, the computational overhead
increased, which demanded a higher observation cost of vulnerable resources [78]. Increas-
ing the paralysis threshold (the point at which a group cannot continue interacting) within
a specific range could facilitate a short-term, high-intensity interaction.

In addition, effective strategies should be implemented as early as possible to achieve
dominance and affect the network states. This condition suggested that obtaining an equi-
librium strategy was challenging when interaction strategies were mutually restrictive [80].
The research emphasized the importance of considering the timing of security decisions
(exponential and periodic) and the impact of the passing of time on the valuation of a re-
source in security policy-making, where an attack could be disincentivized and information
symmetry overcome between the attacker and the defender [83].

The importance of using anti-forensic techniques was emphasized in a forensic investi-
gation of real-world scenarios, which considered additional parameters, assumed multiple
attacker types at each decision point, and combined other optimization methods [84].
Another aspect presented by Mi et al. [87] provided a reference for selecting an optimal de-
fense strategy (or increasing it beyond the limit) while ensuring its advantage, maximizing
defense effectiveness at a minimum cost, and minimizing loss when the defense was not
possible. Moreover, mitigation of the uncertainty perceived by both the attacker and the
defender led to higher resilience and high expected utility [94].

From the identified implications of game-theory applications for combating cyber-
security threats, several converging topics against APTs were noted and summarized
as follows:

• Improving the protective performance of a game-theory approach through methods,
such as learning faster and being more resistant to attacks; quantifying vulnerabilities;
and anticipating and/or preparing for countermeasures.

• Analyzing dynamic, continuous, and real-time attack–defense processes to predict
multi-stage continuous attack–defense processes and improve awareness of future
attacks (i.e., employee training).

• Using game theory as a simulation tool to recreate security scenarios with subjective
attacking behaviors that are practical and realistic, consider spatiotemporal aspects of
attacks, infer incomplete information about attacker behavior, and evaluate optimal
risk mitigation and defense strategies.

• Investigating optimal contract design, designing incentive-compatible and welfare-
maximizing cyber-insurance contracts, and formulating the pricing problem as an
optimal control problem through a hierarchical dynamic game framework.

• Applying game theory by optimizing the security of cyber–physical systems (CPS) and
transportation systems by considering various factors, such as the attacker behavior,
system constraints, and the interdependence of components.

• Using game theory to optimize the security of social networks by considering the
influence of users on each other’s behaviors and the strategic interaction between
users and a network administrator.

As one of the most pervasive information and communication technologies, the use
of smartphones over the last decade has increased dramatically. As a result, smartphone
usage has faced threats at all stages of application utility, from application downloads being
implanted with malicious codes, application installation or usage that contains malicious
programs, and even uninstalled applications that leave behind malicious residual code [97].
In addition, a plethora of features exist in smartphones, such as inertial sensors, positioning
sensors, ambient sensors, telephony services, telecommunications, and other utilities, that
provide a continuous flow of information and an accurate description of a user’s routines
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and behaviors, thereby, enabling an attacker to generate a highly specific and successful
APT campaign [4].

As such, smartphone security is a critical topic that requires the attention of academia
and industry alike. In general, mobile APTs are defined as sophisticated attacks in mobile-
device environments where social engineering has been used to leak data using features
that are innate for information management (e.g., sensors and services). However, the
threat in mobile devices is still nascent and challenging to assess, as identifying an attacker
is difficult due to the following reasons [2]: (i) high accessibility; (ii) various initial points
of access; and (iii) jurisdictional limitations that are relatively low-entry and high-reward.
As such, there is a significant possibility that a broader diversity of attacker avatars exist,
from nation-state bad actors motivated by national interests to savvy individuals focused
on personal gain.

In addition, attack procedures associated with the established threat actors in the
mobile environment were also related to threat actors in the PC environment [9]. This
condition allowed threat actors to move freely between PC and mobile environments to
achieve their goals. Therefore, it is possible to improve the understanding of the current
cyber-threat environment using traditional cyber-attribution methods that employ complex
evaluations of both their technical and socio-political attributes [2,9]. Furthermore, since
mobile APTs can originate from diverse regions and borders in different countries and
regulations, jurisdictional limitations can hinder cross-border cyber-crime investigations
while preventing the progress of collecting evidence. However, the rapid growth of mobile
devices in various fields where massive volumes of data are constantly generated could
take advantage of the converging topics on game-theory approaches as a suitable solution
for addressing mobile APTs.

However, public datasets and data on mobile-based APTs are scarce, which may
impede research progress regarding the detection of and defense against new generations
of APT attacks (e.g., using mobile, IoTs, and other smart devices). Recent solutions have
involved the adoption of the situational-awareness (SA) model, also known as the observe–
orient–decide–act (OODA) framework, which mitigates APTs by conceptually monitoring the
fingerprinting of mobile device behaviors [16].

Regarding another aspect, Al-Kadhimi et al. [98] provided a solution to improve the
awareness of APT detection on smartphones based on the correlation of the MITRE Frame-
work and an attack tree, called a fingerprint, for a mobile-sensor APT-detection framework
(FORMAP). Similarly, Jabar et al. [99] proposed a framework for mobile APT detection
based on device behavior (SHOVEL), and this study demonstrated the impacts of APT
attacks on user behavior when self-adaptive, auto-predictive, and auto-reflective consid-
erations were present in their decision-making. As such, this direction could be ideal for
future game-theory-based research endeavors.

5. Limitations and Future Outlooks

Although the trends, benefits, challenges, and implications of the game-theory ap-
proaches against APTs were characterized, there are certain limitations in the current review.
First, one study limitation was related to the small research team and the associated time
restrictions. As such, the study could not evaluate all possible coverage, perspectives, and
potential trends concerning this topic. Instead, the general concept and the majority of the
considered literature represent the current knowledge of the topic. Another limitation of
this study was our focus on game-theory approaches related to APT detection and preven-
tion. However, other aspects of APTs could also be considered (i.e., vulnerability, risks,
aftermath, awareness, and preventive measures). Other aspects that could be overlooked
when using game theory to address APT attacks include:

• Human factors: Game-theory models generally assume that the actors (e.g., attackers
and defenders) are rational and make decisions based on a clear set of objectives and
preferences [77]. However, in real-world situations, human behavior can be influenced
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by various factors, such as emotions, biases, and social pressure, which game-theory
models may not capture [85].

• Legal and ethical considerations: Game-theory models often involve trade-offs be-
tween different objectives, such as security and privacy, or between stakeholders, such
as users and service providers. These trade-offs may have legal or ethical implications
that must be carefully considered.

• Practicality and limited flexibility: Game-theory models may only be practical or feasi-
ble to implement in real-world situations under specific circumstances, particularly if
they require significant resources or involve complex or expensive technologies [77].
Game-theory models are generally designed to analyze specific security scenarios or
behaviors. If the threat environment changes or new types of attacks emerge, it may
be necessary to develop new models or modify existing ones to address these changes.
This can be a time-consuming and resource-intensive process.

• Misuse or misappropriation: Game-theory models may be misused or misunder-
stood by practitioners who lack a thorough understanding of their limitations and
assumptions. This situation can lead to inappropriate or ineffective security measures
being implemented.

• Interactions with other approaches: There may need to be more than game-theory
models involved to comprehensively address APT attacks. They may need to be
combined with other approaches, such as risk assessment, vulnerability management,
and incident response. Therefore, it is essential to consider how game-theory models
fit into a security strategy and the interactions between different approaches.

• Complexity and data requirements: Game-theory models can be complex and may
require significant mathematical and analytical skills to understand and apply. This
can make it difficult for practitioners with limited technical expertise to use game
theory effectively. Game-theory models often require extensive data about the behavior
of attackers and defenders and the costs and consequences of different actions. In
cases where such data are unavailable or unreliable, it may be difficult to use game
theory effectively.

• Assumptions and limited applicability: Game-theory models are based on certain
assumptions about the behavior and motivations of attackers and defenders. If these
assumptions are invalid, the model’s results may not be accurate or applicable to real-
world situations. Game theory may not be suitable for addressing certain APT attacks
or security scenarios. For example, game theory may not be effective in situations
where the motivations or objectives of the attackers are not clearly defined or are
difficult to anticipate.

It is challenging to predict future developments in the use of game theory to address
APTs, as it depends on many factors, such as advances in technology, changes in the
threat landscape, and the emergence of new trends in security research. However, current
evidence has shown that game theory can continue to be a valuable tool for addressing
APT attacks, as it provides a framework for analyzing and understanding the strategic
interactions between attackers and defenders and can be used to optimize the security of
various types of systems. Some potential areas of future research that involve the use of
game theory to address APT attacks include:

• Developing more sophisticated game-theory models that can better capture the complex-
ity and uncertainty of real-world security scenarios, including the potential for multiple
attackers and defenders with different motivations, capabilities, and resources.

• Incorporating machine-learning techniques into game-theory models to enable the
more accurate prediction and optimization of security outcomes and to adapt to
changing threat environments and evolving attacker behaviors.

• Applying game theory to emerging technologies, such as quantum computing, block-
chain, and artificial intelligence, may present new challenges and opportunities for
APT attacks and defenses.
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• Investigating the use of game theory to optimize the security of emerging technologies,
such as smartphones, fog and edge computing, the internet of things (IoT), smart
cities, and related critical infrastructure systems (e.g., energy, healthcare, finance, law
enforcement, and the government) that may be particularly vulnerable to APT attacks.

• Developing game-theory approaches for managing and mitigating the impacts of
APT attacks, including methods for minimizing damage, recovering from attacks, and
preventing future attacks.

Governments could also take real-world actions, alongside lawmakers and other orga-
nizations, to address APTs, such as by developing and implementing effective cybersecurity
policies and regulations to establish minimum security standards for organizations and
individuals and provide guidance for APT protection. Several governments and related
organizations should also invest in research and development to better understand APT
attacks and develop new technologies and techniques for defending against them.

Moreover, cybersecurity awareness and education programs should be promoted to
help individuals and organizations understand the risks associated with APT attacks and
methods to protect against them. In addition, creating a channel for private sectors and
strengthening international cooperation should be conducted to disseminate information
about APT attacks and develop coordinated responses to potential threats while forming
international agreements and frameworks to prevent and mitigate APTs. Finally, effective
incident response capabilities should be developed and maintained to respond quickly and
efficiently to APTs and other cyber-related incidents.

6. Conclusions

Based on this literature review, a plethora of studies have applied game theory as a
tool for addressing APT attacks. Game theory provides a framework for analyzing and
understanding the strategic interactions between attackers and defenders. It has been
used to optimize the protective performance of security measures, anticipate and prepare
for countermeasures, and design incentive-compatible and welfare-maximizing contracts.
Game theory has also been applied to optimize the security of cyber–physical systems,
social networks, and transportation systems, among others. Game theory will continue to
be a valuable tool in addressing APT attacks in the future. It provides a means for analyzing
and understanding complex security scenarios and can be used to optimize the security of
various types of systems.

It is difficult to predict the trends of APTs in the future, as this will depend on many
factors, such as technological advances, changes in the threat landscape, and the emergence
of new trends in cyber-crime. However, APT attacks are likely to continue to evolve
and become more sophisticated, thus, posing significant challenges for defenders and
requiring ongoing efforts to outpace emerging threats. Some potential trends that may
emerge include the use of automation, where APT attacks become more automated and
sophisticated, and attackers using tools and techniques, such as machine learning and
artificial intelligence, to automate various aspects of the attack process. This situation could
make it more difficult for defenders to detect and respond to attacks.

In addition, attackers may focus more on emerging technologies, such as quantum
computing, block-chain, and the internet of things (IoT), which may be exploited as a
medium or as actors for different stages of an APT. This situation may present new op-
portunities and challenges for APT detection and prevention. Moreover, APT attackers
are likely to continue evolving their tactics and techniques to bypass defenses and evade
detection. This condition may include the use of new types of malware, the exploitation
of new vulnerabilities, and the use of more sophisticated social-engineering techniques.
This situation may also lead to more targeted APTs that focus on specific industries and
sectors of particular interest or value (e.g., healthcare, finance, critical infrastructure, and
the government).
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Appendix A. Extraction Form

Table A1 is the extraction form used for extracting the information of the reviewed articles.

Table A1. Extraction form used for the detection and defense of APT studies.

Data to Be Extracted Reviewer Notes

Title of publication
Journal
Journal domain
Author(s)
Author location (country and institution)
Year of publication
Industry application

M: Objective of the study
M: Research methods
M: Sources of data
M: Research instruments
M: Data analysis methods

V: Model or factors for defense/detection of
APT
V: Strategies, responses, and features of APT
V: Benefits and challenges of APT

R: Main findings
R: Implications
R: Conclusions

M–methodology; V–studied focuses; and R–results.
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