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MSC: The article’s purpose is to examine dthe Hyers—Ulam stability (HUS) for some linear fractional
34-XX dynamic equations (FDEs) with the Caputo A—derivative on time scale. If we swap out a certain
35R07 FDE for a fractional dynamical inequality, we want to know how close the solutions of the frac-
34408 tional dynamical inequality are to the solutions of the exact FDEs. Meanwhile, the generalized
Kﬁyw‘:isj-‘ HUS result is obtained as a direct corollary. To achieve this goal, we solve the aforementioned
Time scale

! equations utilizing the time scale version of the Laplace transform. Subsequently, the HUS is
Time:scale Laplace: transform investigated in accordance with thesedsolutions.
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1. Introduction

The term “Ulam stability” was born in 1940 through a novel question asked by Ulam at Wisconsin University. This question about
the stability problem of functional equations is succinctly stated as follows: “Under what conditions does there exist an additive
mapping near an approximately additive mapping?". In Banach spaces, Hyers [1] provided an answer to the problem of Ulam for
additive functions:

“Let Z|, =, be two real Banach space and & > (. Then for every mapping A : =, — Z, satisfying

lAGx + y) — Ax) — AWl < &, (1D
for all x, y € =, there exists a unique additive mapping B : =, — =, with the property
lAx) — Bx)|| <=, Vxe 5e (1.2)

This is the beginning point of the HUS theory of functional equations. Rassias [2] presented an impressive generalization of the HUS
of mappings by taking into account variables. However, the stability properties of all types of equations have become of interest
to numerous mathematicians. Over the next two decades, virtually all research on this stability concentrated on various kinds of
functional equations and various abstract spaces [3,4].

Recently, it was suggested to generalize Ulam’s problem by substituting differential equations in place of functional equations.
Obloza [5] was the first person to discuss the stability of differential equations via the concept of Ulam stability. Many researchers
have been concentrating on the study of the HUS of differential equations [6-15].
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The field of fractional calculus encompasses the examination of integrals and derivatives of fractional orders. The phenomenon
of fractionalization is of significant importance in bridging the gap between the classical model and quantum physics, enabling a
holistic understanding of the universe at various levels, including subatomic particles and cosmic structures. The primary aim of this
project is to enhance the accuracy in representing the physical realm. Fractional calculus has experienced a surge in significance
in recent times due to its efficacy as a robust tool for accurately and successfully modeling intricate phenomena across various
seemingly disparate domains in the realms of science and engineering.

In addition, fractional differential equations (FDEs) have been utilized in diverse domains, such as economics, various epidemi-
ological, electrical engineering, conducted research on thermal modeling, electrochemistry, conducted research on networks, and
amorlg others [16-36]. In the three decades prior, FDEs have become increasingly popular and significant. The Ulam stability of

< u(r) [(r.u(r)) with the Caputo derivative was first introduced by Wang et al. [37] via the fixed point theorem. Also, Wang

et aI [38] looked at the Ulam stability of the same equation under impulsive settings that same year. In 2015, Jiang et al. [39]
discuss the Ulam stability terminology for a kind of operator with appropriate conditions of ¢ Dj, u(z) = (Qu)(r) together with the
causal operator Q. Cuong [40] investigated the HUS for multi-order FDEs with Riemann-Liouville “derivative using the Banach fixed
point theorem with Bielecki’s type norm.

Hilger [41,42] proposed time scale calculus to unify and generalize the study of theories of discrete and continuous differential
equations and to extend these theories to other types of equations known as dynamic equations, which have recently gained a lot
of attention. The extension and unification of discrete and continuous equations are the two main features of time scale calculus.
Numerous results for continuous dynamic equations transfer pretty readily to analogous results for discrete dynamic equations,
although sometimes the results for discrete dynamic equations can seem to be at odds with those of continuous ones. In order to
avoid having to repeat the proof of results twice for discrete and continuous dynamic equations, one can study dynamic equations
on time scales. Many contributions and developments in time scale, applications of the theory, and methods have been made by
many scholars in various fields [43-48]. Nevertheless, there are few studies on the Ulam stability of dynamic equations on time
scales. To the best of our knowledge, [49] was the first to study the Ulam stability of several linear and nonlinear dynamic equations
as well as integral equations on time scales using direct and operational methods.

The fractional and time scales calculus have been mixed by Bastos’s Ph.D. thesis [50], to introduce fractional calculus on time
scales. Georgiev [51] created the fundamentals of fractional dynamic calculus and took into account the resolution of FDEs on time
scales. The study of FDEs on time scale has attracted the attention of many researchers [52-56]. There are only a few papers which
consider the HUS for FDEs on time scale [57-62]. Despite this, the Ulam stability of FDEs with Caputo A—derivatives on time scale
is still rare.

This paper’s purpose is to discuss the general solution and HUS for some linear FDEs with the Caputo A—derivative on time scale.

2. Preliminaries
This section covers some fundamental time-scale calculus concepts.

Definition 2.1 ([45]). The time scale T is defined as a non-empty arbitrary subset of K that is closed and non-empty.
For examples, C, J, and [0.1),(0,1].(0, 1), (0,1] U {2,6] do not represent T. Whereas Z, any closed interval [a, b] € I, the set
[0,1] U [4,5], M, and R represent T.
Definition 2.2 ([43]). At # € T, the operator o : T — T is
c(£)=inf{reT :r>7¢},

it is known as a forward jump operator. If (#) = #, then # is right-dense.

Definition 2.3 ([45]). At # € T, the operator p : T — T is
p@)=supfneT:n<r},

it is known as a backward jump operator. If p(#) = #, and # > inf T, then point # is called left-dense.

Definition 2.4 ([43]). The function u : T — [0, c0) is a graininess function, and is given by:
W) =ot)—¢, VEEeT.
Definition 2.5 ([43]). A time scale’s derived form, denoted as:
T = T\(p(supT),supT] if sup(T) < co,
R if sup(T) =
Definition 2.6 ([45]). Let ¢ : T — I& at all 4 € T*. The Hilger or delta derivative is represented by ¢ () as follows: Ve > 0, a
neighborhood exists My of n, My = (y — 6,7+ 6) n'T for some § > (), we have

o @) - 00 = @) @) - )| < & lo) - xl.
at k € My, & £ o).
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Definition 2.7 ([45]). The definition of the time scale monomials function hy(r,rg) : TXT =R, n el is
ho(r.rg) =1, VrryeT,

and

hy i (rorg) = / hy(r.rg)dr, ¥r.ry €T.
o

Theorem 2.1 ([45]). Let r.ry € T, n € M. Then

1) hy(r.r)=0,
(2) hy(rirg)=r—ry
(3) hy(r.rg) = hy (r.rg). VreT.

Example 2.1 ([51]). Consider some elucidatory time scales

(1) Let T = &, we have

(r—ry)"
n!

hq(r, rg) = . VrrgeT, ne M.

(2) Let T = Z, we have

(r— r;,)w _ (r —ry

hq(r, rg) = pr " ) L VrrgeT, nel,

where A? = [, and A" = HL—(: (r—i).

Definition 2.8 ([43]). The definition of the time scale Laplace transform of a function ¢ : T — R atall re T, is

£4(00))(s) = / P(r)es, (r, 0)Ar,

0
for s € D{e}, and D{¢} includes every complex numbers s € C with an improper integral. Inverse Laplace transform for time scale
is

£-1

o) = 5 / £41em) [J O+ utrs)ds, V£ €N,

n=l)

where y is any positively oriented closed curve.

Theorem 2.2 ([43]). At all s € C\{0}, let |1 + su(r) # 0 and n € N, we have
1 .
L4 0N = =, VrET,,

and

lim (h, (r,0)eq,(r.0)) = 0.
Definition 2.9 ([51]). For given function ¢.u : T — IR, their convolution ¢ * u is defined by
(@ *u)(r) = / P(r.o(Nu(s)As, YreT, r>r,
o
where @ is the shift or delay of ¢.

Theorem 2.3 ([43]). If L, (@] (s) and L, {u} (s) be Laplace transform of the functions @,u : T — &, respectfully, and L , {¢ * u} (s) exist
for s € C. Then we have

Lale 5 u)(s) = Ly {0} (DL4 {u} (5).
Definition 2.10 ([51]). The definition of the generalized fractional A—power function is
_ |
hy(r.rg) = £ (‘“T) (r), Vrzrg
at all s € C\ {0} is given by

hy(rom) = hy(org)rom), Var €T, r>n=ry.
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Definition 2.11 ([51]). At all r € T, and a > (. The Riemann-Liouville fractional A—integral for ¢ : T — R is

Iy, @) = @),

(I3, @) = (hyy (.rg) * @)(r)

= / hat (5 r0)(r, 0(0)p(0) Ao
ro
= /“' h,_(r.e(v)e(v)dv.

o

Definition 2.12 ([51]). At all r,ry € T, and « = 0. The Riemann-Liouville fractional A—derivative for ¢ : T — R is
Dirn @(r) = DZ I:;:go(r), VreT,

where 5 = — [—a].

Definition 2.13 ([51]). At all r,r; € T, and « = 0. The Caputo fractional A—derivative for ¢ : T — R is

n—1
Ty 3 3
g, o =05, (co(r)— > ho(r.rg)e® (fu))e Vr>0,

£=0
where 5 = [a] + 1.
Theorem 2.4 ([51]). Let @(r) € C':d([(}, oo)p. R) forall reT, neM, n—1<a <nand a > (. Then
n—1

£4 (608, u)) ) = *La@O)5) = Y, 5 62" (),

w=l)
at all s € C for which

lim (gaﬁ'"(r)ee,(r,o)) —0, me(0,....n—1}.
Definition 2.14 ([51]). The A-Mittag-Leffler function is described as

aFupldirirg) = E ‘ltlhe“uw—l(" ro)s (21
£=0

where a. f > 0, 1 € K.

Theorem 2.5 ([51]). Let o, f > 0 and # € M, we have

s F
E,_i. {AFu,,g(i.r, F(J)} (s, fu) = 1 (2.2)
a £15%F
Ly —aF qldrr §,rg) = ———., (2.3)
A { 324 A0 u)} (s,rp) R

where |1] < |s|®.
Theorem 2.6 ([51]). Let n— 1 < a < n(n € N), and 4 € K. Then the functions

X, (1) = gF, 1 (Airrg) (k=0,....n— 1), (2.4)

yield the fundamental system of solutions to

CD:;nx(r) — Ax(r) = 0.
3. Main results

In this section, we will discuss general solutions to a class of linear nonhomogeneous FDEs with the Caputo A—derivative. Then,
we proceed to analyze Ulam-Hyers’s stability.

3.1. Nonhomogeneous FDEs with the Caputo A—derivative
In [51], the particular solutions of the following nonhomogeneous equation with the Caputo A—derivative have been derived

LI

Y AEDY, X(r)+ Agx() = [(), VrET, (3.1)
=1
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wherew e M, 0 <a; <ay <

@y, Ag, A, ER.
By using the following Laplal:e fractional analog of the Green function

G"l’"z:""“w(r) - EZI (ﬁ) (r), vreT,
]y,

where P, 0, (5) = Ag + 20, Aps™

(3.2)
For aa]p’c;rr_lcular solution x p("’) of Eq. (3.1) with the initial conditions
X () =0,V =0,....0, ~ 1.
By using the Laplace transform of both side of Eq. (3.1), we get
L4 {x, (0} () = Ly lf(f)}((;‘)
Then

Here, we apply this method to find particular solutions to a class of linear nonhomogeneous FDEs on time scale
It is important to state the following theorem to complete our result
Theorem 3.1.

(3.3)
LetneM,n—1<a<n 0<f <a, and i, u € K. The equation
D‘;;nx(r) — A€ Dirnx(r) — ux(r) =10, (3.4)
with initial conditions
¥ (rg) = by, Vi=0,....m—1
has its ﬁmdamen[al system of solutions given by
2 21 d}{f"‘ a—ppevie1 (Asrirg)
,u
E 5_ fﬁ g pt+ir1 +a—p(A. 1. Tg), (3.5
=0
fori=0,....m—1,
o 4o
2 ) 7 w—p pe i1 (A rirg), (3.6)
£=
fori=m,. | < 1, Vs e C. Provided that the series in Egs. (3.5) and (3.6) are convergent.

—i—1 m—1
L (x(} ()= ) by—

B-i—1
L
i=n ¥ "l‘ﬁ K e e

Proof. Let m—1 < ff < m(m < n;n € M). Using time scale Laplace transform of Eq. (3.4), we have
m—1

For s € C and

| < 1, we have
|

(3.7)
sk |
s —AsP —p s P — 4 _wh
se—F—j
5P ul s

a — £
= (s=F - 1)
S sk
"
=0 (s F - 1) +]
Form Egs. (3.7) and (3.8), we obtain

Lylx(n} ()

E‘“,—”H.)
& pf saim1-A-¢8
g{b‘. (E. (s“ P ;{)fﬂ )

uf sP=i=1-=CB
e‘l
e‘—n(\”ﬁ— *

(3.8)
&"' —B—LB _ —B-¢F
a—i— f F §
o (S ) (F (
i=0 e‘—n sa—f — i=0 £=0 (
n—1 m—1

(3.9
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In addition, for s € C and |4s#~*| < 1, we get
ga-i-1-p-£p Ja—B)~(Be+it1)

(s“_ﬁ B ;1)“—] - (sa—P _A)e‘+]

1 a¢
= ﬁﬁa WdFu—ﬁ,ﬁc’+I+] (4, r.rg) ¢ (s),

and
SF-i-1-p—¢F Sla—B)—(BE+it1+a—f)

(S“_ﬁ _ A)c’"+] (S“_IH _ ;{)f+l

1 o )
= F‘:A &,.ar BBE i1 +a— ﬁ(;{ r.rg) ¢ (s).

dA
From Egs. (3.9), (3.10), and (3.11), we have

n—1
x(r) = E bix;(r),

i=l

where x;(r) (i = 0,...,5—1) are given by Eq. (3.5) fori = 0,...,m—1 and by Eq. (3.6) fori = m, ...

A7 u’ o
Xi = 7 aFupperivizap(dir.rp)
(f’:(l £l ax

t
h G v Gorr ))A
- 2, oz Ala—ppeviviva—gp )
~ 71 a2

D uf At = &
uod
= B A%h, Ar,r, ))
£ o{a—fHBE+i 0
& 7oz (HE_j

AP
oo _‘9
,u
2 Vo (E “Roa—pyrpetiva—p(rs ":))) .
0

Therefore,

Aﬂ
X; FYG E Roa—pyiperi-o(rro)
w=l)

w gt
Br)r (}}1‘" E’l hu(u BHBE+ita—f— 3(!’,!’(])

forf:(),.,.,m— 1, and

2 713 )1( E Roa—pyipe+i-o(rrods

fori=n,....m—1.
For i > 9, x4"(ry) = 0, and for i = 9, x4 (rg) = 1.

Corollary 3.1. Letyel,n—1<a<n 0<f <a and i € K. The following equation

CD:;nx(r) — € Dﬁmx(r) =0,
with initial conditions

x4 (rg) = by, Vi=0,....qn—1.
has its fundamental system of solutions given by

xXp = aFugin(Arirg) — A4 Fy gisia—p(Airirg)s
fori=0,....m—1,

X = AFu—ﬂ',i+I("L r,rg),

ori=m,....n— L.
n

Theorem 3.2. Let f : T— &, i€ R and n—1 < a < n(y € N). The FDE

D x(r)— ix(r) = f(r), VreT,

A.rg

=1L Ford=0,..

(3.10)

(3.11)

(3.12)

,n—1, we have

(3.13)

(3.14)

(3.15)

(3.16)
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is solvable, and has the following general solution
m—1

x(r) = (G = £) () + E box,.(r), (3.17)

x=l)
where
Gulr) = g Fyu(Air,ry),

and x, (r) is given by Eq. (2.4), and b, are arbitrary real constants.

Proof. Eq. (3.16) is Eq. (3.1) withw =1, a; = a, A; = 1, A; = —4 and using Eq. (3.2), we get
- 1
_ 1
By setting f = a in Eq. (2.2), we obtain
1

st — 1"

Ly {AFu,uU‘fe ro)} (s.rg) =

Therefore

[4] < |s]“.

Gulr) = g Fyu(Air,ry).

As a result, Eq. (3.3), with G,_,] P (r) = G,(r), and Theorem 2.6 yield Eq. (3.17).

Theorem 3.3. Let f : TR n—1l<a<nnelN), Lpuelk and a > f > 0 with u # 0. The following equation:

D, x() = A°D}, x(r) = ux(r) = S (1), (3.18)
has the general solution as follows:
n—1
x(r) = (Gy* ) () + 2 b.x, (r), (3.19)
=l

where
Gy plr) = gﬂ JI:?—T {;}% aFuparpn(4:r.10),

and x, (r) are given by (3.5) and (3.6), and b, are arbitrary real constants.

Proof. Eq.(3.18)is Eq. (3.1) withw =2, ay =a, ay = ff, A; =1, A; = —4, A; = —u and using Eq. (3.2), yields
Gup(r) =L (m) (r).

,u.\t_ﬂ
se—f—j

= 1 —nt1)f
Gup(r) = L3 (E L) ).

According to (3.8) for s € C with < 1, we have

) (s5F — )™

Now, use Theorem 2.5, with |As#~*| < 1, where « is changed by « — § and § by a + fin, we obtain
@B la—B)—(atfn)

(_\-u—ﬂ' — ;{)"H] - (Su—ﬁ _ A)"Hl
1 a1
N Eﬁ‘" (EAF”_H-“*'JEW(A" T :))) (s).

Consequently, we can conclude

<« W o
G = — —F, _ A rory).
ap(r) HEZU ot o2l fatpn(A 1)

As a result, Eq. (3.3) with G a, (1) =Gy p(r), and Theorem 3.1 result in Eq. (3.18).

LI -

Theorem 3.4. Let f : T— I, a > f > (), and A € K. The FDE

g, x(r)— A Dﬁmx(r) = f(r). (3.20)
has the general solution
n—1
x(r) = (Gup * £) (D) + Y box, (1), (3.21)

w=l)
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where
Gup(r) = aFypguld.rry),

and x, (r) are given by (3.14) and (3.15), and b, are arbitrary real constants.
Proof. Eq. (3.20) is Eq. (3.1) withw =1, a; =a, A; =0, A, =1, A, = -4 and using Eq. (3.2), we get

Gap(r) = L' (ﬁ) ().

Furthermore, we have
1 s
5T — AsP e f 3"
Now, using Theorem 2.5 with changing « by a« — f and § by a, we have

LR
C F, galA.r, 5,rg) = ———.
sl aFupaldr.rg)} (s.rg) e
By applying the Laplace inverse transform together with the above result, we get
Gopr) = gF,_pa(Ar.ry).

As a result, the result in (3.20) follows from (3.3) and Corollary 3.1.
3.2. Hyers-Ulam stability of FDEs on time scale

This section will demonstrate the Ulam stability of linear FDEs with Caputo A—derivative on time scale.

Definition 3.1. For r € T, the fractional dynamic equation

= C C ' _

E(/.x, Dy, x.....D}! 0 =0, (3.22)
has Hyers—-Ulam stability if there exists a constant £ > () such that for a given ¢ > () and for each function x : T — It such that

— C e C .

IS(f.x, D, x....°D,, x)| <&
then there exists a solution x, : T — & of Eq. (3.22) such that

|x(r) - xu(r)| < Ke.
If this statement is also true when we replace constants ¢ and K ¢ with the functions ©(r) and C(r), where these functions do not

depend on x and x,(r) explicitly, then we say that the Eq. (3.22) has the generalized Hyers-Ulam stability.

Lemma 3.1. Let a function w : T — . The convolution 4F, ; * v is

g * 00 = B4 [ iy 0wt

w=l) o

Proof. Since

aFyp(irv) = 2 Ry (r.0).
x=0

In addition, we have

aFupr,o®) = Y Fhyypp i (ro)).
k=l
Consequently, we can conclude that

r

(aFup *wiir) =/ Aﬁu,ﬁ(i»ﬂ o(v)y(v)dv

o
= [ Y Fheipr(ro@)w@)AD
o k=0
= 2 A / Ry pr1 (r. o))y (v)Av.
k=0 o

The following theorem directly leads to the determination of the Hyers—Ulam stability of Eq. (3.16).
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Theorem 3.5. On the time scale T, let f : T — K. If a function x : T — & fulfills
)CD’;mx(r) — Ax(r) — f(r)l <e VreT. (3.23)

where n—1 <a <n nel, n=—[-a] and i € R, and for some & > (, then there exists a solution x,(r) : T — & of Eq. (3.16) such that

Pe(r) = xo(r)] <& Y 141° /

=0 0

Begsyat (s a(u))( Av, VreT.

Proof. Define

w(r) =D x(r)— Ax(r)— f(r), VreT. (3.24)

Arg
Using Laplace transform to w(r), we get

n—1
L4 1w} (5) = 5"L4 [x()} (5) = ), bys™ ™!

d=0

= AL [x(N} () = L4 LS (D] (). (3.25)

where by = x4’ (r,). Then,

S ose L (D)) | Lalw(D)) ()
L § A : FRLAIAS)
L4{x(M)])(s) = g‘lby 5t a ot e (3.26)
Define
n—1
xa(r) = Y byxg(r) +(Gy % 1)),
#=0
where
xg(r) = dFu,ﬂ+1(’L r.ro)s
Gu(r) = g Fy (A1),
(G, = f)r) = E ,l'“/ hig i1y (rs o) f(v)dv.
a=0  Jro
By implementing Theorem 3.3 with changing § by x + 1, one can have
E—8—
La{x (N} () =Ly {aFpp1(hr.rg)}(s) = ‘:.u — |A] < |s]®. (3.27)
Again, we replace f by a, and we get
|
£4{Gun} ) = La{sFualhr.ro)} ()= ——5. 1A <Isl" (3.28)
From Egs. (3.27) and (3.28), we can conclude that
n—1
L4 {x,(N} )= Y byl s {x9(N} () + L4 {(G, = N} (5)
#=0
L :
_ E by + Lalf(n]} (-\)_ (3.29)
o S A 5T — 4
Using Theorem 2.4, Eq. (3.29) and a simple computation, one can get
m—1
C, {CDLnxu(r) - lxu(r)} () = 5L {x,(D} ) = Y s by — AL, {x,()} (5)
=0
=LA S ()] (). (3.30)
So x,(r) is the solution of Eq. (3.16). Furthermore, it results from Egs. (3.26) and (3.29) that
C 5
Lylx(0} () = Ly {x(n} (s) = Llvl®) _ Ly {(Gy )N} (). (3.31)

sT—4
Using the inverse Laplace transform of Eq. (3.31), we get

x(r) = x,(r)=(G, =w)(r), VreTl.
From the inequality (3.23), we know that |y(r)| < &, we can acquire
[x(r) = x,()| = (G, * w)(r)]



N.K. Mahdi and A.R. Khudair

E,v" / Ry, 1y (7. o) (v)Av
iy

#=0

< )ci 4| f e
#=0 o

Sé.i‘jy

r
=0 [n

Similarly, we can prove that the Eq. (3.16) is generalized Hyers-Ulam stable.

Begsyat (s a(u))( Av, VreT.

Corollary 3.2. Letn—1<a<mn neN, n=—[—a] and A € R. If the function x : T — R fulfills
)C D%, x(r) = ix(r) - f(r)l <), VreT,

then there is a solution x, : T — & of Eq. (3.16) such that
[x(r) — x,(r)] < Cr),

where

crn=73 |A|="/
o

=0

hgi1)a—1(r, 0 (U))le(ﬂ)dﬂ-

Theorem 3.6. On the time scale T, let A, ue Rwith u£0, n—1<a<n a>f>0, and y = —[—«a]. Let f(r) be a function defined on
time scale. If a function x : T — & fulfills
)C‘Djmx(r) € Dﬁ“_nx(r) — ux(r) - f(r)l <e. (3.32)

at all r € T and some ¢ > (), then there exists a solution x, : T — & of Eq. (3.4) such that

[x(r) = x,(r)| = f/

r
T

Gop(r, g(n))) Av, VreT.

Proof. Define
wir) = CD:;O x(r) — A€ Dg;nx(r) — ux(r)— f(r), VreT.

Letm—1 < f <mand m € N. We can clearly see m < 5 as a result of 0 < § < a. Using Lemma 3.1 and Laplace transform, one can
have

n—1

L w(NIs) = 5Ly (x() (5) = Y bys™ P71 = AP L4 (x(1)]} ()
#=0
m—1
+ 4 ) bygsP N — pl (X} () = L4 S ()} (). (3.33)
#=l

By (3.33), it follows that

S bys T — AT by L () (9)

C 5) =
alx(n} () A — g
L 5
4 alw(r)}(s) _ (3.32)
s — Asf —
Now, we set
n—1
x,(r) = X byxy(r) + (G * 1), (3.35)
#=0)
where
©poa
uod
xg(n = 2, = —7 aFapperan(dr.rg)
s ftox
<« K o
- Z1 57 aFapaerarivapChrre), V=0, m—1, (3.36)
=0
and
w 4’ ot
xy(r) = AFu—.rI,.rIe‘+-‘J+I("L rrg), V8=m .. .n—1 (3.37)

= £l gt
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By Theorem 3.3, we get

1

La{Gas} = TG

Then we can obtain

Lo/l ()

La{(Gap* D} = Z——5— - (3.38)
By Theorem 2.3, Theorem 2.5 and Eq. (3.38), we have
Ly {x, (N} () =Ly :g;byxy(r)} (s)+ Ly {:i b,,,x,,(r)} (s)
+ Ly {(Gup * )} (5) _
T b AT b £ ) 6) 39)

st — Asf —
From Eq. (3.39), we have
c, {CDLnxu(r) } (s)— AL, {CDirn x,(r) } () = HL 4 {x, (N} (5) = L LS ()]} (5). (3.40)
Using Egs. (3.34) and (3.39), we obtain

Lylw(n](s)
5T — AsP —

= L4 {(Gup * )0} (5). (3.41)

Using the inverse Laplace transform to both sides of Eq. (3.41), we get

Lalx(N} ()= L4 {x, (N} (5) =

X() = x,(r) = (G * w)(r), VreT.
By Eq. (3.32), we have

lw(r)| <&, VreTl.
Then, we can obtain

|x(r) = x ()| =

G+ w)O)|

f Gy, 0@ (®) A0
o

r
</,
o
r
SE'/
ry

L]

G, 0y ()] o

(’?::;(r, a(v)) } Auv.

Corollary 3.3. Let f : T — I, and the integral Jl';:l
inequality

G::g(r, 0(!}))‘8(!))&!} exists at all r € T. If a function x : T — IR satisfies the following

|C' D}, x(r) = A°D} x(r) - ux(r) - f(r)( <O(r), VreT

where n— 1l <a<np nel, a>f>0, n=—[—al, 4, u€ & with u # (. Then there is a solution x : T — & of Eq. (3.4) such that
[x(r) = x,(r)| < C(r),
where

C(r) = / ’
L]

In order to complete Theorem 3.6, we also take into account the Ulam stability of Eq. (3.18) with the coefficient p = 0.

G::}j (r, o‘(u))‘ B(v)dv.

Theorem 3.7. On the time scale, Let [ : T — & be a function, n — 1 <a<npne M, a>f >0, g =—[-al, and 4 € K. If a function
x : T — R satisfies

€5, x() — D), x() - ()| < (3.42)

at all r € T, and some ¢ > (), then there exists a solution x, : T — & of Eq. (3.20) such that

|x(r) = x, () <& Y 141° /
iy

=0

hgi1ya—gp1(r.o(w)| dv, ¥YreT.
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Proof. Define
wir) = CD:;O x(r) — A€ Dﬂmx(r) — f(r.VreT.

Using Lemma 3.1 with Laplace transform, on can have

m—1

L w()s) = 5Ly () (5) = Y bys™ 1 = AP L4 {x(r)} (5)
a=0

m—1
+ 4 ) by — Ly (1)} ().

4=0
By Eg. (3.43), it follows that

-1 a—f— m— b
o bas T = AT bysP M+ Ly (D)) ()
§¢ — Ash

Lafx(n}(s)=
4 Ed{'ﬂ(’)}(“")‘
5% — Asf
Now, we set

n—1

xo(r) = Y byxa(r) + (G * )1,

d#=l)

where

Xg=aF papi(Adrrg) = A 4F, pgariyapldrrg) V8=0,....m—1,

and

Xpg=pFy pap(drrgh Vd=m ... .n—1L
Such that

G p(r) = gFy_g (A, r.rg),
and

(Gup* NN =D, 4" f g ya—sp—1(r o) f ().

=0 o

By Theorem 2.3 and Theorem 2.5, we have

m—1 n—1
La{x,(n)}(s)=Ly 2 b”x”(r)} (s)+ L, { 2 by-‘y(")} () + L4 {(Gop* N} (5)

#=0

#=m

m—1

= E be Ly aFupopi1(Arirg) = AgFy pairiqplhrrg)}(s)
#=0

Lylf(n}(s)

n—1
+ byl F,_ Ar, 5)+
Eﬂ 9La{aFs por1(4.r r)} (s) pra—

o bas T = AT bysP T+ L (D) ()
5% — AsP :

From Eq. (3.49), one can get
£, {05, %= 3Dk, X, } ()= £417 ) ),
50 x,(r) is a solution of Eq. (3.20). Using Egs. (3.44) and (3.49), we obtain

Lylw(n](s)
5% — AsP
Using the inverse time scale Laplace transform to both sides of Eq. (3.51), we get

Ly (x(N} () = L4 {x, (N} () = = L4 {(Gpp * W)} (5).
x(r) = x,(r) = (Gy g+ y)(r), VreTl.
Similar to the above theorems’ proof, we obtain

(G * )0

seiur"/r
o

=0

|x(r) - xu(r)| =

higi1ya—sp-1(r- ()] Av.

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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Corollary 3.4. On the time scale, let f : T — & be a function, n— | <a <npnel, a> >0, n=—[—a] and A € K. If a function
x : T — IR satisfies the following inequality for a given £ > 0

Ic, D, x(r) = A Dﬁ-’nx(r) - f(r)) <Or), VreT,
then there is a solution x, : T — & of Eq. (3.20) such that
[x(r) = x,(N]| < Cr). VreT

where

higi 1ya—gp—1(r: ()| Ov) dv.

=7y |A|="/
]

=0

4. Conclusions

The HUS study of a class of linear FDEs with Caputo A—derivative on time scale is our target in this paper. For this purpose, the
Laplace transform in its time scale version has been used. If the exact solution does not exist or is difficult to find, the approximate
solutions for these types of equations are sufficient to study HUS. In fact, this is the main advantage of our main results in studying
HUS, which is very important in various fields, including optimization, numerical analysis, economics, and biology.
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