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A B S T R A C T

The objective of this article is to present a novel algorithm that can efficiently address fractional
quadratic optimal control problems (FQOCPs) through the application of the generalized
differential transform method, in conjunction with a Vandermonde matrix. The algorithm’s
performance, in terms of solution accuracy, reliability, and efficiency, is exemplified by a range
of illustrative examples. This paper introduces an innovative methodology for the numerical
resolution of FQOCPs, demonstrating its inherent capabilities and efficacy.

. Introduction

The theory of optimal control is a mathematical branch that focuses on minimizing or maximizing a given cost function in
pecific dynamical systems. It has gained considerable attention from scientists due to its effectiveness in designing and analyzing
eal-life models, such as spacecraft [1], engineering [2], physical devices [3–5], biological systems [6–9], economics [10], and
thers. On the other hand, fractional calculus is employed to model real-world systems, offering enhanced accuracy, efficiency, and
recision in capturing their dynamic behavior. This motivated O. P. Agarwal to apply classical control theory within a fractional
ramework, leading to the development of optimal fractional control theory [11,12]. Consequently, numerous researchers have
ocused on finding optimal solutions for dynamical systems described by fractional derivatives [13–32].

Fractional derivatives can be defined in various ways, including Caputo, Riemann–Liouville, Grünwald–Letnikov, and others.
onsequently, many studies have been conducted on fractional optimal control systems described by Caputo or Riemann–Liouville

ractional derivatives. As the demand for the application of fractional optimal control problems (FOCPs) grows, the need for
umerical methods to solve the resulting equations has emerged as a rapidly expanding area of research. Two main approaches,
irect and indirect methods, are commonly employed in numerical schemes for this purpose. Indirect methods involve solving
he Pontryagin’s system using suitable numerical techniques, which is complex due to the involvement of both left and right
ractional derivatives in the Pontryagin’s equations [11,12,33–39]. In contrast, direct methods approximate the FOCP without
onsidering the necessary optimality conditions [40–47]. Inspired by Taylor series expansion, Zhou [48] introduced the differential
ransform method (DTM), which is a powerful semi-numerical technique. DTM is an appealing option for researchers to solve both
inear and nonlinear problems due to its lack of necessity for linearization or domain discretization. In fact, DTM distinguishes
tself from the Taylor series method by offering a simplified approach while yielding equivalent outcomes. Notably, DTM exhibits
educed computational time for higher orders, making it advantageous for handling complex calculations. In recent times, there has
een an increasing scholarly focus on addressing fractional differential equations (FDEs), resulting in the emergence of dedicated
ethodologies tailored to this objective. Arikoglu and Ozkol [49], Odibat et al. [50], and Khdair et al. [51] introduced the fractional
ifferential transform method (FDTM), generalized differential transform method (GDTM), and restricted differential transform
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method (RDTM), respectively. These modifications of the differential transform method (DTM) were developed to address the
solution of fractional differential equations (FDEs). The FDTM, GDTM, and RDTM methods are not good for solving these problems
because they involve two different Caputo fractional derivatives in the fractional two boundary value problem that has to do with
FOCPs. Because of this, the study’s goal is to get around this problem by using the Vandermonde matrix and the Generalized Dynamic
Time Warping Method (GDTM) on the time boundaries.

2. Caputo fractional derivative(CFD)

Let 𝑥(𝑡) ∶ [𝑎, 𝑏] → 𝑅 be a function and 𝛼 > 0, 𝛼 ∈ 𝑅 such that 𝑚 = [𝛼] + 1 where [·] is the greatest integer function. The left and
ight 𝛼 Riemann–Liouville fractional integral (RLFI) are defined as follows, respectively:

𝑎𝐼
𝛼
𝑡 𝑥(𝑡) =

1
𝛤 (𝛼) ∫

𝑡

𝑎
(𝑡 − 𝑠)𝛼−1𝑥(𝑠)𝑑𝑠, 𝑡 > 𝑎 (1)

𝑡𝐼𝑏
𝛼𝑥(𝑡) = 1

𝛤 (𝛼) ∫

𝑏

𝑡
(𝑠 − 𝑡)𝛼−1𝑥(𝑠)𝑑𝑠, 𝑡 < 𝑏 (2)

for 𝛼, 𝛽 > 0, 0 < 𝛼 ≤ 1, and 0 ≤ 𝑎 < 𝑏, we have

𝐼𝛼𝑎 𝐼
𝛽
𝑎 𝑥(𝑡) = 𝐼𝛽𝑎 𝐼

𝛼
𝑎 𝑥(𝑡) = 𝐼𝛼+𝛽𝑎 𝑥(𝑡) (3)

𝐼𝛼𝑏 𝐼
𝛽
𝑏 𝑥(𝑡) = 𝐼𝛽𝑏 𝐼

𝛼
𝑏 𝑥(𝑡) = 𝐼𝛼+𝛽𝑏 𝑥(𝑡) (4)

Based on the left 𝛼 RLFI in Eq. (1), the left 𝛼 CFD of 𝑥(𝑡), when it exists, is defined as

𝐶
𝑎 𝐷𝑡

𝛼𝑥(𝑡) = 𝑎𝐼𝑡
𝑚−𝛼𝐷𝑚𝑥(𝑡) = 1

𝛤 (𝑚 − 𝛼) ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑚−𝛼−1𝑥(𝑚)(𝑠)𝑑𝑠 (5)

Also, by using the right 𝛼 RLFI in Eq. (2) the right 𝛼 CFD can be define as follows

𝐶
𝑡 𝐷

𝛼
𝑏𝑥(𝑡) = (−1)𝑚 𝑡𝐼𝑏

𝑚−𝛼𝐷𝑚𝑥(𝑡) =
(−1)𝑚

𝛤 (𝑚 − 𝛼) ∫

𝑏

𝑡
(𝑠 − 𝑡)𝑚−𝛼−1𝑥(𝑚)(𝑠)𝑑𝑠 (6)

here 𝑥(𝑚)(𝑡) and 𝐷𝑚𝑥(𝑡) are the usual 𝑚th derivative of 𝑥(𝑡).
Now, it is easy to verify the following relationships:

𝐶
𝑎 𝐷

𝛼
𝑡 (𝑡 − 𝑎)𝛾 =

𝛤 (𝛾 + 1)
𝛤 (𝛾 − 𝛼 + 1)

(𝑡 − 𝑎)𝛾−𝛼 , 𝑡 > 𝑎, 𝛾 > 𝑚 (7)

𝐶
𝑎 𝐷

𝛼
𝑡 (𝑡 − 𝑎)𝑘 = 0, 𝑡 > 𝑎, 𝑘 = 0, 1,… , 𝑚 − 1 (8)

𝐶
𝑡 𝐷

𝛼
𝑏 (𝑏 − 𝑡)𝛾 =

𝛤 (𝛾 + 1)
𝛤 (𝛾 − 𝛼 + 1)

(𝑏 − 𝑡)𝛾−𝛼 , 𝑡 < 𝑏, 𝛾 > 𝑚 (9)

𝐶
𝑡 𝐷

𝛼
𝑏 (𝑏 − 𝑡)𝑘 = 0, 𝑏 > 𝑡, 𝑘 = 0, 1,… , 𝑚 − 1 (10)

𝑎𝐼
𝛼
𝑡
𝐶
𝑎 𝐷

𝛼
𝑡 𝑥(𝑡) = 𝑥(𝑡) −

𝑚−1
∑

𝑠=0

𝑥(𝑠)(𝑎)
𝑠!

(𝑡 − 𝑎)𝑠 (11)

𝑡𝐼
𝛼
𝑏
𝐶
𝑡 𝐷

𝛼
𝑏𝑥(𝑡) = 𝑥(𝑡) −

𝑚−1
∑

𝑠=0

(−1)𝑚𝑥(𝑘)(𝑏)
𝑠!

(𝑏 − 𝑡)𝑠 (12)

For 0 < 𝛼 < 1, Eqs. (11) and (12) become

𝑡𝐼
𝛼
𝑏 [

𝐶
𝑎 𝐷

𝛼
𝑡 𝑥(𝑡)] = 𝑥(𝑡) − 𝑥(𝑎) (13)

𝑡𝐼
𝛼
𝑏 [

𝐶
𝑡 𝐷

𝛼
𝑏𝑥(𝑡)] = 𝑥(𝑡) − 𝑥(𝑏) (14)

3. Problem formulation

Numerous real-world applications involve solving a system of differential equations, commonly known as state space equations, to
optimize a certain performance functional, often referred to as a cost functional. These optimization problems are known as optimal
control problems (OCPs). The nature of OCPs can vary significantly depending on the types of state space equations, cost functions,
and admissible sets of control variables involved. In recent years, a particular focus has been given to the study of fractional dynamic
systems.

𝐶𝐷𝛼𝑥(𝑡) = 𝐺 (𝑡, 𝑥(𝑡)) + 𝐺 (𝑡, 𝑥(𝑡))𝑢(𝑡), 𝑥(𝑎) = 𝑥 (15)
2

𝑎 𝑡 1 2 𝑎
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Here, the state variable is denoted as 𝑥(𝑡) ∈ 𝑅𝑛, and it satisfies Eq. (15) for a given control input 𝑢(𝑡) ∈ 𝑅𝑚. The objective is to
inimize the performance functional, which is defined as follows:

Min ℑ[𝑥(𝑡), 𝑢(𝑡)] = 1
2
𝑥𝑇 (𝑏)𝑀𝑛×𝑛, 𝑥(𝑏) +

1
2 ∫

𝑏

𝑎

[

𝑥𝑇 (𝑡)𝑄𝑛×𝑛(𝑡)𝑥(𝑡) + 𝑢𝑇 (𝑡)𝑅𝑚×𝑚(𝑡)𝑢(𝑡)
]

𝑑𝑡 (16)

Here, 𝑀 , 𝑄, and 𝑅 are positive definite 𝑛 × 𝑛 matrices, and 𝑎 and 𝑏 denote the initial and terminal times, respectively.
To find the optimal control 𝑢∗(𝑡) ∈ 𝑅𝑚, we will use optimal control theory [52]. The first step is to construct the Hamiltonian

unction:

𝐇(𝑡, 𝑥, 𝑢, 𝜆) = 1
2
[𝑥𝑇𝑄, 𝑥 + 𝑢𝑇𝑅, 𝑢, ] + 𝜆𝑇

[

𝐺1(𝑡, 𝑥) + 𝐺2(𝑡, 𝑥)𝑢
]

(17)

Here, 𝜆(𝑡) ∈ 𝑅𝑛 is the co-state variable.
The second step involves applying Pontryagin’s minimum principle [52]:

𝐶
𝑎 𝐷

𝛼
𝑡 𝑥(𝑡) = 𝐇𝜆(𝑡)(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆∗(𝑡)) (18)

𝐶
𝑡 𝐷

𝛼
𝑏𝜆(𝑡) = 𝐇𝑥(𝑡)(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆∗(𝑡)) (19)

𝐇𝑢(𝑡)(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡)) = 0 (20)

𝐇(𝑡, 𝑥(𝑡), 𝜆(𝑡), 𝑢(𝑡)) ≥ 𝐇(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆∗(𝑡)) (21)

𝜆(𝑏) = M, 𝑥(𝑏) (22)

The optimal 𝑢(𝑡) ∈ 𝑅𝑚 must satisfy Eqs. (20) and (21). By finding an expression for 𝑢(𝑡) in terms of 𝑥(𝑡) and/or 𝜆(𝑡) and substituting
it into Eqs. (18) and (19), the quasi-fixed-point optimal control problem (QFOCP) is equivalent to solving Eqs. (18) and (19) with
initial conditions 𝑥(𝑎) = 𝑥𝑎 and 𝜆(𝑏) = M, 𝑥(𝑏).

In the following sections, we will delve into the detailed solution methodology for the QFOCP and provide insights into the
optimal control theory.

4. Generalized differential transform method

This section is devoted the review of GDTM. First, we state the generalized Taylor’s formula (GTF) [53], which given by the
following theorem

Theorem 4.1 ([53]). If 𝐶
𝑎 𝐷

𝑠𝛼
𝑡 𝑥(𝑡) ∈ 𝐶(𝑎, 𝑏], ∀𝑠 = 0, 1,… , 𝑁 + 1, where 0 < 𝛼 ≤ 1. If 𝑡 ∈ [𝑎, 𝑏], then

𝑥(𝑡) =
𝑁
∑

𝑠=0

(𝑡 − 𝑎)𝑠𝛼

𝛤 (𝑠𝛼 + 1)
𝐶
𝑎 𝐷

𝑠𝛼
𝑡 𝑥(𝑎) +

𝐶
𝑎 𝐷

𝑠𝛼
𝑡 𝑥(𝜁 )

𝛤 ((𝑁 + 1)𝛼 + 1)
(𝑡 − 𝑎)(𝑁+1)𝛼 , ∃𝜁 ∈ [𝑎, 𝑡], ∀𝑡 ∈ (𝑎, 𝑏] (23)

Depend on the GTF Eq. (23), the GDTM of the 𝑠th Caputo fractional derivative of 𝑥(𝑡) is define as

𝑋[𝑠] = 1
𝛤 (𝛼𝑠 + 1)

𝐶
𝑎 𝐷

𝑠𝛼
𝑡 𝑥(𝑡) |

|𝑡=𝑎 , ∀𝑠 = 0, 1,… (24)

Where 𝐶
𝑎 𝐷

𝑠𝛼
𝑡 = 𝐶

𝑎 𝐷
𝛼
𝑡 .

𝐶
𝑎 𝐷

𝛼
𝑡 ...
𝑠 𝑡𝑖𝑚𝑒𝑠

𝐶
𝑎 𝐷

𝛼
𝑡 , 0 < 𝛼 ≤ 1, and the differential inverse transform of 𝑋[𝑠] is defined as

𝑥(𝑡) =
∞
∑

𝑠=0
𝑋[𝑠](𝑡 − 𝑎)𝑠𝛼 (25)

By substituting Eq. (24) into Eq. (25) and using the generalized Taylor’s formula Eq. (23), one can have
∞
∑

𝑠=0
𝑋[𝑠](𝑡 − 𝑎)𝑠𝛼 =

∞
∑

𝑠=0

(𝑡 − 𝑎)𝑠𝛼

𝛤 (𝛼𝑠 + 1)
𝐶
𝑎 𝐷

𝑠𝛼
𝑡 𝑥(𝑡) = 𝑥(𝑡) (26)

So, Eq. (25) is the inverse of GDTM is given by Eq. (24).

𝑥(𝑡) =
𝑁
∑

𝑠=0
𝑋[𝑠](𝑡 − 𝑎)𝑠𝛼 (27)

Now, let 𝑥(𝑡) = ∑𝑁
𝑠=0 𝑋[𝑠](𝑡 − 𝑎)𝑠𝛼 , 𝑥1(𝑡) =

∑𝑁
𝑠=0 𝑋[𝑠](𝑡 − 𝑎)𝑠𝛼 and 𝑥2(𝑡) =

∑𝑁
𝑠=0 𝑋2[𝑠](𝑡 − 𝑎)𝑠𝛼 then the following theorems are hold:

Theorem 4.2 ([50]). If 𝑥(𝑡) = 𝑥1(𝑡) ± 𝑥2(𝑡) , then 𝑋[𝑠] = 𝑋1[𝑠] ±𝑋2[𝑠], ∀𝑠 = 0, 1,…
3

Theorem 4.3 ([50]). If 𝑥(𝑡) = 𝑎 𝑥1(𝑡) , then 𝑋[𝑠] = 𝑎𝑋1[𝑠], ∀𝑠 = 0, 1,…, where a constant
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Theorem 4.4 ([50]). If 𝑥(𝑡) = 𝑋1(𝑡)𝑋2(𝑡) , then 𝑋[𝑠] =
∑𝑠

𝑟=0 𝑋1[𝑟]𝑋2[𝑠 − 𝑟], ∀𝑠 = 0, 1,…

Theorem 4.5 ([50]). If 𝑥(𝑡) = 𝐶
𝑎 𝐷

𝛼
𝑡 𝑋1(𝑡) , then 𝑋[𝑠] = 𝛤 (𝛼(𝑠+1)+1)

𝛤 (𝛼𝑠+1) 𝑋1[𝑠 + 1], ∀𝑠 = 0, 1,…

heorem 4.6 ([50]). If 𝑥(𝑡) = (𝑡 − 𝑎)𝑛𝛼 𝑡ℎ𝑒𝑛𝑋[𝑠] = 𝛿 (𝑠 − 𝑛) 𝑤ℎ𝑒𝑟𝑒 𝛿 (𝑠) =
{

1 𝑖𝑓 𝑠 = 0
0 𝑖𝑓 𝑠 ≠ 0

. Main result

Since the co-state Eq. (19) represented by the right 𝛼 CFD, we derive generalized Taylor’s formula by using the right 𝛼 CFD. The
ollowing theorem is Generalized mean value theorem in term of the right 𝛼 CFD.

heorem 5.1. For 0 < 𝛼 < 1, if 𝑥(𝑡) ∈ 𝐶 [𝑎, 𝑏] and 𝐶
𝑡 𝐷

𝛼
𝑏𝑥(𝑡) ∈ 𝐶 (𝑎, 𝑏], then there exist 𝜉 ∈ [𝑡, 𝑏] such that

𝑥(𝑡) = 𝑥(𝑏) + 1
𝛤 (𝛼 + 1)

𝐶
𝑡 𝐷

𝛼
𝑏𝑥(𝜉) . (𝑏 − 𝑡)𝛼 , ∀𝑡 ∈ (𝑎, 𝑏] (28)

Proof. For 0 < 𝛼 < 1, we have

𝑡𝐼
𝛼
𝑏 [

𝐶
𝑡 𝐷

𝛼
𝑏𝑥(𝑡)] = 𝑥(𝑡) − 𝑥(𝑏) (29)

Now, let 𝑔(𝑡) = 𝐶
𝑡 𝐷

𝛼
𝑏𝑥(𝑡) ∈ 𝐶 (𝑎, 𝑏], Eq. (29)

𝑡𝐼
𝛼
𝑏 𝑔(𝑡) = 𝑥(𝑡) − 𝑥(𝑏) (30)

By using the definition of the right 𝛼 CFD of 𝑔(𝑡), we have

1
𝛤 (𝛼) ∫

𝑏

𝑡
(𝑠 − 𝑡)𝛼−1𝑔(𝑠) 𝑑𝑠 = 𝑥(𝑡) − 𝑥(𝑏) 𝑏 > 𝑡 (31)

By using the integral mean value theorem, there is 𝜉 ∈ [𝑡, 𝑏] such that

1
𝛤 (𝛼)

𝑔(𝜉)∫

𝑏

𝑡
(𝑠 − 𝑡)𝛼−1𝑑𝑠 = 𝑥(𝑡) − 𝑥(𝑏) 𝑏 > 𝑡 (32)

1
𝛤 (𝛼)

𝑔(𝜉)
(𝑏 − 𝑡)𝛼

𝛼
= 𝑥(𝑡) − 𝑥(𝑏) 𝑏 > 𝑡 , ∀𝑡 ∈ (𝑎, 𝑏] (33)

So, one can get

𝑥(𝑡) = 𝑥(𝑏) + 1
𝛤 (𝛼 + 1)

𝐶
𝑡 𝐷

𝛼
𝑏𝑥(𝜉) . (𝑏 − 𝑡)𝛼 (34)

Theorem 5.2. For 0 < 𝛼 ≤ 1, if 𝐶
𝑡 𝐷

𝑛𝛼
𝑏 𝑥(𝑡), 𝐶𝑡 𝐷

(𝑛+1)𝛼
𝑏 𝑥(𝑡) ∈ 𝐶 (𝑎, 𝑏], then we have

𝐼𝑛𝛼𝑏
𝐶
𝑡 𝐷

𝑛𝛼
𝑏 𝑥(𝑡) − 𝐼 (𝑛+1)𝛼𝑏

𝐶
𝑡 𝐷

(𝑛+1)𝛼
𝑏 𝑥(𝑡) =

(𝑏 − 𝑡)𝑛𝛼

𝛤 (𝑛𝛼 + 1)
𝐶
𝑡 𝐷

𝑛𝛼
𝑏 𝑥(𝑏) (35)

where 𝐶
𝑡 𝐷

𝑛𝛼
𝑏 is the sequential right 𝛼 CFD which is define by

𝐶
𝑡 𝐷

𝑛𝛼
𝑏 = 𝐶

𝑡 𝐷
𝛼
𝑏 .

𝐶
𝑡 𝐷

𝛼
𝑏 …
𝑛−𝑡𝑖𝑚𝑒𝑠

𝐶
𝑡 𝐷

𝛼
𝑏 (36)

Proof. We have, using Eq. (35)

𝐼𝑛𝛼𝑏
𝐶
𝑡 𝐷

𝑛𝛼
𝑏 𝑥(𝑡) − 𝐼 (𝑛+1)𝛼𝑏

𝐶
𝑡 𝐷

(𝑛+1)𝛼
𝑏 𝑥(𝑡) = 𝐼𝑛𝛼𝑏 [𝐶𝑡 𝐷

𝑛𝛼
𝑏 𝑥(𝑡) − 𝐼𝛼𝑏

𝐶
𝑡 𝐷

(𝑛+1)𝛼
𝑏 𝑥(𝑡)]

= 𝐼𝑛𝛼𝑏 [𝐶𝑡 𝐷
𝑛𝛼
𝑏 𝑥(𝑡) − (𝐼𝛼𝑏

𝐶
𝑡 𝐷

𝛼
𝑏 )

𝐶
𝑡 𝐷

𝑛𝛼
𝑏 𝑥(𝑡)]

= 𝐼𝑛𝛼𝑏 [𝐶𝑡 𝐷
𝑛𝛼
𝑏 𝑥(𝑡) − 𝐶

𝑡 𝐷
𝑛𝛼
𝑏 𝑥(𝑡) − 𝐶

𝑡 𝐷
𝑛𝛼
𝑏 𝑥(𝑏)]

= 𝐼𝑛𝛼𝑏
𝐶
𝑡 𝐷

𝑛𝛼
𝑏 𝑥(𝑏)

=
(𝑏 − 𝑡)𝑛𝛼

𝛤 (𝑛𝛼 + 1)
𝐶
𝑡 𝐷

𝑛𝛼
𝑏 𝑥(𝑏)

The next theorem gives a Generalized Taylor’s formula in term of the right 𝛼 CFD.

Theorem 5.3. For 0 < 𝛼 ≤ 1, if (𝐶𝑡 𝐷
𝛼
𝑏 )

𝑘𝑥(𝑡) ∈ 𝐶 (𝑎, 𝑏] for 𝑘 = 0, 1, 2,… , 𝑛 + 1, then there exist 𝜉 ∈ [𝑡, 𝑏] such that

𝑥(𝑡) =
𝑛
∑ (𝑏 − 𝑡)𝑖𝛼

(𝐶𝑡 𝐷
𝛼
𝑏 )

𝑖𝑥(𝑏) +
(𝐶𝑡 𝐷

𝛼
𝑏 )

𝑛+1𝑥(𝜉)
. (𝑏 − 𝑡)(𝑛+1)𝛼 , ∀𝑡 ∈ (𝑎, 𝑏] (37)
4

𝑖=0 𝛤 (𝑖𝛼 + 1) 𝛤 ((𝑛 + 1)𝛼 + 1)
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Proof. By using the result in Theorem 5.2, we have
𝑛
∑

𝑖=0
[𝐼 𝑖𝛼𝑏 (𝐶𝑡 𝐷

𝛼
𝑏 )

𝑖𝑥(𝑡) − 𝐼 (𝑖+1)𝛼𝑏 (𝐶𝑡 𝐷
𝛼
𝑏 )

(𝑖+1)𝑥(𝑡)] =
𝑛
∑

𝑖=0

(𝑏 − 𝑡)𝑖𝛼

𝛤 (𝑖𝛼 + 1)
(𝐶𝑡 𝐷

𝛼
𝑏 )

𝑖𝑥(𝑏) (38)

hat is

𝑥(𝑡) − 𝐼 (𝑛+1)𝛼𝑏 (𝐶𝑡 𝐷
𝛼
𝑏 )

(𝑛+1)𝑥(𝑡) =
𝑛
∑

𝑖=0

(𝑏 − 𝑡)𝑖𝛼

𝛤 (𝑖𝛼 + 1)
(𝐶𝑡 𝐷

𝛼
𝑏 )

𝑖𝑥(𝑏) (39)

𝐼 (𝑛+1)𝛼𝑏 (𝐶𝑡 𝐷
𝛼
𝑏 )

(𝑛+1)𝑥(𝑡) = 1
𝛤 ((𝑛 + 1)𝛼) ∫

𝑏

𝑡
(𝑠 − 𝑡)(𝑛+1)𝛼−1(𝐶𝑡 𝐷

𝛼
𝑏 )

𝑛+1𝑥(𝑠)𝑑𝑠 (40)

y applying the integral mean value theorem yields, there exist 𝜉 ∈ [𝑡, 𝑏] such that

𝐼 (𝑛+1)𝛼𝑏 (𝐶𝑡 𝐷
𝛼
𝑏 )

(𝑛+1)𝑥(𝑡) =
(𝐶𝑡 𝐷

𝛼
𝑏 )

𝑛+1𝑥(𝜉)
𝛤 ((𝑛 + 1)𝛼) ∫

𝑏

𝑡
(𝑠 − 𝑡)(𝑛+1)𝛼−1𝑑𝑠 𝑤𝑖𝑡ℎ ∀𝑡 ∈ (𝑎, 𝑏] (41)

=
(𝐶𝑡 𝐷

𝛼
𝑏 )

𝑛+1𝑥(𝜉)
𝛤 ((𝑛 + 1)𝛼 + 1)

(𝑏 − 𝑡)(𝑛+1)𝛼 (42)

rom Eqs. (42) and (39), the GTF in term of the right 𝛼 CFD is obtained.
Now, by using the result in Theorem 5.3, we define the GDTM about 𝑡 = 𝑏 of 𝑥(𝑡) as follows:

𝑋[𝑠] = 1
𝛤 (𝛼𝑠 + 1)

𝐶
𝑡 𝐷

𝑠𝛼
𝑏 𝑥(𝑡) |

|𝑡=𝑏 , 0 < 𝛼 ≤ 1, ∀𝑠 = 0, 1,… (43)

Also, the differential inverse transform of 𝑋[𝑠] is defined as

𝑥(𝑡) =
∞
∑

𝑠=0
𝑋[𝑠](𝑏 − 𝑡)𝑠𝛼 (44)

It is easy verify this claim by substituting Eq. (43) into Eq. (44) and Theorem 5.3, one can have
∞
∑

𝑠=0
𝑋[𝑠](𝑏 − 𝑡)𝑠𝛼 =

∞
∑

𝑠=0

(𝑏 − 𝑡)𝑠𝛼

𝛤 (𝛼𝑠 + 1)
𝐶
𝑡 𝐷

𝑠𝛼
𝑏 𝑥(𝑡) = 𝑥(𝑡) (45)

So, Eq. (44) is the inverse of the GDTM about 𝑡 = 𝑏 Eq. (43).

𝑥(𝑡) =
𝑁
∑

𝑠=0
𝑋[𝑠](𝑡 − 𝑎)𝑠𝛼 (46)

Now, let 𝑥(𝑡) = ∑𝑁
𝑠=0 𝑋[𝑠](𝑏 − 𝑡)𝑠𝛼 , 𝑥1(𝑡) =

∑𝑁
𝑠=0 𝑋[𝑠](𝑏 − 𝑡)𝑠𝛼 and 𝑥2(𝑡) =

∑𝑁
𝑠=0 𝑋2[𝑠](𝑏 − 𝑡)𝑠𝛼 then the following theorems are hold:

Theorem 5.4. If 𝑥(𝑡) = 𝑥1(𝑡) ± 𝑥2(𝑡) , then 𝑋[𝑠] = 𝑋1[𝑠] ±𝑋2[𝑠], ∀𝑠 = 0, 1,…

Proof. Since 𝑥1(𝑡) =
∑𝑁

𝑠=0 𝜒1[𝑠](𝑏 − 𝑡)𝑠𝛼 and 𝑥2(𝑡) =
∑𝑁

𝑠=0 𝜒2[𝑠](𝑏 − 𝑡)𝑠𝛼 , then

𝑥(𝑡) =
𝑁
∑

𝑠=0
𝜒[𝑠](𝑏 − 𝑡)𝑠𝛼

= 𝑎 𝑥1(𝑡) ± 𝑏 𝑥2(𝑡)

= 𝑎
𝑁
∑

𝑠=0
𝜒1[𝑠](𝑏 − 𝑡)𝑠𝛼 ± 𝑏

𝑁
∑

𝑠=0
𝜒2[𝑠](𝑏 − 𝑡)𝑠𝛼

=
𝑁
∑

𝑠=0
(𝑎𝜒1[𝑠] ± 𝑏 𝜒2[𝑠])(𝑏 − 𝑡)𝑠𝛼

By compare the coefficients of (𝑏 − 𝑡)𝑠𝛼 for all 𝑠 = 0, 1, 2,…, one can get

𝜒[𝑠] = 𝑎 𝜒1[𝑠] ± 𝑏 𝜒2[𝑠], ∀𝑠 = 0, 1,…

Theorem 5.5. If 𝑥(𝑡) = 𝑥1(𝑡) 𝑥2(𝑡) , then 𝑋[𝑠] =
∑𝑠

𝑟=0 𝑋1[𝑟]𝑋2[𝑠 − 𝑟], ∀𝑠 = 0, 1,…

Proof. Since 𝑥1(𝑡) =
∑𝑁

𝑠=0 𝜒1[𝑠](𝑏 − 𝑡)𝑠𝛼 and 𝑥2(𝑡) =
∑𝑁

𝑠=0 𝜒2[𝑠](𝑏 − 𝑡)𝑠𝛼 , then

𝑥(𝑡) =
𝑁
∑

𝑠=0
𝜒[𝑠](𝑏 − 𝑡)𝑠𝛼
5

= 𝑥1(𝑡) 𝑥2(𝑡)
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= (
𝑁
∑

𝑠=0
𝜒1[𝑠](𝑏 − 𝑡)𝑠𝛼)(

𝑁
∑

𝑠=0
𝜒2[𝑠](𝑏 − 𝑡)𝑠𝛼)

=
𝑁
∑

𝑠=0

𝑠
∑

𝑟=0
𝜒1[𝑟]𝜒2[𝑠 − 𝑟](𝑏 − 𝑡)𝑠𝛼

By compare the coefficients of (𝑏 − 𝑡)𝑠𝛼 for all 𝑠 = 0, 1, 2,…, one can get
𝑋[𝑠] =

∑𝑠
𝑟=0 𝜒1[𝑟]𝜒2[𝑠 − 𝑟], ∀𝑠 = 0, 1,…

Theorem 5.6. If 𝑥(𝑡) = 𝐶
𝑡 𝐷

𝛼
𝑏𝑋1(𝑡), then 𝑋[𝑠] = 𝛤 (𝛼(𝑠+1)+1)

𝛤 (𝛼𝑠+1) 𝑋1[𝑠 + 1], ∀𝑠 = 0, 1,…

Proof. Since 𝑥1(𝑡) =
∑𝑁

𝑠=0 𝜒1[𝑠](𝑏 − 𝑡)𝑠𝛼 , then

𝑥(𝑡) =
𝑁
∑

𝑠=0
𝜒[𝑠](𝑏 − 𝑡)𝑠𝛼

= 𝐶
𝑡 𝐷

𝛼
𝑏𝑥1(𝑡)

=
𝑁
∑

𝑠=1

𝛤 (𝑠𝛼 + 1)
𝛤 (𝑠𝛼 − 𝛼 + 1)

𝜒1[𝑠](𝑏 − 𝑡)𝑠𝛼−𝛼

=
𝑁
∑

𝑠=0

𝛤 (𝑠𝛼 + 𝛼 + 1)
𝛤 (𝑠𝛼 + 1)

𝜒1[𝑠 + 1](𝑏 − 𝑡)𝑠𝛼

By compare the coefficients of (𝑏 − 𝑡)𝑠𝛼 for all 𝑠 = 0, 1, 2,…, one can get

𝜒[𝑠] =
𝛤 (𝛼(𝑠 + 1) + 1)

𝛤 (𝛼𝑠 + 1)
𝜒1[𝑠 + 1], ∀𝑠 = 0, 1,…

Theorem 5.7. If 𝑥(𝑡) = (𝑏 − 𝑡)𝑛𝛼 , then 𝑡ℎ𝑒𝑛𝑋[𝑠] = 𝛿 (𝑠 − 𝑛) 𝑤ℎ𝑒𝑟𝑒 𝛿 (𝑠) =
{

1 𝑖𝑓 𝑠 = 0
0 𝑖𝑓 𝑠 ≠ 0

Proof. Since 𝑥(𝑡) =
∑𝑁

𝑠=0 𝜒[𝑠](𝑏 − 𝑡)𝑠𝛼 , then

𝑥(𝑡) =
𝑁
∑

𝑠=0
𝜒[𝑠](𝑏 − 𝑡)𝑠𝛼

= (𝑏 − 𝑡)𝑘𝛼

By compare the coefficients of (𝑏 − 𝑡)𝑠𝛼 for all 𝑠 = 0, 1, 2,…, one can get

𝜒[𝑠] = 0, ∀𝑠 = 0, 1,… , 𝑘 − 1, 𝑘 + 1,… and 𝜒[𝑘] = 1, that is
𝜒[𝑠] = 𝛿 (𝑠 − 𝑘)

Definition 5.1 ([54,55]). For any real values 𝜉1, 𝜉2,… , 𝜉𝑛 the following 𝑛 × 𝑛 is called a Vandermonde matrix

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 ⋯ 1 1

𝜉1 𝜉2 𝜉3 ⋯ 𝜉𝑛−1 𝜉𝑛
𝜉21 𝜉22 𝜉23 ⋯ 𝜉2𝑛−1 𝜉2𝑛
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝜉𝑛−21 𝜉𝑛−22 𝜉𝑛−23 ⋯ 𝜉𝑛−2𝑛−1 𝜉𝑛−2𝑛

𝜉𝑛−11 𝜉𝑛−12 𝜉𝑛−13 ⋯ 𝜉𝑛−1𝑛−1 𝜉𝑛−1𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(47)

Lemma 5.1 ([54]). The determent of the Vandermonde matrix in Eq. (47) is

|𝑉 | =
∏

1<𝑠<𝑟<𝑛
(𝜉𝑟 − 𝜉𝑠) (48)

By using Lemma 5.1, it can easily deduce that the Vandermonde matrix is invertible if all 𝜉1, 𝜉2,… , 𝜉𝑛 are different nonzero real values.

Theorem 5.8. Let 𝜒[𝑠], ∀𝑠 = 0, 1, 2,… is the GDTM about 𝑡 = 𝑏 of 𝑥(𝑡) and 𝜒[𝑠], ∀𝑠 = 0, 1, 2,… is the GDTM about 𝑡 = 𝑎 of 𝑥(𝑡). Then
t is always possible to write 𝜒[𝑠], ∀𝑠 = 0, 1, 2,… in term of 𝜒[𝑠], ∀𝑠 = 0, 1, 2,… and vice versa.

Proof. Since 𝜒[𝑠], ∀𝑠 = 0, 1, 2,… is the GDTM about 𝑡 = 𝑏 of 𝑥(𝑡), we have

𝑥(𝑡) =
𝑁
∑

𝜒[𝑠](𝑏 − 𝑡)𝑠𝛼 (49)
6

𝑠=0
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Also, since 𝜒[𝑠], ∀𝑠 = 0, 1, 2,… is the GDTM about 𝑡 = 𝑎 of 𝑥(𝑡), we get

𝑥(𝑡) =
𝑁
∑

𝑠=0
𝜒[𝑠](𝑡 − 𝑎)𝑠𝛼 (50)

By using Eqs. (49) and (50), we have
𝑁
∑

𝑠=0
𝜒[𝑠](𝑏 − 𝑡)𝑠𝛼 =

𝑁
∑

𝑠=0
𝜒[𝑠](𝑡 − 𝑎)𝑠𝛼 (51)

Substitute 𝑡 = 𝑎 + 𝑏−𝑎
𝑁+1 (𝑠 − 1),∀𝑠 = 1, 2,… , 𝑁 + 1 in (51), we have the following linear system

𝐴(𝑁+1)×(𝑁+1)𝜒(𝑁+1)×1 = 𝐵(𝑁+1)×(𝑁+1)𝜒(𝑁+1)×1 (52)

where 𝐴1,𝑗 = 𝐵1,𝑗 = 1, ∀𝑗 = 1, 2,… , 𝑁 + 1, 𝐴𝑖,𝑗 = [𝑏 − 𝑎 − 𝑏−𝑎
𝑁+1 (𝑗 − 1)]

𝛼 (𝑖−1) and 𝐵𝑖,𝑗 = [ 𝑏−𝑎
𝑁+1 (𝑗 − 1)]

𝛼 (𝑖−1) for all 𝑖 = 2,… , 𝑁 + 1 and for
ll 𝑗 = 1, 2,… , 𝑁 + 1

Clearly, 𝐴 = 𝑉 (𝜉1, 𝜉2,… , 𝜉𝑁+1) is 𝑁 + 1 Vandermonde matrix with 𝜉𝑗 = (𝑏 − 𝑎 − 𝑏−𝑎
𝑁+1 (𝑗 − 1))

𝛼 , for all 𝑗 = 1, 2,… , 𝑁 + 1 where 𝜉𝑗
are different real values. Also, 𝐵 = 𝑉 (𝜁1, 𝜁2,… , 𝜁𝑁+1) is 𝑁 + 1 Vandermonde matrix with 𝜁1 = 0, 𝜁𝑗 = (𝑏 − 𝑎 − 𝑏−𝑎

𝑁+1 (𝑗 − 1))
𝛼 , for all

= 2,… , 𝑁 + 1, where 𝜁𝑗 are different real values.
Now, by using Lemma 5.1, we find that 𝐴 and 𝐵 are invertible matrices. Therefore, we use Eq. (52) to have

𝜒 = 𝐴−1𝐵𝜒 (53)

nd

𝜒 = 𝐵−1𝐴𝜒 (54)

o this end, we will establish an algorithm to find a numerical solution of quadratic time varying fractional optimal control problems.
herefore, assume 𝜒[𝑠], ∀𝑠 = 0, 1, 2,… is the GDTM about 𝑡 = 𝑏 of the state 𝑥(𝑡), 𝜒[𝑠], ∀𝑠 = 0, 1, 2,… is the GDTM about 𝑡 = 𝑎 of the
tate 𝑥(𝑡), 𝛶 [𝑠], ∀𝑠 = 0, 1, 2,… is the GDTM about 𝑡 = 𝑏 of the co-state 𝜆(𝑡) and 𝛬[𝑠], ∀𝑠 = 0, 1, 2,… is the GDTM about 𝑡 = 𝑎 of the
o-state𝜆(𝑡).

lgorithm 5.1.

1. Choose a value for 𝑁 .
2. Apply the discretization in time method (DTM) about 𝑡 = 𝑎 to the state equation and the DTM about 𝑡 = 𝑏 to the co-state

equations.
3. Apply the DTM about 𝑡 = 𝑎 for the initial condition 𝑥(𝑎) = 𝑥𝑎 and the DTM about 𝑡 = 𝑏 for the final condition 𝜆(𝑏) = 𝜆𝑏. This

yields 𝑋[0] = 𝑥𝑎 and 𝛶 [0] = 𝜆𝑏, respectively.
4. Apply theorem (5.2) and substitute the result from step (1) into the equations. This results in a system of 2𝑁 linear equations

with the unknown variables 𝑋[𝑠] for 𝑠 = 1, 2,… , 𝑁 and 𝛶 [𝑠] for 𝑠 = 1, 2,… , 𝑁 .
5. Solve the linear system obtained in step (3) to find the unknown variables 𝑋[𝑠] for 𝑠 = 1, 2,… , 𝑁 and 𝛬[𝑠] for 𝑠 = 0, 1, 2,… , 𝑁 .
6. To obtain 𝑥(𝑡) and 𝜆(𝑡), utilize the results from step (5) by approximating 𝑥(𝑡) as ∑𝑁

𝑠=0 𝑋𝑠𝛼𝑠 and 𝜆(𝑡) as ∑𝑁
𝑠=0 𝛶

𝛼𝑠.

6. Illustrated examples

This section is devoted to illustrating some examples to show the importance, accuracy, effectiveness and efficiency of this
algorithm for solving the proposed method for solving a problem.

Example 6.1 ([56]). For the following problem

min 𝐽 [𝑢(𝑡), 𝑥(𝑡)] = 1
2 ∫

1

0
(𝑢2(𝑡) + 𝑥2(𝑡))𝑑𝑡 (55)

subject to

𝐶
0 𝐷

𝛼
𝑡 𝑥(𝑡) =

1
4
𝑢(𝑡) − 1

4
𝑥(𝑡) + 𝑡𝛼 , 𝑥(0) = 1, 0 < 𝛼 ≤ 1 (56)

he exact optimal state space solution when 𝛼 = 1 is

𝑥∗(𝑡) =
(−2 + (9

√

2 + 9)e
1
4

√

2)e−
1
4

√

2𝑡 + (2 + (9
√

2 − 9)e−
1
4

√

2)e
1
4

√

2𝑡

(
√

2 − 1)e−
1
4

√

2 + e
1
4

√

2(1 +
√

2)

+
2(𝑡 − 4)((

√

2 − 1)e−
1
4

√

2 + e
1
4

√

2(1 +
√

2))

(
√

2 − 1)e−
1
4

√

2 + e
1
4

√

2(1 +
√

2)
(57)
7
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Fig. 1. The state variable 𝑥(𝑡) for Example 6.1 with various choices of 𝛼 .

Fig. 2. The control variable 𝑢(𝑡) for Example 6.1 with various choices of 𝛼 .

while the exact optimal control is

𝑢∗(𝑡) = −1
4
[

(−8
√

2 + 36e
1
4

√

2 + 8)e−
1
4

√

2𝑡

(
√

2 − 1)e−
1
4

√

2 + e
1
4

√

2(1 +
√

2)
+

(−8
√

2 − 36e−
1
4

√

2 − 8)e
1
4

√

2𝑡

(
√

2 − 1)e−
1
4

√

2 + e
1
4

√

2(1 +
√

2)

+
8((

√

2 − 1)e−
1
4

√

2 + e
1
4

√

2(1 +
√

2))𝑡

(
√

2 − 1)e−
1
4

√

2 + e
1
4

√

2(1 +
√

2)
] (58)

The relevant TBFDEs for this issue are
𝐶
0 𝐷

𝛼
𝑡 𝑥

∗(𝑡) = −1
4
𝑥∗(𝑡) − 1

16
𝜆∗(𝑡) + 𝑡, 𝑥∗(0) = 1 (59)

𝐶
𝑡 𝐷

𝛼
1𝜆

∗(𝑡) = 𝑥∗(𝑡) − 1
4
𝜆∗(𝑡), 𝜆∗(1) = 0 (60)

where the optimal control is

𝑢∗(𝑡) = −1
4
𝜆∗(𝑡) (61)

Now, we consider the GDT at 𝑡 = 0 for Eq. (59), and then, we employ the GDT at 𝑡 = 1 for Eq. (60).
𝛤 (𝑠𝛼 + 𝛼 + 1)
𝛤 (𝑠𝛼 + 1)

X[𝑠 + 1] = −1
4

X[𝑠] − 1
16

𝛬[𝑠] + 𝛿(1), ∀𝑠 = 0, 1, 2,… , 𝑁 (62)

𝛤 (𝑠𝛼 + 𝛼 + 1)
𝛤 (𝑠𝛼 + 1)

𝛶 [𝑠 + 1] = 𝜒[𝑠] − 1
4
𝛶 [𝑠], ∀𝑠 = 0, 1, 2,… , 𝑁 (63)

where 𝑋[0] = 1 and 𝛶 [0] = 0.
For 𝑁 = 10, we perform the recurrence relations Eqs. (62) and (63) with 𝑋[0] = 1 and 𝛶 [0] = 0. The results can be reported by

the following figures (see Figs. 1 and 2):
In Tables 1 and 2, the absolute error of 𝑥(𝑡) and 𝑢(𝑡) have been computed respectively for various choices of 𝑁 . In fact, these

Tables show the ability, reliability, accuracy and efficiency of the propose algorithms to solve FQOCPs.
8
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Table 1
The absolute errors of 𝑥(𝑡) for Example 6.1 at 𝛼 = 1 and various choices of 𝑁 .

Time 𝑁 = 5 𝑁 = 10 𝑁 = 20 𝑁 = 30

0.1 6.53 × 10−8 1.91 × 10−14 2.62 × 10−31 4.34 × 10−50

0.2 1.08 × 10−8 2.37 × 10−14 2.94 × 10−31 4.23 × 10−50

0.3 1.37 × 10−7 2.37 × 10−14 3.01 × 10−31 3.97 × 10−50

0.4 1.59 × 10−7 2.25 × 10−14 3.05 × 10−31 3.71 × 10−50

0.5 1.73 × 10−7 2.11 × 10−14 3.12 × 10−31 3.46 × 10−50

0.6 1.74 × 10−7 1.98 × 10−14 1.62 × 10−31 3.22 × 10−50

0.7 1.48 × 10−7 1.88 × 10−14 3.14 × 10−31 2.99 × 10−50

0.8 6.45 × 10−8 1.94 × 10−14 3.14 × 10−31 2.76 × 10−50

0.9 1.28 × 10−7 2.57 × 10−14 2.82 × 10−31 2.75 × 10−50

1 5.17 × 10−7 5.00 × 10−14 4.23 × 10−31 8.35 × 10−50

Table 2
The absolute errors of 𝑢(𝑡) for Example 6.1 at 𝛼 = 1 and various choices of 𝑁 .

Time 𝑁 = 5 𝑁 = 10 𝑁 = 20 𝑁 = 30

0 4.23 × 10−6 4.03 × 10−14 3.28 × 10−30 7.66 × 10−50

0.1 3.96 × 10−6 1.19 × 10−13 2.19 × 10−30 2.56 × 10−49

0.2 3.77 × 10−6 1.41 × 10−13 2.01 × 10−30 2.61 × 10−49

0.3 3.62 × 10−6 1.46 × 10−13 1.91 × 10−30 2.58 × 10−49

0.4 3.50 × 10−6 1.46 × 10−13 1.84 × 10−30 2.56 × 10−49

0.5 3.73 × 10−6 1.45 × 10−13 1.77 × 10−30 2.53 × 10−49

0.6 3.21 × 10−6 1.43 × 10−13 1.69 × 10−30 2.50 × 10−49

0.7 2.94 × 10−6 1.40 × 10−13 1.64 × 10−30 2.47 × 10−49

0.8 2.47 × 10−6 1.30 × 10−13 1.54 × 10−30 2.43 × 10−49

0.9 1.59 × 10−6 9.98 × 10−14 1.34 × 10−30 2.32 × 10−49

Example 6.2 ([56]). Consider the problem

min 𝐽 [𝑢(𝑡), 𝑥(𝑡)] = 1
2 ∫

1

0
[(𝑢(𝑡) + 𝑡𝛼

𝛤 (𝛼 + 3)
−

𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

)
2
+ (𝑥(𝑡) − 𝑡3𝛼)2]𝑑𝑡 (64)

subject to

𝐶
0 𝐷

𝛼
𝑡 𝑥(𝑡) = 𝑡2𝛼𝑢(𝑡) +

𝑥(𝑡)
𝛤 (𝛼 + 3)

, 𝑥(0) = 0, 0 < 𝛼 ≤ 1 (65)

The exact optimal state space solution when 𝛼 = 1 is

𝑥∗(𝑡) = 𝑡3𝛼 (66)

while the exact optimal control is

𝑢∗(𝑡) = − 𝑡𝛼

𝛤 (𝛼 + 3)
+

𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

(67)

Let 𝑥(𝑡) =
𝑁
∑

𝑠=0
𝜒[𝑠] 𝑡𝑠𝛼 =

𝑁
∑

𝑠=0
𝜒[𝑠] (1 − 𝑡)𝑠𝛼 ,

𝜆(𝑡) =
𝑁
∑

𝑠=0
𝛬[𝑠] 𝑡𝑠𝛼 =

𝑁
∑

𝑠=0
𝛶 [𝑠] (1 − 𝑡)𝑠𝛼

The relevant TBFDEs for this issue are
𝐶
0 𝐷

𝛼
𝑡 𝑥

∗(𝑡) =
𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

𝑡2𝛼 − 1
𝛤 (𝛼 + 3)

𝑡3𝛼 − 𝜆∗(𝑡)𝑡4𝛼 +
𝑥∗(𝑡)

𝛤 (𝛼 + 3)
, 𝑥∗(0) = 0 (68)

𝐶
𝑡 𝐷

𝛼
1𝜆

∗(𝑡) = 𝑥∗(𝑡) − 𝑡3𝛼 +
𝜆∗(𝑡)

𝛤 (𝛼 + 3)
, 𝜆∗(1) = 0 (69)

where the optimal control is

𝑢∗(𝑡) =
𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

− 1
𝛤 (𝛼 + 3)

𝑡𝛼 − 𝜆∗(𝑡)𝑡2𝛼 (70)

By take the GDT about 𝑡 = 0 for the Eq. (68) and take the GDT about 𝑡 = 1 for Eq. (69), one can get
𝛤 (𝑠𝛼 + 𝛼 + 1)
𝛤 (𝑠𝛼 + 1)

X[𝑠 + 1] =
𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

𝛿(2, 𝑠) − 1
𝛤 (𝛼 + 3)

𝛿(3, 𝑠)

−
𝑠
∑

𝛿(4, 𝑖)𝛬(𝑠 − 𝑖) +
𝜒[𝑠]

, ∀𝑠 = 0, 1, 2,… , 𝑁 (71)
9
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Table 3
The absolute errors of 𝑥(𝑡) Example 6.2 at 𝛼 = 0.6 and various choices of 𝑁 .

Time VIM [56] Present method

𝑁 = 5 𝑁 = 10 𝑁 = 20 𝑁 ≥ 3

0.1 2.98 × 10−6 1.04 × 10−17 6.93 × 10−18 0
0.2 2.34 × 10−5 8.39 × 10−17 2.08 × 10−18 0
0.3 7.81 × 10−5 4.58 × 10−14 2.77 × 10−17 0
0.4 1.83 × 10−4 1.33 × 10−12 5.55 × 10−17 0
0.5 3.53 × 10−4 2.68 × 10−11 5.55 × 10−17 0
0.6 6.66 × 10−4 4.07 × 10−10 0 0
0.7 9.23 × 10−4 4.83 × 10−9 1.11 × 10−16 0
0.8 1.28 × 10−3 4.60 × 10−8 0 0
0.9 1.58 × 10−3 3.62 × 10−7 2.22 × 10−16 0

𝛤 (𝑠𝛼 + 𝛼 + 1)
𝛤 (𝑠𝛼 + 1)

𝛶 [𝑠 + 1] = 𝜒[𝑠] − 𝑇 [𝑠] + 𝛶 [𝑠]
𝛤 (𝛼 + 3)

, ∀𝑠 = 0, 1, 2,… , 𝑁 (72)

where 𝑋[0] = 0 and 𝛶 [0] = 0.
If 𝑠 = 0, we have

𝛤 (𝛼 + 1)
𝛤 (1)

X[1] = 𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

𝛿(2, 0) − 1
𝛤 (𝛼 + 3)

𝛿(3, 0) − 𝛿(4, 0)𝛬(0 − 𝑖) +
𝜒[0]

𝛤 (𝛼 + 3)
(73)

then X[1] = 0.

𝛤 (𝛼 + 1)
𝛤 (1)

𝛶 [1] = 𝜒[0] − 𝑇 [0] + 𝛶 [0]
𝛤 (𝛼 + 3)

(74)

then 𝛶 [1] = 0.
If 𝑠 = 1, we have

𝛤 (2𝛼 + 1)
𝛤 (𝛼 + 1)

X[2] = 𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

𝛿(2, 1) − 1
𝛤 (𝛼 + 3)

𝛿(3, 1) − 𝛿(4, 0)𝛬(1)

− 𝛿(4, 1)𝛬(0) +
𝜒[1]

𝛤 (𝛼 + 3)
(75)

then X[2] = 0.

𝛤 (2𝛼 + 1)
𝛤 (𝛼 + 1)

𝛶 [2] = 𝜒[1] − 𝑇 [1] + 𝛶 [1]
𝛤 (𝛼 + 3)

(76)

then 𝛶 [2] = 0.
If 𝑠 = 2, we have

𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

X[3] = 𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

𝛿(2, 2) − 1
𝛤 (𝛼 + 3)

𝛿(3, 2) − 𝛿(4, 0)𝛬(2)

− 𝛿(4, 1)𝛬(1) − 𝛿(4, 2)𝛬(0) +
𝜒[2]

𝛤 (𝛼 + 3)
(77)

then X[3] = 1.
𝛤 (3𝛼 + 1)
𝛤 (2𝛼 + 1)

𝛶 [3] = 𝜒[2] − 𝑇 [2] + 𝛶 [2]
𝛤 (𝛼 + 3)

(78)

Then 𝛶 [3] = 0.
Then, we get 𝛶 [𝑠] = 0 , ∀𝑠 = 0, 1,…
Then 𝑥(𝑡) = 𝑡3𝛼 and 𝜆(𝑡) = 0. In fact, we have the exact solution only in three iterations.
In Table 3, the absolute error of 𝑥(𝑡) for 𝑁 = 5, 10, 20 by using variational iteration method (VIM) [56] are compare with the

absolute error obtained by the present method for 𝑛 ≥ 3. In fact, we have the exact solution of this problem only in three iterations
(see Figs. 3 and 4).

7. Conclusions

The application of the FDTM, GDTM, and RDTM poses challenges due to the unique representation of the co-state equation
through the utilization of the right 𝛼 CFD, as well as the representation of the state equation through the use of the left 𝛼 CFD. In order
to address this challenge, we present an innovative methodology that integrates the Generalized Dynamic Time Warping Measure
(GDTM) at the temporal boundaries with the Vandermonde matrix. By implementing this approach, we propose a novel algorithm for
efficiently resolving First-Order Constraint Problems (FOCPs). By presenting two illustrated examples, we have effectively showcased
10
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Fig. 3. The state variable 𝑥(𝑡) for Example 6.2 with various choices of 𝛼 .

Fig. 4. The control variable 𝑢(𝑡) for Example 6.2 with various choices of 𝛼 .

the remarkable capabilities, dependability, precision, and effectiveness of the proposed algorithms in addressing FOCPs. We believe
that these algorithms are suitable for solving time delay optimal control problems when its dynamic equation is ordinary (fractional)
differential equations. Also, these algorithms may need some modification in order to be suitable for singular optimal control
problems.
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