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Abstract: In this study, an improved artificial intelligence algorithms augmented Internet of Things
(IoT)-based maximum power point tracking (MPPT) for photovoltaic (PV) system has been proposed.
This will facilitate preventive maintenance, fault detection, and historical analysis of the plant in
addition to real-time monitoring. Further, the simulation results validate the improved performance
of the suggested method. To demonstrate the superiority of the proposed MPPT algorithm over
current methods, such as cuckoo search algorithms and the incremental conductance approach, a
performance comparison is offered. The outcomes demonstrate the suggested algorithm’s capability
to track the Global Maximum Power Point (GMPP) with quicker convergence and less power
oscillations than before. The results clearly show that the artificial intelligence algorithm-based MPPT
is capable of tracking the GMPP with an average efficiency of 88%, and an average tracking time of
0.029 s, proving both its viability and effectiveness.

Keywords: MPPT; SCADA; solar system; Internet of Things

1. Introduction

The world has started to move away from fossil fuels (coal, petroleum, and natural
gas) in the last few decades for a variety of reasons. Some nations use renewable energy
sources because there are insufficient fossil fuel reserves left; some nations have switched
to renewable energy sources because they never had fossil fuel reserves and must import
from oil-producing nations, which has an impact on their annual budget; and some nations
have switched to renewable energy sources because they are pollution- and noise-free. This
indicates that in order to meet their energy needs without hurting the environment, all
nations are turning to renewable energy sources. Almost 25% of all electricity in 2019 came
from renewable sources, and that percentage is undoubtedly higher now.

The most widely used renewable energy source is solar because of its simple installa-
tion, low maintenance requirements, and environmental friendliness [1]. Long regarded as
a clean and green energy source, solar photovoltaic (PV) power generation offers several
benefits, including being environmentally benign, silent, and requiring minimal mainte-
nance. However, because the PV characteristics are nonlinear, operating at the maximum
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power point (MPP) to create the most output power is a difficult problem. As a result,
when solar insolation and cell temperature change, solar PV panel properties including
current (I)-voltage (V) and power (P)-voltage (V) characteristics are affected. Consequently,
it is crucial to monitor the MPP using the PV panel’s profile. Using MPPT techniques, the
maximum output power from the PV module is harvested, and a power electronic-based
converter is crucial to this process. As a result, the MPP can be monitored by modifying the
power electronics converter’s duty cycle. The literature considers a number of converter
types, including boost, buck, buck-boost, interleaved converter, and SEPIC converters. The
MPPT controller is offered with each PV system as a necessary component [2].

The Internet of Things (IoT) is an intriguing concept that explains the interactions
between intelligent agents and gadgets via Internet Protocol (IP) networks. It is defined by
contemporary communication techniques. IoT enables the tracking, sensing, and organi-
zation of environmental states for numerous sensors, including intelligent transportation,
intelligent healthcare, home automation, and smart communities [3].

IoT-based technologies enable dispersed connectivity and automation for the MPPT
system, which processes sensor data and supplies it to the antenna to be controlled and
monitored. Additionally, IoT makes it possible to dynamically locate a solar module’s
MPP zone. The generation, transmission, and distribution of PV power systems across the
operation are all made possible by the Internet of Things (IoT), which offers the connectivity
and automation required for MPPT operations. It has smart meters, sensors, and actuators
that allow the PV power system to perform MPPT operations [4–8].

Many researchers have developed a variety of methods to improve the tracking
precision and productivity of solar power-producing systems. Table 1 lists the benefits and
drawbacks of several MPPT approaches.

Table 1. Summary of the benefits and drawbacks of some MPPT approaches.

Ref. Achievements Advantages Limitations

[9]
1. Introducing a remote

monitoring system for solar
power plants.

1. High tracking efficiency, and
few parameters require tuning.

1. Large search space, computational
complexity, high cost, and
hardware implementation.

2. The IoT layer platform’s data
processing and storage are not
taken into account.

[10]
1. Presenting a novel artificial

intelligence MPPT technique for
Integrated PV-WT-FC
Frameworks.

1. Easy to implement, simple
structure, and low cost.

1. The IoT layer platform’s data
processing and storage are not
taken into account.

2. Steady-state oscillation, no
guarantee for convergence, drift
problem, reduced efficiency, and
frequent tuning of specific
parameters.

[11]
1. Performing a prototype for the

online monitoring of PV-MPPT
using IoT technology.

1. Higher tracking accuracy
reduced power oscillation, and
tracking efficiency is higher
than 87%.

1. High cost, difficult to control, steep
in hardware implementation, and
convergence is assured if the global
peak is situated outside the search
zone.

[12]

1. Introducing a new construction
of a maximum power point
tracker (MPPT) for partially
shaded PV panels using a
Raspberry Pi 4-based
embedded board programmed
via two approaches cuckoo
search (CS) and particle swarm
optimizer (PSO).

1. Fast convergence and tracks
true MPPT during partial
shading conditions.

2. High efficiency.

1. Large search space, computational
complexity, high cost, and
hardware implementation.
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Table 1. Cont.

Ref. Achievements Advantages Limitations

[13]
1. Introducing a real-time data

acquisition of photovoltaic
panel parameters via IoT.

1. It is advantageous compared to
other swarm-based
optimization strategies because
of its strong properties.

1. The energy conversion efficiency of
a PV system is not greater than 16%
or 17%, especially when the
irradiation level is below standard
test condition (STC), and the power
generated by the PV system
continuously varies with the
climatic condition.

[14] 1. Introducing an IoT-based smart
solar energy monitoring system.

1. The primary goal of this work is
to investigate how the MPPT
method extracts the most power
possible from photovoltaic
modules under various sun
radiation and
temperature conditions.

1. High cost, difficult to control, steep
in hardware implementation, and
convergence is assured if the global
peak is situated outside
the search zone.

[15]
1. Presenting IoT-based

sustainable wind green energy
for smart cites using fuzzy logic.

1. Higher tracking accuracy
reduced power oscillation.

1. Steady-state oscillation, no
guarantee for convergence, drift
problem, reduced efficiency, and
frequent tuning of specific
parameters.

[16]
1. Introducing a new optimization

algorithm-based MPPT control
technique for PV systems.

1. Higher tracking accuracy
reduced power oscillation.

1. It is outside the purview of this
work to conduct an extensive
analysis on a particular
application’s buck, boost, or
buck-boost dc-dc converter.

[17]
1. Implementing MPPT using

modified butterfly
optimization algorithm.

1. Possesses a simple and
cost-effective technique for
practical implementation

2. Good convergence speed and
efficient for partially
shaded conditions.

1. An uninvestigated cloud-based
platform for MPPT systems in
smart grid.

[18]

1. Enhancing global maximum
power point of photovoltaic
using chimp
optimization algorithm.

1. Simple structure.
2. Easy to implement.

1. A lot depends on the converter
utilized, and a change in the
converter will necessitate
considerable changes
to the controller.

[19]

1. Proposing a novel global MPPT
method for PV systems based
on the squirrel
search algorithm.

1. Fast convergence.
2. Have fewer control parameters.

1. Not looked at for IoT systems that
rely on GMPP tracking.

[20]

1. Introducing global hybrid
maximum power point tracking
for PV modules based on a
double-diode model.

1. Facilitating the increase or
decrease of the duty ratio.

1. Not looked at for IoT systems that
rely on GMPP tracking.

[21]

1. Presenting global maximum
power point tracking of
photovoltaic module arrays
based on bee colony algorithm.

1. Robust and simple design.
2. High efficiency.

1. These methods incur extra
hardware and cost.
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Table 1. Cont.

Ref. Achievements Advantages Limitations

[22]

1. Design and creation of a
low-cost, mobile, on-field I-V
curve tracer based on capacitor
loading for solar photovoltaic
modules with high
power ratings.

1. Designed according to changes
in power and voltage based on
P-V curve to offer a very
direct approach.

1. Such artificial intelligence
techniques call for lengthy
computations in addition to their
intricate hardware implementation.

[23]
1. Presenting an adaptive robust

fuzzy PI controller for MPPT of
PV system.

1. Easy to implement, simple
structure, and low cost.

1. This system possesses steady-state
errors and is system-dependent.

[24]

1. Introducing an improved
particle swarm
optimization-based MPPT for
PV system operating.

1. High tracking efficiency, and
few parameters require tuning.

1. Earlier heuristic approaches had
slow dynamic behavior,
necessitating a lot of iterations
(MPPT steps) to follow the GMPP.

[25]
1. Introducing a PSO-based MPPT

algorithm for PV
systems operating.

1. Higher tracking accuracy
reduced power oscillation.

1. These techniques are only
appropriate for systems with
several converters.

[26] 1. Presenting application of
modified PSO for MPPT.

1. High efficiency.
2. Robust and simple design.

1. To track MPP, these hill-climbing
techniques actively induce
perturbations.

[27]
1. Introducing an improved

particle PSO-based
MPPT strategy.

1. Fast convergence.
2. High tracking efficiency, and

few parameters requires tuning.

1. The IoT layer platform’s data
processing and storage are not
taken into account.

[28]
1. MATLAB/Simulink model

development for a battery
energy storage system.

1. High efficiency. 1. Not looked at for IoT systems based
on GMPP tracking.

[29]

1. Presenting the circuitry
modeling of the standalone
MATLAB/Simulink
environment solar photovoltaic
MPPT lead-acid battery
charge controller.

1. Higher tracking accuracy.
1. The IoT layer platform’s data

processing and storage are not
taken into account.

The following is a summary of this paper’s significant contributions:

1. To address the aforementioned disadvantages, a controller for MPPT is used in this
study. The controller tracks the maximum power point (MPP) in real-time.

2. To prevent failure in tracking the MPP under a rapid change in solar insolation, the
authors of this study suggest an easy and precise MPPT technique. By considering
the change in output current profile in addition to the conventional MPPT technique,
the divergence problem and the steady-state power oscillation are diminished. Both
fixed step sizes and variable step sizes are used to test the suggested modified ABC
approach. Between the load and photovoltaic module, a dc-dc converter is necessary
to implement this method. In order to achieve the MPPT’s goals, the classic boost
converter is chosen and efficiently developed in this article based on system ratings.

3. The goal of this effort is to create and implement a low-cost prototype for online
monitoring of a PV system’s maximum power output. The prototype also includes
a web portal that enables customers to view changes in the amount of power being
generated by their installations in real time without exerting more effort or spending
extra money. Verifying the effectiveness of some current MPPT algorithms using IoT
technology in real time is another goal.

4. Comparison to incremental conductance method, cuckoo search algorithm and an
improved Artificial Bee Colony (ABC) algorithm is conducted.
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2. Problem Formulation

The solar generator’s output must be extracted by the MPPT arrangement, as shown
Figure 1. It consists of the load, the MPPT instruction, the converter, and the PVG. PVG
transforms solar energy into a storable direct electric current. Converters for DC to DC
are choppers. Due to the MPPT command, which creates and modifies a suitable Pulse
Width Modulation (PWM) signal, their function is used to automatically match the load to
the PVG. The PVG consists of one or more solar panels that are connected to increase the
current and voltage produced by the entire system. Numerous solar cells are arranged in
series and parallel on the solar panel [30,31].

Energies 2022, 15, 8480 5 of 29 
 

 

 
Figure 1. Structure of proposed system. 

The converter can fix an issue via altering a duty ratio, since the operating point of 
the photovoltaic panel is mostly determined via impedance mismatch between loads and 
photovoltaic. Figure 1 depicts the block diagram of the entire PV system. 

As previously mentioned, the switch’s duty cycle has been modified for MPPT 
control. The duty cycle regulation, however, can be justified in light of converter 
efficiency. The relationship between output and input can be used to calculate the 
efficiency of conventional converter (𝜂Converter ), and the relationship is shown in the 
equations below [2]. 𝜂Converter = 11 − 𝐷 𝑅𝑅  (1)

where 𝑅  is the input resistance and 𝑅  denote photovoltaic output resistance, 
respectively; input resistance can be represented as: 𝑅in = 𝜂Converter × (1 − 𝐷) × 𝑅  (2)

Equation (3) shows that the converter duty cycle can be changed to control the 
operating point. The operating point variation, with respect to the load line, is shown in 
Figure 2. Slope variation and steady-state performance are shown in Figure 3. 

IoT is the extensive system of knowledge objects connected to the internet, which can 
identify and communicate data on the internet to objects. This work uses IoT to provide a 
web server for WiFi clients. The proposed system is shown in Figure 1. 

Figure 1. Structure of proposed system.

The converter can fix an issue via altering a duty ratio, since the operating point of
the photovoltaic panel is mostly determined via impedance mismatch between loads and
photovoltaic. Figure 1 depicts the block diagram of the entire PV system.

As previously mentioned, the switch’s duty cycle has been modified for MPPT control.
The duty cycle regulation, however, can be justified in light of converter efficiency. The re-
lationship between output and input can be used to calculate the efficiency of conventional
converter (ηConverter ), and the relationship is shown in the equations below [2].

ηConverter =

(
1

1− D

)2 Rin

R0
(1)
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where Rin is the input resistance and R0 denote photovoltaic output resistance, respectively;
input resistance can be represented as:

Rin = ηConverter × (1− D)2 × R0 (2)

Equation (3) shows that the converter duty cycle can be changed to control the operat-
ing point. The operating point variation, with respect to the load line, is shown in Figure 2.
Slope variation and steady-state performance are shown in Figure 3.
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IoT is the extensive system of knowledge objects connected to the internet, which can
identify and communicate data on the internet to objects. This work uses IoT to provide a
web server for WiFi clients. The proposed system is shown in Figure 1.

The Thing Speak framework and MATLAB program exchange data in real time to rep-
resent the suggested communication structures. Because of the following benefits, ThingS-
peak has been used to simulate real-time communication in cloud-based approaches [31]:

1. It enables two-way communication between the user and the simulated system,
enabling real-time data sharing and remote control.

2. A platform for communication that enables online real-time data sharing between
MATLAB and ThingSpeak.
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3. Security—each channel has its own ID and can be either public (visible by other
users) or private. User authentication is enabled via username and password (seen by
specific users).

Modeling of Photovoltaic

The installed maximum power and weather conditions affect how much power the PV
panels can produce. The photovoltaic output power depends on irradiance, the efficiency
of generation, the area of the panels, and the optimal orientation depending on the location.
The chosen PV technology has an efficiency ηPV = 15%. The power produced by PV over a
day is given as follows [32–34]:

I = Iph;cell − I0;cell

[
exp

(
q(V + IRs;cell

akT

)
− 1
]
−

V + IRs;cell

Rp;cell
(3)

where IPH , is the cell photocurrent (A), I0 is the saturation current of photovoltaic, Id is the
current computed by Shockley diode equation, q is the electron charge (1.602× 10−19 C),
T is the temperature of the diode measured in Kelvin (K), k is the Boltzmann’s constant
(1.38 × 10−23 J/K), Rp is the cell parallel resistance of PV cell (Ω), Rs is the cell series
resistance of PV cell (Ω). Figure 4 shows the PV cell’s equivalent circuit [35].
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The I–V curve for the perfect PV cell, derived from the aforementioned equation, is
shown in Figure 5. It should be remembered that the difference between the PV cell’s IPH ,
cell and Id cell produces output cell current (I) [35].



Energies 2022, 15, 8480 8 of 29

Energies 2022, 15, 8480 7 of 29 
 

 

10  𝐶), T is the temperature of the diode measured in Kelvin (K), k is the Boltzmann’s 
constant (1.38 × 10  𝐽/𝐾), 𝑅  is the cell parallel resistance of PV cell (Ω), 𝑅  is the cell 
series resistance of PV cell (Ω). Figure 4 shows the PV cell’s equivalent circuit [35]. 

The I-V curve for the perfect PV cell, derived from the aforementioned equation, is 
shown in Figure 5. It should be remembered that the difference between the PV cell’s 𝐼 ,, 
cell and 𝐼  cell produces output cell current (I) [35].  

Ideal Solar Cell

Practical Solar Cell

Iph,cell

ID,cell IP

Rp,cell

Rs,cell I

V

  
Figure 4. The PV cell’s equivalent circuit [35]. 

IPH,cell Id,cell

V V V

I

- =

 
Figure 5. A typical current and voltage curve of photovoltaic. 

Photovoltaic Modeling  
As previously mentioned, a photovoltaic module is made up of solar cells connected 

in parallel and in series. Equation (4) is used to obtain the fundamental mathematical 
equation, and the voltage and current characteristics of the photovoltaic module are 
described as follows [36]: 𝐼 = 𝐼 , − 𝐼 𝑒𝑥𝑝 𝑉 + 𝐼𝑅𝑎 𝑉𝑡 − 1 − 𝑉 + 𝐼𝑅𝑅  (4)

where 𝐼 ,  is photocurrent (A), 𝑉  is photovoltaic thermal voltage, 𝐼  is PV reverse 
leakage current, 𝑅 is PV series resistance, 𝑅  is parallel resistance. The current and 
voltage curves seen in Figure 6 are produced by Equation (4). 

Figure 5. A typical current and voltage curve of photovoltaic.

Photovoltaic Modeling

As previously mentioned, a photovoltaic module is made up of solar cells connected in
parallel and in series. Equation (4) is used to obtain the fundamental mathematical equation,
and the voltage and current characteristics of the photovoltaic module are described
as follows [36]:

I = Iph,cell − I0

[
exp

(
V + IRS

a Vt

)
− 1
]
− V + IRS

Rp
(4)

where Iph, cell is photocurrent (A), Vt is photovoltaic thermal voltage, I0 is PV reverse
leakage current, Rs is PV series resistance, Rp is parallel resistance. The current and voltage
curves seen in Figure 6 are produced by Equation (4).
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The amount of PV irradiance hitting the module and the temperature of the pho-
tovoltaic cell both affect the photocurrent for a photovoltaic (Iph). This is equivalent
to Equation (5):

Iph =
G
Gn

(
Iph;n + Ki∆T

)
(5)

where ∆T is the difference in degrees Celsius between the photovoltaic cell’s actual tem-
perature (T) and its nominal temperature (Tn), Ki is temperature coefficient, Gn is nominal
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irradiance (1000 w/m2), G is the measured PV irradiance in w/m2, Iph;n denotes the pho-
tocurrent. The voltage of the open circuit (Voc) is affected by the cell temperature as [37,38]:

Voc = Voc;n + Kv∆T (6)

where Kv is the voltage of the open circuit temperature coefficient, Voc;n is the voltage of
the open circuit under nominal conditions. To determine the diode saturation current (I0),
apply the equation below:

I0 =
Isc;n + Ki∆T

exp
(

Voc;n+Kv∆T
a Vt

)
− 1

(7)

where Isc;n represents the short circuit current under ideal circumstances.

3. MPPT Based on the IC Approach

The incremental conductance method is the MPPT that is most frequently employed
for PV systems. The observation that a PV module’s power derivative with respect to
voltage is positive to the left of the MPP, zero at the MPP, and negative to the right of the
MPP serves as the basis for the theory [39,40]:

dP
dV > 0 left of MPP
dP
dV = 0 at PP
dP
dV < 0 right PP

(8)

where:
dP
dV

=
d(VI)

dV
= I + V

dI
dV
∼= I + V

∆I
∆V

(9)

Equation (9) can be modified as:
∆I
∆V > − I

V left of MPP
∆I
∆V = − I

V at MPP
∆I
∆V < − I

V right MPP

(10)

Thus, as illustrated in the flow chart in Figure 7, the MPP can be monitored via
comparing instantaneous conductance

(
I
V

)
to IC ( ∆I

∆V ). As a result, the quantity
(

∆I
∆V

)
+(

I
V

)
has a sign that denotes the right perturbation’s direction leading to the MPPT. When

the MPP is reached, the photovoltaic continues to operate at this time and a perturbation is
terminated unless a change in ∆I is noticed. To keep track of the new MPP in this situation,
the program either decreases or increases the Vre f . The perturbation step size (∆D) controls
the tracking speed of the MPP. The trade-off between a fast dynamic reaction and steady
state performance makes choosing the perturbation step size challenging. It is important
to understand that the constant voltage methodology outperforms the IC method when
the PV module is exposed to low amounts of radiation, since the perturbation may be
terminated because the change in ∆I is too small.
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4. Application of Cuckoo Search Algorithm toward MPPT

The Cuckoo Search Algorithm (CSA) was first introduced in 2009 by Suash Deb and
Xin-She Yang [41] and was motivated by the cuckoo bird’s reproductive behavior. The eggs
of cuckoo birds are laid in host nests, allowing them to hatch sooner. The young cuckoo
birds break some of the host bird’s eggs in order to maximize their chances of surviving
by hoarding all the food. In most cases, the host birds kill the eggs or quit the nest when
they learn that the eggs in their nests are alien eggs. Therefore, cuckoo birds adopt a novel
strategy by laying more eggs in more than one nest in order to maximize the viability of
their eggs [42].

4.1. Lévy Flight

Small, medium, and big step sizes are randomly used while looking for a host nest
among several host nests. The Lévy flying random mathematical function is shown to
theoretically mirror the fluctuations in step sizes during host nest hunting. In other words,
the power law distribution shown below is used to calculate the random step sizes of the
Cuckoo search method using the Lévy flight random mathematical function [42]:

y = l−λ (11)

where l is flight length and λ is a variance. The Lévy flight model produces a distribution
of search steps. This method has shown its efficacy in situations including multimodal,
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multiple objectives, and nonlinear optimization. The new generation of particles x(t+1) via
cuckoo search Lévy flight is achieved by:

x(t+1)
i = xt

j + α⊕ Levy(λ), (12)

where i is a sample number, t is the iteration number, and α represents the step size α > 0 [42].

α = α0

(
xt

j + xt
i

)
, (13)

where α0 is the initial step.

4.2. MPPT Using CSA

It is necessary to select the right variables for the search in order to use cuckoo search
for designing the MPPT. The samples, in this case defined as the PV voltage values, come
first, i.e., Vi (i = 1, 2, . . ., n); where n is the total number of samples and α is step size. The
fitness function (J) is a value of photovoltaic power at the MPPT. As J is dependent on the
photovoltaic voltage, J = f (V) [43].

Power is specified as an initial fitness value and generated samples are applied to pho-
tovoltaic modules first. The greatest power produced by its matching voltage is regarded
as the best example. After performing the Lévy flight, fresh voltage samples are created
using the following equation:

V(t+1)
i = Vt

i + α⊕ Lvy(λ). (14)

where α = α0(vbest − vi). In [43], a condensed version of the Lévy distribution is provided as:

s = α0(vbest − vi)⊕ Lvy(λ) ≈ κ ×

 u

(|v|)
1
f

(vbest − vi) (15)

where u and v are determined from the normal distribution curves, β = 1.5, k is the Lévy
multiplying coefficient.

u ≈ N
(

0, σ2
u

)
v ≈ N

(
0, σ2

v

)
(16)

If Γ is integral gamma function, variable σu and σv are represented by:

σu =

 Γ(1 + β)× sin(π × β/2)

Γ
((

1+β
2

))
× β× (2)(

β−1
2 )


1
β

and σv = 1 (17)

The PV modules are used to measure the respective power for the new voltage samples.
By contrasting the power levels, the voltage that produces the maximum power is picked
as the new best sample. Other samples are also randomly destroyed with a probability of
Pa in addition to this best sample; this approach simulates the discovery and subsequent
destruction of the cuckoo’s eggs by a host bird. The destroyed samples are then replaced
with fresh ones, created at random. As a result, the powers for all samples are measured
once more, and the optimal power is chosen by assessing J. Until all samples have achieved
the MPP, iteration continues. Figure 8 shows the cuckoo search algorithm flowchart [43].
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5. ABC Algorithm Application to MPPT

The ABC algorithm mimics the foraging behaviors of bee colonies, and from this arises
collective intelligence for boosting nectar levels in the hive. The ABC algorithm sees a
food source’s nectar content as the quality (fitness) of the corresponding solution, and
the position of a nectar supply as a potential solution vector for a problem. Worker bees,
observation bees, and scout bees are three different types of functional groups found in
a genuine bee colony. A colony is made up of observers and workers. An employed bee
always returns to a known nectar supply rather than choosing a new food source based
only on visual cues from its surroundings. The bee recalls the new site and forgets the old
one if there is more nectar at the new location than at the previous one. Bees observed at a
hive migrate in the direction of the hired bee’s present location of finest food supply. When
the hiring process becomes unproductive, the employed bee turns into a scout and begins
looking for a new position [44].

A boost-type dc-dc converter is connected for MPPT between the photovoltaic power
producing system and the load. The duty ratio d of the dc-dc converter, also known as the
position of the food source, acts as the decision variable in the ABC approach. The nectar
quantity is thought of as the PV system’s output power. By removing a scout bee phase
from the ABC algorithm in this study, the GMPP convergence time is made faster. The
following are the sequential steps for tracking GMPP using ABC [44].

(1) Initialization: In this piece, the employed bees are represented by one half of the
colony, and the observers are represented by the other half. Using the following
equation, all of these bees are initially placed in various food-source positions (i.e.,
duty ratio of the dc-dc converter) in a solution space.

xi = dmin +
(i− 1)[dmax − dmin]

Np − 1
(18)
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where i = 1, 2, . . . , Np and dmin and dmax denote minimum and maximum values of
a duty-ratio.

(2) Evaluating the quantity of nectar: The simulation study’s mathematical model is
used to calculate output power in relation to each duty-ratio (food position). Bees are
classified as employed workers or observers, depending on the amount of nectar.

(3) Locating a new food source: Each cycle of the tracking MPPT of the photovoltaic
system is carried out in two parts.

(a) Employed bee phase: Each worker bee updates its location inside its neighbor-
hood using the formula below:

xi(k+1) = xi(k) + φ
(

xi(k) − xj(k)

)
(19)

where k denotes number of iterations, variable φ is a random number generated
between [−1, 1], j ∈ {1, 2, . . . , NP/2 } is a randomly chosen index where
j 6= i.

(b) Onlooker phase: Waiting for observer bees in the dance area to come closer
to the employed bee’s position where there is the most nectar available. This
motion is described as:

xi(k+1) = xh(k) +
φ ∗ (dmax − dmin)

Np
2 − 1

(20)

where xh denotes food source position.

(4) Termination criterion: If, after five iterative rounds, the PV system detected by the
bees does not produce any more power, end the algorithm and run a dc-dc converter
at a best duty ratio.

(5) Reinitiating the search: Restart the procedure if the change in power output indicates
that the solar insolation has changed.

The proposed system samples and senses the photovoltaic output power every
0.1 s, and the MPPT controller uses the following equation to determine PV output
power has changed [44]: ∣∣∣∣∣Pk

pv − Pk
pv

Pk
pv

∣∣∣∣∣ ≥ 0.1 ∗ Aw (21)

where Aw, or adaption weight, accounts for quickly changing environmental conditions.
This variable must be carefully selected based on the region and the local climate.

If Equation (21) is accurate, it must be determined whether the change in output power
is the result of a change in the load resistance or a change in the shadow pattern. The
conditions listed below have been confirmed:∣∣∣∣∣Vk

pv −Vk−1
pv

Vk
pv

∣∣∣∣∣ ≥ 0.2 (22)

∣∣∣∣∣ Ik
pv − Ik−1

pv

Ik
pv

∣∣∣∣∣ ≥ 0.1 (23)

If the aforementioned conditions are verified to be true, a change in output power
is caused via a change in the shade pattern; proceed to step 2 as a result. Otherwise,
a small duty ratio modification will be adequate to account for the fluctuation in load
resistance that is causing the change in output power. Equation (13) can be used to
achieve this duty ratio modification. Figure 9 shows the proposed ABC algorithm’s
flowchart for easier understanding.
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6. Proposed Communication Platform

If there is a disruption, a smart MG’s decentralized controller aids in controlling the
working circumstances of the system. IoT technology can also be utilized for communica-
tion between smart home appliances and a central controller. Researchers have proposed
the IoT platform as a method of data gathering, monitoring, and control for the micro-grid.
All devices and energy sources were merged and connected via this platform. Figure 10 il-
lustrates the layers of the cloud platform, data processing layer, network layer, IoT platform
layer, and agent layer.

It is challenging to develop a distributed Internet of Energy (IoE) infrastructure for
energy management. The platform’s functions include integrating the micro-grid tools
into the communications infrastructure and connecting to the IoE cloud for device tracking
and management. As shown in Figure 10, the proposed IoE communications network is
composed of four separate levels. The descriptions of each stratum are provided below.
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(a) Agent layer:

The device or perception layer is referred to as the layer of different components [45].
Various IoT users are included in the device layer, which comprises of smart electric
vehicles, smart homes, and transportation systems, along with DGs like PVs and the WTs.
Additionally, this layer supported different kinds of sensors for measuring the real-time
environmental and physical state of the components and the actuators needed for adjusting
them. Hence, WSNs and WSANs were seen to be inseparable components of this layer. The
WSNs are defined as sensors which sense the environmental data and transmit it to other
smart devices or the upper layers through the wireless network.

(b) IoT platform layer:

The IoT platform layer is the sensors layer. Additionally, this layer supports a number
of sensors that may be used to monitor the connected agents’ physical and environmental
health and adjust in real time. The wireless sensor network and the wireless sensor and
actor network (WSAN) are two components of the sheet that cannot be separated (WSNs).
A WSN is a group of sensors that monitors the environment and broadcasts its findings to
other devices or higher layers over a wireless network.

(c) Network layer:

The network layer has the ability to aggregate data from the cloud and perception
layers before sending it to the upper layers for extra processing and storage. It can send
data to other smart devices for distributed functionality that exists at component edges. A
few examples of communication technologies that are used in a variety of settings are WiFi,
Bluetooth, 3G/4G, Z-Wave, Zigbee, UMB, LoRa, and cellular networks. These devices are
capable of wireless communication and have a wide range of uses.

(d) Data processing layer:

The data processing layer enables the storage and processing of a sizable amount of
data that is gathered from lower levels with the aid of potent processors.
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(e) Cloud layer:

For worldwide tracking, the cloud layer preserves past data from distributed energy
resources. The ability to save historical data is one of the requirements for Internet of
Everything apps and services [46]. Virtualized servers are a component of the IoE cloud
layer. In addition, a new application interface with historical data preserved for each
DER has been introduced. Application interface to the cloud infrastructure supports the
historical archive, which may save and maintain a large amount of data [47].

The hierarchic structure for smart homes with physical layer, cyber layer, and control
layer is presented in Figure 11. The hybrid platform features two communication layers.
The Layer 1 devices in the intelligent building are found to transmit the MQTT messages
to a built-in MQTT client (BMC), record the events/measures, and sign up for BMC’s
protection/control messages for MQTT. The interaction between the cloud and the BMC
are defined in Layer 2 (global layer) using HTTP POST/GET requests. In this system, every
computer has a Wi-Fi module connected to a local portal. This makes it possible to regularly
write down the values of a particular and predetermined subject. Subscribing to the various
topics, the BMC posts values to the cloud channel. The planned algorithm for system
resource allocation is implemented by the cloud interface MATLAB, which has access to all
cloud data. Then, the algorithm’s output is sent from a cloud to smart BMC appliances that
keep track of it. The researchers found that the suggested design was durable in the event
of any layer’s communication failing (either global or local). Therefore, the BMC was built
in such a way that it could serve as a local controller (or backup controller) for all devices
in the home in the event of a communication connection breakdown or significant latency
seen in the network. The results section highlights this BMC feature [48–53].
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7. Simulations Results

The results of the proposed method for addressing the issue of the examined microgrid
system’s optimal MPPT are described in this section; where the purpose was to achieve the
MPPT of PV system. Moreover, a small-scale prototype, shown in Figure 1, was used to
compare the performance of the proposed method with other state-of-the-art methods.

In this study, a Thing Speak platform was organized by a microcontroller, which
served as the main command and control unit. Between SCADA and microgrid devices,
MQTT served as a broker. Homeowners could interact with and acquire home energy
management as a service via a cloud system, thanks to the simple and useful User Interface
(UI) for the ThingSpeak platform created in this study. Figure 12 shows Supervisory Control
and Data Acquisition (SCADA) architecture, Figure 12a shows the dashboard after the
enter username and password, Figure 12b shows the user interface design platform.
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A graphical user interface (GUI) was part of the suggested system to help users
comprehend the overall voltage and power used. Figure 13 represents power consumption,
voltage, and the duty cycle using the incremental conductance method as shown in [39].
Figure 14 shows the SCADA graphical user interface, (a) the voltage, (b) the power, and
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(c) the duty cycle using the incremental conductance method. Figure 15 shows the power
consumption, voltage, and duty cycle using the cuckoo search method. Figure 16 shows
the SCADA graphical user interface, (a) the voltage, (b) the power, and (c) the duty cycle
using the cuckoo search method. Figure 17 shows the power consumption, voltage, and
duty cycle using the IABC method. Figure 18 shows the SCADA graphical user interface,
(a) the voltage, (b) the power, and (c) the duty cycle using the IABC method.
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using the cuckoo search method.
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8. Discussion of Results

The aforementioned Figures show the results of several algorithm simulations of
photovoltaic power, photovoltaic voltage, and duty cycle.

Table 2 shows comparisons between the incremental conductance, cuckoo search,
and improved artificial bee colony in terms of their steady-state restoration time, power,
voltage, and the duty cycle. Figure 19 shows the steady-state restoration time using the
incremental conductance method. Figure 20 shows the steady-state restoration time using
the cuckoo search method. Figure 21 shows the steady-state restoration time using the
improved artificial bee colony method.

Table 2. Comparison between the incremental conductance method, the cuckoo search method, and
the improved artificial bee colony method.

Steady-State Restoration Time Power (w) Voltage (V) Duty Cycle

Steady-state restoration time using IC method 0.355 (s) 0.357 (s) 0.356 (s)

Steady-state restoration time using cuckoo search method 0.18 (s) 0.182 (s) 0.185 (s)

Steady-state restoration time using IABC method 0.03 (s) 0.0298 (s) 0.0296 (s)
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The average efficiency and tracking time for the IABC approach were both 88% on
average, which resulted in a faster time to MPPT. In addition, the tracking time of IABC
method is reduced as compared to the algorithm in reference [39]. The results show that,
thanks to reduced duty cycle randomness brought about by iterations, the suggested
method outperforms the standard algorithm in terms of power fluctuations during the
tracking period.

Figure 20 shows steady-state restoration time using the cuckoo search method. The
tracking times are 0.18 s, 0.182 s, and 0.185 s, for the voltage, power, and duty cycle,
respectively. The cuckoo search method achieved an efficiency of 80%, 78%, and 77%,
respectively.

Figure 21 shows the steady-state restoration time using the IABC method. The tracking
times are 0.03 s, 0.0298 s, and 0.0296 s, for the voltage, power, and duty cycle, respectively.
The IABC method achieved an efficiency of 89%, 87%, and 88%, respectively. The incremen-
tal conductance method presented only large power fluctuations, but the IABC method
obtained a faster MPPT with higher efficiency.

Figure 22 compares the steady-state restoration time obtained using the IC approach
with the cuckoo search method. The proposed method can be used to maintain system
stability in a timely manner. The steady-state restoration time are improved by 80%, 78%,
and 77%, for the system’s power, voltage, and duty cycle, respectively.

Energies 2022, 15, 8480 25 of 29 
 

 

method is reduced as compared to the algorithm in reference [39]. The results show that, 
thanks to reduced duty cycle randomness brought about by iterations, the suggested 
method outperforms the standard algorithm in terms of power fluctuations during the 
tracking period.  

Figure 20 shows steady-state restoration time using the cuckoo search method. The 
tracking times are 0.18 s, 0.182 s, and 0.185 s, for the voltage, power, and duty cycle, 
respectively. The cuckoo search method achieved an efficiency of 80%, 78%, and 77%, 
respectively. 

Figure 21 shows the steady-state restoration time using the IABC method. The 
tracking times are 0.03 s, 0.0298 s, and 0.0296 s, for the voltage, power, and duty cycle, 
respectively. The IABC method achieved an efficiency of 89%, 87%, and 88%, respectively. 
The incremental conductance method presented only large power fluctuations, but the 
IABC method obtained a faster MPPT with higher efficiency.  

Figure 22 compares the steady-state restoration time obtained using the IC approach 
with the cuckoo search method. The proposed method can be used to maintain system 
stability in a timely manner. The steady-state restoration time are improved by 80%, 78%, 
and 77%, for the system’s power, voltage, and duty cycle, respectively. 

Figure 23 compares the steady-state restoration times obtained using the IC approach 
with the IABC method. The proposed method can be used to maintain system stability in 
a timely manner. The steady-state restoration time are improved by 89%, 87%, and 88% 
for the system’s power, voltage, and duty cycle, respectively. 

From Figure 23, one can see that the IABC technique is more efficient than the 
incremental conductance and cuckoo search methods.  

 
Figure 22. The comparison between the IC method and the cuckoo search method. 

 
Figure 23. The comparison between the IC method and the IABC method. 

  

Figure 22. The comparison between the IC method and the cuckoo search method.



Energies 2022, 15, 8480 26 of 29

Figure 23 compares the steady-state restoration times obtained using the IC approach
with the IABC method. The proposed method can be used to maintain system stability in a
timely manner. The steady-state restoration time are improved by 89%, 87%, and 88% for
the system’s power, voltage, and duty cycle, respectively.
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From Figure 23, one can see that the IABC technique is more efficient than the incre-
mental conductance and cuckoo search methods.

9. Conclusions

This paper investigated and outlined an issue in a traditional MPPT method, and
presented a new approach to achieving MPPT for the photovoltaic systems using the IoT
technique. As more and more renewable energy sources are included into the utility grid,
using IoT to monitor a solar power plant is a crucial step. As a result, the monitoring of
solar power plants will be automated and intellectualized, which will improve future grid
integration and decision-making for large-scale solar power plants. This study presented IC,
CS, and IABC-IoT-based MPPT trackers for photovoltaic power systems. The converter’s
duty ratio was adjusted to produce the most photovoltaic tracking power under fluctuating
environmental conditions. Results demonstrated that the suggested control approach
responds quickly and achieves steady-state operation more quickly than alternative control
methods. After applying the cuckoo search method, the steady-state restoration times
are improved by 80%, 78%, and 77% for the system’s power, voltage, and duty cycle,
respectively. Whereas, after applying the IABC method, the steady-state restoration times
are improved by 89%, 87%, and 88% for the system’s power, voltage, and duty cycle,
respectively. Future work will aim to implement the proposed architecture in a laboratory
environment, and compare the performance of the prototype with the simulation models.
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Abbreviations

MPPT Maximum Power Point Tracking
IoT Internet of Things
IABC Improved Artificial Bee Colony
PV Photovoltaic
GMPP Global Maximum Power Point
SCADA Supervisory Control and Data Acquisition
V Voltage
P Power
WT Wind Turbine
FC Fuel Cell
SEPIC Single-Ended Primary-Inductor Converter
IP Internet Protocol
CS Cuckoo Search
PSO Particle Swarm Optimizer
PWM Pulse Width Modulation
DERs Distributed Energy Resources
BMC Built-in MQTT Client
GUI Graphical User Interface
IC Incremental Conductance
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