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Abstract: Incorporating demand-side management (DSM) into residential energy guarantees dynamic
electricity management in the residential domain by allowing consumers to make early-informed
decisions about their energy consumption. As a result, power companies can reduce peak demanded
power and adjust load patterns rather than having to build new production and transmission units.
Consequently, reliability is enhanced, net operating costs are reduced, and carbon emissions are
mitigated. DSM can be enhanced by incorporating a variety of optimization techniques to handle
large-scale appliances with a wide range of power ratings. In this study, recent efficient algorithms
such as the binary orientation search algorithm (BOSA), cockroach swarm optimization (CSO), and
the sparrow search algorithm (SSA) were applied to DSM methodology for a residential community
with a primary focus on decreasing peak energy consumption. Algorithm-based optimal DSM
will ultimately increase the efficiency of the smart grid while simultaneously lowering the cost of
electricity consumption. The proposed DSM methodology makes use of a load-shifting technique in
this regard. In the proposed system, on-site renewable energy resources are used to avoid peaking of
power plants and reduce electricity costs. The energy Internet-based ThingSpeak platform is adopted
for real-time monitoring of overall energy expenditure and peak consumption. Peak demand,
electricity cost, computation time, and robustness tests are compared to the genetic algorithm (GA).
According to simulation results, the algorithms produce extremely similar results, but BOSA has
a lower standard deviation (0.8) compared to the other algorithms (1.7 for SSA and 1.3 for CSOA),
making it more robust and superior, in addition to minimizing cost (5438.98 cents of USD (mean
value) and 16.3% savings).

Keywords: demand-side management; energy management; smart grid; sparrow search algorithm;
binary orientation search algorithm; cockroach optimization algorithm; load shifting

MSC: 68Wxx

1. Introduction

Smart grid (SG) technology is regarded an innovation with the potential to improve
the electricity grid in the 21st century. Owing to its distributed generation, universal control,
digital two-way communication, and self-monitoring characteristics, the SG has acquired
considerable appeal. Using contemporary information and communication technology, the
SG can regulate the production of energy, electricity grid distribution, and transportation
and develop intelligent monitoring systems. In addition, the SG is capable of managing
the power market, controlling decentralized energy resources, and reconstructing infras-
tructure. Converting the traditional grid to an SG can enable a new era of DSM. DSM
can be used to improve grid efficiency, reduce the expense of generation, possibly reduce
load pressure, improve system reliability and sustainability, and maximize system capacity
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without modifying the power system’s physical infrastructure. The concurrently realized
objectives of the incorporation of SG and DSM are (i) to minimize carbon emissions in order
to combat global warming and (ii) to reduce electricity costs through demand management.
By lowering carbon emissions and electricity costs, the combination of DSM and SG can
ease the transition of citizens to smart, sustainable, and economic communities [1,2].

Because SGs can be grid-connected or islanded and because the Internet of Things
(IoT) is a technique to connect people and things in any place at any time with anyone and
anything through any electrical network or service, SGs serve as primary building blocks
for an Energy Internet (EI). With the installation of smart meters in residential areas, real-
time energy consumption monitoring is possible using EI. EI is hailed as a game-changing
network of intelligent grids. It is considered a general IoT application for the energy
and power sectors. The EI is made up of a variety of components and techniques, which
can be divided into three classes: (i) communication systems, (ii) control algorithms, and
(iii) power systems. Electricity generators and users (prosumers) are interconnected with
renewable energy resources (RERs), electric loads, and storage systems, opening up infinite
opportunities for energy sharing and giving rise to the EI concept. The Energy Internet is a
game-changing innovation because it facilitates two-way flows of electricity and data in
real time. This change is expected to be caused by the ongoing shift to renewable energy
and the improvement of green technologies, such as SGs, storage systems, vehicle-to-grid
systems, etc. [3–8].

SG technology facilitates grid connection and RER management and distribution.
RERs are intermittent, posing a challenge for the grid. RERs increase the size of abrupt
power output deficits due to adverse weather conditions, requiring the grid operator to
maintain a higher level of backup power. This may be easily accomplished by reducing
energy usage with DSM technology. Thus, load control methodologies must be used. A
DSM system ought to be able to communicate with the controllable loads and the main
controller [9,10]. The domain of optimal demanded power consumption criteria can be quite
broad. Criteria could include increasing distributed production penetration, minimizing
peak load demand, and enhancing economic gains by offering customers incentives to
reduce demand during peak times [11,12].

The SG is distinguished by its dynamic pricing structures. Dynamic pricing schemes
such as time of use (ToU), real-time pricing (RTP), and critical peak pricing (CPP) are
frequently used in DSM methodologies, with the main difference being in price levels
during operation times. Under RTP, the price changes every hour of the day. Under
ToU, prices are fixed in advance (often up to one year in advance), and a variable pricing
structure is designed for shoulder, on-peak, off-peak, and low-peak hours. Under CPP, the
price of electricity is generally the same throughout the whole year, except during essential
peak periods, when it reaches its maximum value. Price adjustments affect only the energy
cost outcomes (not energy usage). The utility provides a pricing indication to smart home
energy controllers. The energy management controller creates a schedule based on the
user’s load demand and the price signal. When any dynamic pricing scheme is combined
with DSM strategies, the cost of electricity is calculated by the user’s energy consumption
estimations. Generally, the price can be increased if consumer demand is higher than
supply. This growth in electricity pricing impacts all users of the power system. DSM
governs the price of electricity in an energy market by lowering the peak demand. To this
end, all residential loads are divided into shiftable and non-shiftable categories [13]. During
peak hours, DSM techniques modify the demand patterns of customers in order to achieve
the desired change in the load shape by shifting shiftable appliances to a more cost-effective
time [14]. Therefore, DSM concentrates on energy-saving technology solutions, bill tariffs,
and economic incentives instead of improving the grid’s transmission and distribution
grids or adding more power plants. Moreover, higher consumption demand can cause
the load factor deteriorate (average load divided by the peak value), making the system
unstable. This can be fixed by rescheduling the distribution system’s peak load periods
using the proper objective and DSM methodology. The load profile curve can be altered
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using six DSM techniques: (1) peak clipping, (2) load shifting, (3) valley filling, (4) strategic
load growth, (5) strategic conservation, and (6) load shape flexibility. Figure 1 shows the
DSM strategies [15,16].
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Peak clipping is the practice of removing peaks above a predetermined consumption
point. During peak clipping, loads are controlled directly to reduce the pressure of demand
during the peak period. This causes a disruption in consumer comfort and compromises the
level of consumer satisfaction with the service they receive. To increase electric loads during
off-peak hours, valley filling necessitates the use of energy storage units [17]. The primary
goal of load shifting is to move on-peak loads to off-peaks periods, thereby lowering the
peak demand for energy. By reducing demand directly at the customer location, load
profiles can be improved through strategic conservation goals. When there is a high level
of demand, strategic load growth enables people to respond more quickly. The load shape
greatly affects a smart grid’s reliability [18]. In SG management, load control strategies are
referred to as flexible loads because they allow for individual participation. Different DSM
techniques can be used in a variety of situations, depending on the implementation of the
optimizing algorithm.

In this paper, a cost-effective model for residential appliance scheduling is presented.
Our appliance-scheduling model seeks to optimize the operational time frame of electrical
appliances using the load-shifting technique. The energy generated from SG RERs is
considered alongside grid-generated energy in the model. This model simulates ToU
pricing and makes use of CSO, SSA, and BSOA to generate optimal schedules. The adopted
algorithms are evaluated based on their simple implementation, recentness, and fast
convergence. The results show that the proposed model is effective in scheduling the
electrical appliances in a residence, which benefits consumers by significantly lowering
their electricity bills.

The remainder of the paper is divided into the following sections: Section 2 presents
the related work. Section 3 explains the problem statement. The proposed system’s overall
architecture is discussed in Section 4. Section 5 describes the proposed DSM methodol-
ogy. Section 6 discusses problem formulation. The adopted optimization algorithms are
described in Section 7. The simulation findings are displayed and discussed in Section 8.
The paper concludes with Section 9.

2. Related Work

In order to reduce energy consumption, peak demand, and carbon emissions, many
different methods have been developed to address energy management issues. In this
context, the models proposed in [19–22] employ stationary techniques to reduce consumers’
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electricity costs and user discomfort. In contrast, [23] presented interactions between
interested consumers using a game of repeated energy scheduling, proving that static
approaches provide inferior value in terms of both comfort and cost. In comparison, the
authors defined non-static DSM techniques in which consumers can choose from a variety
of options according to their energy usage and comfort requirements. The DSM architecture
is described in detail in [24], in which the proposed design integrates green energy into the
power system in order to reduce users’ monitoring costs.

The authors of [25] scheduled power and time-shiftable appliances using an integer
linear programming (ILP) technique. The authors of [26] proposed a Mixed-Integer Linear
Programming (MILP)-based strategy for appliance scheduling to shift loads from peak to
non-peak hours in order to reduce peak load and electricity demand costs. In [27], a cost-
effective optimization-based model was proposed to control energy use in residences using
linear programming (LP) in order to minimize overall cost and the peak-to-average ratio
(PAR). An MILP formulation was proposed in [28] to schedule various types of appliances
in order to minimize the user’s electricity bill. Although dynamic programming (DP) and
MILP have been considered to minimize the total cost of running a household and the
PAR of electricity use, respectively [29,30], they require a great deal of computing time
to implement.

In reference [31], an evolutionary algorithm-based (binary particle swarm optimization
(BPSO), cuckoo search (CS), and genetic algorithm (GA)) DSM model was proposed to
schedule residential users’ appliances, resulting in reduced electricity bills and peaks.
In [32], a DSM strategy based on monotonic optimization was presented; the optimal
usage of renewable energy was demonstrated by mathematical modeling of a central
renewable energy source. Sahar et al. [33] proposed a novel hybrid strategy combining
GA, BPSO, and ant colony optimization (ACO) techniques for cost minimization and PAR
reduction, taking user comfort into account when pricing ToU services. The authors of [34]
proposed a system for managing residential energy demand within the confines of the
user’s budget. The authors used GA to solve an optimization conundrum with the aim of
maximizing user convenience while minimizing energy consumption. The authors of [35]
showed how to use RTP to schedule residential loads. To achieve the best electricity use,
the authors used fractional programming. Simulated results indicate that the price of
electricity was reduced. In [36], the authors came up with a way to shift the electricity
load. They used a distributed algorithm to this end. Game theory was used to solve a
residential load-scheduling problem. The newton method was also used to speed up the
convergence rate of the Nash equilibrium. In [37], a strategy for avoiding distribution
system overload was proposed, as well as an algorithm for checking the priority of an
appliance and to shut it down to prevent distribution system overload. Overloading of
the distribution system is avoided through proper load shedding. The authors of [38]
proposed a scheme for scheduling appliances using the optimal stopping rule (OSR), which
is a mathematical optimization technique used to indicate the lowest price, allowing the
user to schedule their appliance during that time period. This lowers the cost of electricity
consumption. In [39], a stochastic cost-minimization problem was proposed, along with
renewable energy. The problem of cost minimization was solved using the Lyapunov
optimization technique. The authors of [40] proposed a strategy for integrating renewable
energy into the power system in order to increase the network’s efficiency; users can reduce
their monitoring costs by selling/purchasing grid energy. DSM studies were proposed by
the authors of [41,42] using GA, PSO, and hybrid particle swarm optimization (HPSO) [43].
A number of engineering applications of artificial intelligence techniques were discussed
in [44,45]. In [46], the grey wolf and crow search optimization algorithm was used to create
a home appliance scheduling framework. Given the existence of real-time price signals, the
proposed method analyzes the cost of electricity savings, user comfort, and PAR reduction
for home appliances. To optimize energy usage in homes, in [47], researchers looked into
a generic DSM model equipped with a power management controller. Optimization of
electricity load scheduling for multiple residents and appliances using a Ladson generalized
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bender algorithm was investigated in [48]. In addition, the authors of [49] used a non-
dominated sorted GA to schedule home appliances while minimizing the associated energy
costs. However, this method is computationally expensive and does not prioritize the
convenience of end users.

To assure the lowest energy cost and the highest user comfort, the authors of [50] pre-
sented the grey wolf accretive satisfaction algorithm for DSM. In [51], a candidate solution
updating algorithm (CSUA) was presented. The goal was to minimize the time a user must
wait for PAR and an appliance while still providing that user with the desired level of
comfort. By combining the modified and enhanced differential evolution with grey wolf
optimization, a model for energy management was proposed and implemented with the
goal of reducing peak energy usage and electricity costs [52]. The authors of [53] proposed
a strategy for DSM based on load clipping and shifting. This strategy was simulated in
MATLAB/Simulink and optimized with an artificial neural network (ANN) algorithm.

In this study, we implemented a smart grid Internet energy-based residential optimal
demand management controller using the load-shifting technique. Our implemented
model uses BOSA, SSA, and CSO algorithms. Notably, the use of these algorithms for DSM
programs has not been mentioned in any previous studies to date, and this is the first study
in which these algorithms have been applied in DSM. These optimization algorithms are
compared to GA in terms of peak demand, electricity cost, robustness, and computation
time tests. The Energy Internet is used to monitor meaningful findings by adopting the
ThingSpeak platform. Moreover, adopting on-site RERs decreases peak power plants
and reduces electricity costs in the proposed system. Furthermore, a ToU tariff scheme is
adopted for electricity bill estimation. The simulation outcomes prove the effectiveness of
the energy-optimization controller based on the preceding algorithms. The following are
the highlights of the paper contributions:

1. For the first time, an optimal SG residential load-shifting DSM technique based on
recent efficient optimization algorithms (BOSA, SSA, and CSO) is been proposed. The
proposed DSM model is implemented using ToU dynamic pricing to establish prices
in advance, as well as shoulder, on–off-peaks, and low-peak pricing while creating
an interactive demand management market in which each consumer plays a role in
reducing energy costs.

2. In-home demand consumption can be regulated by integrating applications for embed-
ded systems and the Internet of Things. The model proposed in this study allows for
continuous monitoring of the load, as well as scheduling of the load. Adopting EI and
the ThingSpeak platform, total energy expenditures and peak energy consumption
can be tracked from anywhere in real time.

3. To guarantee the achievement of minimum values of energy consumption, reduced
electricity bills, and improved load factor using the load-shifting technique, the
adopted algorithms are also compared in term of their robustness (code-tested for
20 times running). Computational speed tests are also performed to determine which
algorithm offers the fastest and most effective processing.

4. In order to test the performance and effects of DSM on metrics such as peak consump-
tion and bill electrification with and without DSM, the proposed algorithm-based
optimal DSM is compared to the unscheduling load profile and to a DSM program
with a commonly used algorithm (GA) for computation and evaluation of the opti-
mal solutions.

5. The proposed optimization algorithm-based DSM program in SG is used to solve the
problem of centralized optimization. In particular, each residential load has a local
DSM controller and flexible appliances. By optimizing individual scheduling, the
energy demand is decreased. The proposed algorithms are simple in construction,
require few control parameters, and achieve a high rate of convergence, thereby
avoiding getting stuck in local optima.
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3. Problem Statement

Modern-world concerns include greenhouse gas emissions from fossil fuel electricity
generation, requiring electrical researchers, engineers, and policymakers to optimize grid
electricity consumption and renewable energy use. Residential loads frequently contribute
significantly to both daily and seasonal peak demand, causing the power grid to be over-
sized to accommodate peak-period energy usage. DSM allows for more decentralized and
efficient operation of appliances through the use of intelligent control strategies, mitigating
problems with the current scenario from the perspective of the end user. Numerous other
advantages motivate the use DSM; for example, it reduces spending and helps avoid power
outages, guarantees a steady and long-lasting flow of power, helps to mitigate environ-
mental concerns by decreasing the need for new conventional power plants, and aids the
grid in reducing voltage problems. Without demand management, more power plants will
be needed to increase the energy output of the SG and keep up with increasing energy
demand. Under optimal DSM, its depth-enhancing benefits are maximized. In our work, an
optimal DSM program is proposed to optimally shift the time of shiftable loads and modify
the total load of the utility, thereby reducing anticipated peak loads and accomplishing the
aforementioned goals. Heuristic algorithms should generally be discovered to find the most
appropriate solutions for problems involving global optimization. The chosen algorithms
(BSOA, SSA, and CSO) are evaluated based on their simple implementation, recentness
(BSOA [54]), and significant advantages, such as their low number of parameters, fast
convergence, and immunity to getting “stuck” in a local optimum (SSA [55]). CSO is simple
and efficient and has successfully solved global optimization problems [56]. Here, the
competency and robustness of the adopted algorithm-based methodology are confirmed.
This study paves the way for real-time load monitoring. By using EI and the optimal DSM
on the ThingSpeak platform, total energy costs and peak energy use can be tracked in real
time from anywhere.

4. The Proposed System Structure

Appliances in a residential building should be scheduled in accordance with the ToU
pricing model. An automated system must ensure that the workload is properly distributed.
Residential energy management (EM) depends heavily on automated appliances, especially
in the context of an SG. Below, we present an explanation of the infrastructure and concept
of load scheduling in an energy management system.

4.1. Model Representation and Concept

Figure 2 shows an illustration of the model’s structure, which serves as the basis for the
development of optimization algorithms. An integrated power utility is focused on serving
a diverse range of loads. To meet peak demand, the optimization program gives preference
to residential load appliances that can use power during peak times. This is achieved by
shifting schedulable appliances to off-peak hours. As a result, the load-side management
system contributes to reducing the energy that is acquired from the utility company.

Smart meters, data centers, a communication network, and data incorporation into
application platforms are some of the components of the residential building network.
Figure 2 shows a smart meter, which is located between a home or building’s local area
and utility, and is responsible for transmitting the aggregated demand for electricity to
the utility. Smart meters can tell users when and how to use energy, and they can change
their habits based on price patterns from the grid. Then, the utility calculates and provides
a pricing pattern (e.g., time of use), which is used for load scheduling according to the
collected customer data. A distribution board plays a crucial role in any electrical grid. It is
used to divide a main power supply into several separate circuits. This board is necessary
to separate shiftable appliances from non-shiftable appliances. The smart scheduler (SS) is
an EM architecture-integrated device responsible for the scheduling and decision making
of smart home appliances. Optimal performance is achieved by combining SS and the
appliances. The main power contactor serves as an automatic power switch to transmit elec-
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trical power signals from the utility or microgrid (MG) or SG resources to appliances with
the help of low-power-relay devices and the distribution board. Lastly, through the smart
meter, the adoption of the Energy Internet enables the user to continue real-time monitoring
of total energy expenses and peak energy consumption via the ThingSpeak platform.
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This work applies an intelligent approach that generates appliance usage patterns
based on electricity price tariffs without human intervention. In order to better comprehend
energy consumers, we divided them into two main categories: traditional consumers and
intelligent consumers. Because traditional homeowners are not concerned with price, they
do not include EM architecture in their homes or buildings. EM architecture is not used
in traditional homes or buildings, unlike in the homes of smart users, who adopt an EM
architecture. The EM system consists of the electrical grid, home appliances, and the display,
as shown in Figure 2.

4.2. Energy Management System

The home has a smart appliance scheduling and decision-making device, known as
a smart scheduler, which is implemented into the EM architecture. SS works in tandem
with the appliances. The EMS architecture is depicted in Figure 2. A smart meter sends out
energy price signals, as well as a collection of energy-hungry appliances. The SS calculates
household appliance ON/OFF schedules in the most efficient way. With a smart meter, the
SS receives a signal from the main grid about prices and modifies the user’s hourly load
demand level in line with the pricing signal. First, the SS moves or shifts the maximum
level of electricity usage by each appliance from peak times to off-peak times. The, the SS
calculates the cost of electricity for each hour.

4.3. Energy Internet

We used a simulation test to monitor the energy demand of the SG according to the
Energy Internet approach over the cloud platform to regulate smart home appliances. We
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authors created a ThingSpeak platform interface with an effective and simple user interface
(UI) that allows homeowners to access and monitor the consumption energy cost and peak
energy through cloud-based home energy management. Figure 3 shows an Internet web
page that users can access using an Internet browser after entering their username and
password as uniform resource locator (URL) login credentials.
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MATLAB and the open-source IoT framework are used to model proposed communi-
cation architectures. For real-time cloud simulation, ThingSpeak was chosen because of the
following advantages:

1. Data aggregation, tracking, and analysis on the ThingSpeak Cloud IoT platform.
The power profile is graphically depicted and monitored in real time on multiple
ThingSpeak channels in the smart grid model.

2. User authentication is enabled by login credentials, and every channel has its own
ID. Each channel has two keys for the programming interface. The API’s read and
write keys are generated at random. These keys enable the storage and retrieval of
data from every channel over the Internet or a local area network.

3. A communication network makes it possible for MATLAB and ThingSpeak to send
and receive data over the Internet.

4. Data can be imported, exported, analyzed, and viewed on multiple platforms and
fields at the same time.

5. Proposed DSM Methodology

For purposes of residential load management, we divided home appliances into two
categories. The first category consists of shiftable loads, such as vacuum cleaners, washing
machines, etc., that can freely be shifted to operate at different times of day without
negatively impacting customer convenience. The second type is non-shiftable loads such as
electric vehicles, air conditioners, and water pumps, which cannot be operated in different
time slots. Table 1 illustrates the rated information of both shiftable and non-shiftable
residential loads. There are three water heaters, eight air conditioners, four electric vehicles,
and two water pumps. All other appliances have only one unit. Table 2 shows the detailed
operation hours and consumption energy of each appliance.
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Table 1. Shiftable/non-shiftable residential Loads.

Shiftable/Non-Shiftable
Appliances Appliance Name Energy Consumption (kWh)

Vacuum Cleaner (VC) 1
Microwave Oven (MO) 1.8

Shiftable Appliances Washing Machine (WM) 2
Water Heater (WH) 3.66 per unit
Dish Washer (DW) 1.4
Coffee Maker (CM) 1.6

Air Condition (AC) 12 per unit
Non-shiftable Appliances Electric Vehicle (EV) 5 per unit

Water Pump (WP) 4 per unit

Table 2. Detailed operation hours and power consumption of shiftable/non-shiftable loads.

Operation
Hour(s) VC MO WM WH DW CM Operation

Hour(s)
AC

(Units)
EV

(Units)
WP

(Units)

1–2 ON ON ON OFF OFF ON 1 5 2 2
2–4 OFF ON ON OFF OFF ON 2 5 0 4
5 OFF ON ON OFF OFF OFF 3–5 3 0 3
6 OFF ON OFF OFF ON ON 6 2 2 2
7 ON OFF OFF OFF ON ON 7 2 2 1
8 ON ON OFF OFF OFF ON 8 3 4 0
9 ON ON OFF OFF OFF OFF 9–11 8 0 2

10 ON OFF OFF OFF OFF ON 11–13 8 4 0
11–13 OFF OFF OFF OFF OFF ON 14 8 3 0

14 OFF ON OFF OFF ON OFF 15 8 2 2
15 ON OFF ON OFF OFF ON 16–17 8 0 0
16 ON OFF OFF ON OFF OFF 18–19 2 0 0
17 OFF ON OFF OFF ON OFF 20 2 0 2
18 OFF ON OFF OFF OFF OFF 21 2 0 0
19 OFF OFF OFF OFF OFF OFF 22–24 1 0 1
20 ON ON ON OFF OFF ON
21 OFF ON OFF ON OFF OFF
22 OFF ON ON OFF OFF ON
23 OFF ON OFF OFF OFF OFF
24 OFF ON OFF OFF ON ON

A flow chart illustrating the proposed optimal DSM strategy is shown in Figure 4. The
first step is to conduct a survey to gather load data. Once the loads have been categorized,
a load profile is created, which includes both the shiftable and non-shiftable appliances.
Furthermore, the load curve is used to establish the durations of peak and off-peak pe-
riods. The amount of energy used in an hour is compared to the maximum allowed for
that time period. The load-shifting technique reduces excessive energy consumption by
redistributing it among various appliances in use at given time. The technique of load
shifting is utilized if and only if the system has shiftable loads. We assume a two-day period
to monitor the entire process. Loads can be met by either grid or SG resources once the
optimization process is complete. If the energy consumption is less than the total energy of
RERs, RERs are used to power the loads. Otherwise, the utility grid compensates for the
energy deficit.
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6. Problem Formulation
6.1. Mathematical Framework for Appliance Scheduling

On the basis of energy consumption, end-user preferences, operational hours, appli-
ances can be categorized as either non-shiftable or shiftable. Shiftable appliances can be
modified to operate on any time scale without affecting their performance. By shifting their
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operations to off-peak hours, energy consumption and costs can be reduced. The daily
consumption cost of shiftable appliances (CS) is given by:

CS(t) =
24

∑
t=1

NS

∑
m=1

XS(n, t)× AS(n, t)× PR(t) =
24

∑
t=1

ES(t)× PR(t) (1)

where t is the time slot, n is the number of appliances, NS represents the total number of
shiftable appliances, AS is the appliance’s power consumption during time t, ES is the
total energy consumption of shiftable appliances, and XS denotes the ON/OFF state of
shiftable appliances.

The load profiles of normally operated appliances, which are also referred to as fixed
(non-shiftable) appliances and include the AC, WP, and EV, cannot be modified in any way.
The daily cost of non-shiftable appliances (CNS) can be expressed as:

CNS(t) =
24

∑
t=1

NNS

∑
m=1

XNS(n, t)× ANS(n, t)× PR(t) =
24

∑
t=1

ENS(t)× PR(t) (2)

where NNS represents the total number of non-shiftable appliances, ANS is the power
consumption of non-shiftable appliances, ENS is the total energy consumption of non-
shiftable appliances, and XNS denotes the ON/OFF state of non-shiftable appliances.

The total energy consumption (E(t)) and cost (C(t)) of all non-shiftable and shiftable
appliances are given in Equations (3) and (4), respectively.

E(t) = ENS(t) + ES(t) (3)

C(t) = CNS(t) + CS(t) (4)

6.2. Objective Function

The proposed load-shifting-based DSM schedules shiftable loads so that the energy
consumption curve is as close to optimal as possible. Additionally, time slots and movable
loads are treated as variable components. Our goal is to minimize the user’s electricity bill,
in addition to lowering the peak energy consumption to improve the grid’s efficiency. The
following is the formulation of the minimization problem:

Minimize :
24

∑
t=1

E(t)× PR(t) =
24

∑
t=1

(ENS(t) + ES(t))× PR(t) (5)

where PR denotes the electricity price at the specified time (t), X denotes the ON/OFF state
of appliances, and E is the total energy consumption. The aggregate energy consumption
of N appliances during time slot t is equal to or less than the maximum permissible output
for energy consumption reduction. An appliance’s maximum allowable delay is denoted
by Mn = 24− ln, and the appliance’s duration of operation is ln.

6.3. Constraints

Constraints should be considered during the process of load scheduling. For example,
the total amount of shiftable loads should exceed the total amount of shifted hourly loads.
Otherwise, the inflated demand must be reined in. Additionally, shiftable loads have a
limit of time shift, which can be advanced or delay within a permissible range. There must
be more shifted appliances than there are shiftable appliances at time step t, as stipulated
in Equation (6).

S(n, t) ≤
24

∑
t=1

H(n, t) ∀ − T ≤ t ≤ T (6)

where S and H denote shifted appliances and shiftable appliances, respectively, and T is
the limit of time shift.
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The load demand for scheduled and shifted loads in the entire day should equal the
daily demand usage for loads prior to scheduling.

Subject to
24

∑
t=1

M

∑
m=1

B(m, t) =
24

∑
t=1

M

∑
m=1

A(m, t) (7)

where B(m, t) is the total daily demand prior to the t-th hour of the m-th type of load
shifting, and A(m, t) represents the overall daily demand after shifting for the t-th hour of
the m-th load type.

7. Optimization Algorithms

Three metaheuristic optimization techniques for DSM are covered here. These algo-
rithms are used in typical single building with nine different appliances (six shiftable and
three non-shiftable appliances). The energy consumption patterns of various appliances
necessitate distinct power ratings. Electricity involves four stages: production, transmis-
sion, distribution, and consumption. There are three main types of electricity consumers:
households, businesses, and factories. To be clear, our primary objective is to improve the
building power scheduling. Many scholars have presented various optimization strategies
for DSM in residential areas. As such, we present optimization methods (SSA, BSOA, and
CSO) in order to achieve optimal electrical usage. The concept of SSA is inspired by the
foraging and predator avoidance behaviors of sparrows. The BSOA is a game-theoretic
optimizer based on the principles of the orientation game. Players of BOSA’s orientation
game, i.e., the searcher agents, move around the playground in response to the direction
indicated by the referee. The CSO is an optimization algorithm based on the foraging
behaviors of cockroach swarms. Using these algorithms, the shiftable appliances are shifted
from peak to off-peak hours by comparing energy consumption with the unscheduled
load profile, which helps to bring down the price of electricity because the price goes up
gradually as peak use times get closer. The mathematical models and detailed explanations
of the adopted algorithms are provided below.

7.1. Sparrow Search Algorithm

Xue and Shen presented the sparrow search algorithm in (2020) [57]. The SSA is an
algorithm for swarm intelligence optimization. The SSA is based on predator avoidance
and feeding behavior of sparrow [57]. It simulates sparrow team foraging; those who seek
better food are finders (discoverers), whereas others are followers. Simultaneously, a subset
of the population conducts reconnaissance and early warning. If a threat is detected, they
forgo food for safety. The matrix below represents the position of individual sparrows [57]:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
...

...
...

xn,1 xn,2 · · · xn,d

 (8)

where n denotes the number of sparrow, and d denotes the dimension of the variable under
consideration. Then, the following vector can be used to represent the fitness values of
all sparrows:

F(X) =


f ([x1,1 x1,2 · · · x1,d])
f ([x2,1 x2,2 · · · x2,d])

...
...

...
...

f ([xn,1 xn,2 · · · xn,d])

 (9)

where F(X) denote the sparrows’ fitness, and the value of each row represents a sparrow’s
fitness. The discoverers are in charge of locating food and aiding the entire population in
achieving increased fitness levels while prioritizing food acquisition throughout the search.
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Thus, the discoverers can scour a much larger area for food than the participants. When
a sparrow spots a predator, it begins singing as a warning signal. This means that if the
alarm value exceeds the safety value, the finder directs the group to other secure foraging
locations. The updated location of the sparrow finder in each iteration is expressed as
follows [57]:

Xt+1
i,j =

{
Xt

i,j.e
−( i

α.itermax ) f or R < ST
Xt

i,j + Q× L f or R ≥ ST
(10)

where Xt
i,j denotes the sparrow finder’s location; t denotes the current iteration; j = 1, 2,..., d

denotes the dimensions of the i-th sparrow in iteration t; itermax denotes the constant with
the maximum iterations; α ∈ (0,1] denotes a random number; R ∈ [0,1] and ST ∈ [0.5,1]
denote alarm and safety thresholds, respectively; Q is a normally distributed random
number; and L is set to 1 if and only if every entry in a dimensioned matrix is a one.
R < ST indicates that there are no dangers in the area, so the finder begins a thorough
search; R ≥ ST indicates that some sparrows have been attacked by predators, and all
sparrows must flee as soon as possible for safety.

Individuals with lower energy levels are less likely to forage as part of the group.
Some hungry newcomers are more likely to flee in search of additional energy. Entrants
can always search for the finder while foraging, as the finder may obtain food or forage in
the vicinity. Certain entrants may pay close attention to the finders for increased predation
and food competition. Some entrants, on the other hand, pay closer attention to the finders
if they notice the finder leaving their current location to compete for food. If they win, they
receive the finder’s food right away. The following formula is used to update the positions
of enrollees [57]:

Xt+1
i,j =

 Q× e−(
Xt

worst−Xt
i,j

i2
) f or i >

( n
2
)

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣× A+ × L Otherwise
(11)

where Xt
worst is the current worst position in the search space; A+ is a random variable of

dimension d with elements randomly distributed between [1,1]; and A+ = AT(AAT)−1.
If i is greater than n

2 , the i-th entrant has a minimal fitness and is most likely to perish.
Approximately 10% to 20% of the sparrow population is assumed to be danger-aware,
which randomly produces the initial positions of the sparrows. The sparrows on the edge
of the group rapidly fly to the secure area to find a better spot. The sparrows in the middle
of the group relocate randomly to find other sparrows. The mathematical model of the
scout is expressed as follows:

Xt+1
i,j =


Xt

best + β×
∣∣∣Xt

i,j − Xt
best

∣∣∣ f or fi > fg

Xt
i,j + K×

( ∣∣∣Xt
i,j−Xt

worse

∣∣∣
( fi− fw)+ε

)
f or fi = fg

(12)

where Xt
best denotes the current optimal global location; β denotes the control parameter

for step size in the form of random number normal distribution with a variance of “1”
and a mean of “0”; K denotes the direction of sparrow movement in the form of a random
number (∈ [−1,1]); f denotes the fitness function of the optimization problem, where fi, fg,
and fw denote the global current and best and worst sparrow fitness values, respectively;
and ε is the smallest constant required to prevent a zero division error. For simplicity’s sake,
fi > fg indicates that sparrows are at the group’s edge, and Xt

best indicates that sparrows
are around the center of the group; otherwise, fi = fg indicates that sparrows in the middle
of the population know that there is a threat to their species.

Here, power consumption is managed by introducing the SSA into the DSM control
strategy, taking into account the discoverer’s position based on the positions of shiftable
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loads. The algorithm SSA manipulates the vertical and horizontal axes of the energy
consumption pattern. The vertical axis represents the magnitude of energy consumption,
whereas the horizontal axis represents the time of energy consumption. This algorithm
determines the optimal energy consumption pattern that results in the lowest power cost
based on maximum energy consumption and maximum time slot parameters. The chosen
objective function to be minimized is shown in Equation (5).

The main steps of SSA are described in the Algorithm 1:

Algorithm 1 SSA Steps

Step 1: The utility’s ToU price, the daily demand profile, and the unscheduled load timing are all
indications of input data that must be defined at the outset of the program.
Step 2: Input the control parameters R, ST, n and itermax.
Step 3: Initialize a population with n sparrows using Equation (8).
Step 4: Calculate the initial fitness function, and determine the global best sparrow fitness value
and global optimal location using Equations (5) and (9).
Step 5: t = 1.
Step 6: Rate the fitness values and assess the current worst and best evaluation.
Step 7: i = 1.
Step 8: Update the positions of producers, scroungers, and afraid sparrows using
Equations (10)–(12).
Step 9: Last individual? yes > return to step 7, else > calculate the updated fitness values.
Step 10: If new xi,j less than old xi,j > update the sparrow positions and fitness value, else > return
to 7.
Step 11: Last iteration?, yes > print the optimal solution, else > return to step 6.

7.2. Binary Orientation Search Algorithm

BOSA was proposed in (2019) [54] and simulates the rules of an orientation game. In
this game, players move around the playground according to the referee’s instructions. The
starting positions of the players are depicted in Equation (13) [54].

Xi =
(

x1
i , . . . , xd

i , . . . , xn
i

)
(13)

where xd
i denotes the position of player i of dimension d, and n denotes the number

of variables.
In each iteration, the player (P) with the best value of the fitness function is the referee

(R), as described in Equation (14):

R =

{
Maximization problem : location o f max( f )
Minimization problem : location o f min( f )

(14)

The value of the fitness function is denoted by ( f ).
A referee’s hand may or may not be moving in the same body direction. Players, on the

other hand, must only take into consideration the referee’s hand. Equations (15) and (16)
are used to simulate the direction [54]:

Pi = 0.8 + 0.2
t
T

(15)

Orientationd
i =

sign
(

Rd − Pd
i

)
f or rand < Pi

−sign
(

Rd − Pd
i

)
otherwise

(16)

At iteration t and maximum iteration T.
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Although each player is required to move in the direction of the referee, a few players
may not be able to do so. This problem is simulated in Equations (17) and (18) [54].

error = 0.2
(

1− t
T

)
(17)

xd
i =

{
xd

i + rand ∗Orientationd
i ∗ xd

h
xd

l + rand ∗
(

xd
h − xd

l

) (18)

where xd
l and xd

h are the lower and upper limits, respectively.
In discrete space, the dimensions of the particle position are denoted by the numbers

“0” and “1” for each dimension. In any dimension, the movement of an agent corresponds
to the change in its value from zero to one or vice versa. Therefore, the displacement in each
dimension is determined as a probability function, and the player’s position is updated in
response to this probability function. In BOSA, the probability function (dX j,d) is chosen to
be restricted to the interval of [0–1]. The probability function is given in Equation (19) [54].

S(dX j,d (t)) =
∣∣∣tanh

(
dX j,d (t)

)∣∣∣ (19)

Each player’s new position is simulated based on the probability function using
Equation (20).

X j,d (t + 1) =

{
complement

(
X j,d (t)

)
f or rand < S(dX j,d (t))

X j,d (t) Otherwise
(20)

The following procedures detail how to apply the BSOA-based proposed optimal DSM
program to the investigated problem, taking into account the player positions based on the
positions of the shiftable loads. This algorithm alters the axes of the energy consumption
pattern. The vertical axis shows energy usage, whereas the horizontal axis shows time.
Based on the adjusted parameters of maximum energy consumption and maximum time
slots, this algorithm calculates the lowest-cost energy consumption pattern. In Algorithm 2,
the steps involved in applying BSOA are as follow:

Algorithm 2 BOSA Steps

Step 1: The utility’s ToU price, the daily demand profile, and the unscheduled load timing are all
indications of input data that must be defined at the outset of the program.
Step 2: All of the BOSA settings in Table 2 should be set.
Step 3: The DSM objective (Equations (5) and (14)) can be minimized by randomly sampling a
population.
Step 4: The player’s position is updated for every population inside the iteration range using
Equations (19) and (20).
Step 5: Verify each population’s constraints.
Step 6: Repeat steps 3–5 until the stop condition is met.

7.3. Cockroach Swarm Optimization Algorithm (CSOA)

CSO is derived from the foraging behavior of cockroaches, which includes swarming,
scattering, and light evasion [58–60]. As a result, the CSOA employs a set of rules to mimic
the collective behavior of cockroaches. The initial step of the algorithm is to generate a
set of potential solutions. Initial solutions are typically generated at random in the search
area. Additionally, the CSOA includes three different procedures for the purpose of solving
various optimization issues during each iteration, including dispersing, ruthless behavior,
and chase swarming. The strongest cockroaches in the chase-swarming process take the
best local solutions (Pi ), create small swarms, and progress toward the global optimum
in the new cycle (Pg ). Each individual (Xi ) in this procedure reaches its local optimum
within its visibility range. Because individuals pursue their local optima in different ways,
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it is possible for a cockroach in a small group to be the strongest by finding a better
solution. A single cockroach’s local optimum exists within its own field of vision, and it
seeks the best global solution [61]. Another procedure is for individuals to be dispersed.
It is performed on a periodic basis to maintain cockroach diversity. In the search space,
each cockroach takes a random step. This process is analogous to the phenomenon of the
weakest cockroaches being consumed in the absence of sufficient food [61]. The following
is the CSOA model [62,63]:

(1) Chase-Swarming Behavior:

Xi =

{
Xi + step.rand.(Pi − Xi ) Pi 6= Xi
Xi + step.rand.

(
Pg − Xi

)
Pi = Xi

(21)

where Xi denotes the cockroach position, step denotes a constant value, rand denotes a
random number between 0 and 1, Pi denotes an individual’s best position, and Pg denotes
the global optimum position. Consider:

Pi = Optj
{

Xj, |Xi − X| ≤ v
}

(22)

where the perception distance, v is constant, j = 1, 2, . . . , N and i = 1, 2, . . . , N. Consider:

Pg = Opti{Xi} (23)

(2) Dispersion Behavior:

Xi = Xi + rand(1, D) (24)

where the random vector rand(1, D) has D dimensions.

(3) Ruthless Behavior:

Xk = Pg (25)

where k is a random non-zero integer between [1, N].
In this paper, we introduce the CSO into the DSM control strategy to manage power

consumption. As a result of this algorithm, the axis along which energy is used is shifted.
Electricity consumption is shown vertically, with time displayed horizontally. This method
determines the least expensive energy consumption pattern given user-specified maximum
energy consumption and maximum time slots. The principal steps for using the proposed
optimal DSM program based on CSO are outlined in Algorithm 3 as:

Algorithm 3 CSOA Steps

Step 1: Indicators of input data that must be defined at the outset of the program include the
utility’s ToU price, the daily demand profile, and the unscheduled load timing.
Step 2: Set all parameters to their default values and initialize the cockroach swarm using
uniformly distributed random numbers.
Step 3: Use Equations (22) and (23) to determine Pi and Pg, respectively.
Step 4: Use Equations (21), (24), and (25), to carry out chase swarming, dispersion behavior, and
ruthless behavior, respectively.
Step 5: Loop until a predetermined condition is met.

8. Performance Results

The adopted algorithm-based system was developed and tested using MATLAB
software (R2021b). The simulation program was executed on a laptop computer with
an extendable 2.30 GHz processor and 32.00 GB RAM. The program is executed with
control parameters of each adopted algorithm, which are illustrated in Table 3. These
parameters are set in the following manner: some algorithms (such as SSA and CSO)
cannot be stable before 500 iterations (a stable operation means the results are exactly
the same at any time of running the code). The maximum intended shift time for every
shiftable appliance is 4 h, and this parameter can be adjusted based on the appliance’s
maximum desired shift time. The maximum energy consumption parameter can be set
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to reflect the maximum intended energy consumption of the residential building. The
maximum energy consumption for appliances is set at 100 kW. Lastly, the algorithm finds
the optimal load pattern by rescheduling shiftable loads within a 4 h window and lowering
peak consumption to less than the maximum desired value (100 kW), all based on the
user’s preferences as set in the algorithm parameters. Figure 5 illustrates the ToU pricing
pattern that was been adopted.

Table 3. CSO, SSA, and BOSA control parameters.

Populations Size Maximum Iterations Maximum Limit Allow Max. Shift Time Slot

30 1000 100 4
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The non-shiftable load profile on an hourly basis based on the load data (Tables 1 and 2)
is shown in Figure 6a. The hourly curve of shiftable loads is presented in Figure 6b.
Figure 6c depicts the total load profile, which includes both shiftable and non-shiftable
loads. The adopted virtual load data were assumed to be approximately simulated do-
mestic actual load statistics in houses and residential structures. Therefore, they can be
installed in homes or residential buildings. When the load data are input into an optimiza-
tion method, a change is made to the time slot of the unschedulable shiftable load profile.
To minimize the energy demand, PAR, and electricity cost, the proposed optimal DSM
program only manipulates the non-scheduling shiftable load curve based on the maximum
energy consumption and time shift hours according to Table 3. With this change, various
appliances may be scheduled to run during off-peak hours rather than during peak hours,
resulting in lower energy use. As the time intervals (horizon axis) shift, the magnitude of
energy consumption is also altered, as peak consumption is shortened and peak-to-average
energy is lowered.

Figure 7 illustrates the simulation results for the adopted residential area energy
consumption and for two days (48 h) when the DSM programs based on optimization
algorithms are applied and loads are successfully shifted to off-peak hours. It can be seen
in the scheduled load curves that on-peak energy consumption (from 9 h to 16 h in the
first day) decreases, and off-peak consumption (off-peak hours equal daily hours except
on-peak hours) increases. Consequently, the peak-to-average ratio decreases. Therefore,
management reduces energy consumption and the electricity cost. The peak demand value
of the proposed algorithm-based DSM is up to 87 kW, which is the lower than without the
use of the DSM program and optimization algorithms (114.2 kW). Residential customers
should attempt to schedule their peak loads for times when electricity prices are relatively
low, which results in a lower electric bill. As illustrated in Figure 7, residential users can
significantly reduce their daily bill for electricity through proper scheduling of loads. The
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adopted algorithms achieve very similar energy consumption and cost-saving results (all
up to 16.3% savings). The peak demand is decreased below the maximum predetermined
energy consumption limit in the scheduled curve, from 114.2kW to 87kW. In general, the
DSM technique performs better as the number of controllable or shiftable appliances grows.
The results prove that the proposed optimal DSM program effectively manages a number
of residential loads in a residential area by shifting controllable loads in order to reduce
peak energy consumption.
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Figure 8 illustrates the amount of power generated by the MG and the grid, the amount
of power consumed by loads, and the costs associated with the grid. Figure 8a,c,e,g assume
that the MG supply power is set to 0%, 50%, 100%, and 125% of the total power consumed
by the loads, respectively. Their costs are represented graphically in Figure 8b,d,f,h, respec-
tively. As shown in Figure 8a, there is no MG power, and all loads are supplied by the
utility grid, implying that the cost will be high, as illustrated in Figure 8b. In Figure 8c, the
MG power is half of the consumption power, so there is a power supply deficit. Therefore,
the utility grid supplies this deficit, and its cost shown in Figure 8d. There is no power
supply shortage in Figure 8e because the MG power is equal to the consumption power.
Consequently, the total energy demand is met by MG resources. As depicted in Figure 8f,
there are no costs in this case because all loads are supplied by MG resources only. In
the final case shown in Figure 8g,h, no power is purchased, but power is sold from the
adopted MG to the utility grid, as the MG power is been expanded by 25% of the total
consumption power.
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Figure 8. The amount of power generated by the MG and the grid, the amount of power consumed
by loads, and the grid costs with the MG supply power set to 0 (a,b), 0.5 (c,d), 1 (e,f), and 1.25 (g,h)
from the total power consumed.

Figure 9 demonstrates the peak energy consumption and total electricity cost for
both unscheduled and scheduled load profiles, illustrating the outcomes of the adopted
algorithms, as well as GA, which is a commonly used algorithm in research studies. It
can be observed that all algorithms yield similar results. The unscheduled peak energy
consumption and cost are showcased as 114.2 kWh and 650.5 cents of USD, as indicated by
black bars. With the proposed DSM, peak consumption energy is reduced to around 87 kWh
by all algorithms, except for the BSOA (red bar), which can produce peak consumption
of up to 85.8 kWh. The scheduled electricity costs are reduced to 5438 cents of USD.
Figure 10 shows the peak amount of energy used and the total cost of electricity for both
unscheduled and scheduled load profiles displayed on the ThingSpeak platform using the
Energy Internet. As can be seen, the unscheduled peak energy consumption and cost are
114.2 kWh and 6505 cents, respectively. After applying the proposed optimal DSM, the
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peak of consumption energy drops to about 87 kWh, whereas the electricity costs drop
to 5438 cents of USD. The results indicate that the optimal DSM can properly address
the shiftable load in the presence or absence of EI. The convergence rates of the adopted
algorithms are shown in Figure 11. The y-axis displays the value of the fitness versus time,
whereas the x-axis depicts the iteration number. It is evident that the BSOA converges to the
lowest cost compared to the other algorithms (up to 5438 cents of USD). In order to evaluate
the robustness of the algorithms, a total of 20 independent runs were performed for each
algorithm. Figure 12 demonstrates the mean of peak demand and the standard deviation
for a total of 20 runs. As can be seen, the mean value of the CSO is the lowest (86.61 using
CSO-based DSM and 114.2 without DSM) in comparison with the other algorithms. Because
the BOSA algorithm exhibits the smallest amount of deviation, it is superior to the other
algorithms in this regard. It results in peak demand of 85.8 kWh, a cost of 5438.98 cents
of USD, and 16.3% savings. Figure 13 illustrates the required computation time for each
optimization algorithm. The elapsed time (ET) is computed based on the parameters of
each algorithm, as shown in Table 3. It is clear that the BSOA and GA are superior in terms
of computation time because they have shorter elapsed times (ET = 27.71 s for the BSOA
and ET = 30.22 s for the GA). Finally, it can be stated that the BOSA is superior to the other
algorithms in terms of peak energy demand reduction, cost minimization, robustness, and
speed of computation.
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9. Conclusions

DSM plays a crucial role in ensuring that electricity supply and demand are in balance.
DSM aids in the maintenance of a reliable power system and the reduction in both electricity
costs and PAR. In this study, we developed MATLAB-based optimization algorithms and
an Energy Internet for residential users to reduce peak consumption of the load curve. This
work has potential applications in the development of future SGs. Optimal DSM based on
metaheuristic optimization algorithms was applied to a variety of residential controllable
appliances. The proposed DSM program was optimized by recent optimizers of BOSA, SSA,
and CSO using the load-shifting technique. The residential loads are primarily supplied
by the SG’s RERs, whereas the deficiency is compensated by the utility grid (grid is last
priority). In addition, by using secure EI technology, the SG’s energies are monitored
properly. Total energy expenditures and peak energy consumption can be tracked in real
time from anywhere. The proposed model indices, such as peak demand and electricity
costs, ensure that the BOSA-based DSM outperforms other algorithms. Whereas the CSO
algorithm has the smallest mean value of peak demand (86.61 kWh), the BOSA algorithm
has the smallest deviation (i.e., standard deviation for BOSA = 0.8, SSA = 1.7 and CSO = 1.3),
making it superior to the other algorithms in terms of electricity costs and savings (BOSA
produced 5438.98 cent of USD cost (mean value) and 16.3% savings). Therefore, the BOSA
technique is effective in lowering electricity bills and power consumption. Moreover,
the results of the proposed approaches were compared to GA results. The GA produces
nearly identical results to SSA and CSO in terms of mean peak demand and electricity
cost, but the high standard deviation renders the GA inferior. In terms of computation
time, the BOSA and GA are superior, owing to their shorter elapsed times (ET = 27.71 and
30.21 s, respectively).

The proposed system has one limitation: it is only applied to controllable appliances
in order to minimize energy consumption using an optimal load-shifting DSM technique. It
cannot reduce the amount of electricity used by manipulating non-controllable appliances
with an optimal peak-clipping technique and operating non-shiftable appliances according
to the priority of each appliance. In this paper, we propose recommendations for future
research, including, in addition to the load-shift technique, the use of an optimal peak-
clipping DSM program and running each appliance according to its priority in order to
more efficiently cut power consumption.

Author Contributions: A.M.J.: original draft, software, methodology, and validation; B.H.J.: super-
vision, formal analysis, research resources, investigation, editing, and writing; B.H.J.: validation;
B.-C.N.: visualization, project administration, funding acquisition; B.N.A.: editing, validation, and
visualization. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by “Gheorghe Asachi” Technical University of Iasi, Romania.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jasim, A.M.; Jasim, B.H.; Bureš, V. A novel grid-connected microgrid energy management system with optimal sizing using

hybrid grey wolf and cuckoo search optimization algorithm. Front. Energy Res. 2022, 10, 960141. [CrossRef]
2. Álvaro, G. Optimization Trends in Demand-Side Management. Energies 2022, 15, 5961. [CrossRef]
3. Jasim, A.M.; Jasim, B.H.; Bureš, V.; Mikulecký, P. A New Decentralized Robust Secondary Control for Smart Islanded Microgrids.

Sensors 2022, 22, 8709. [CrossRef] [PubMed]
4. Alhasnawi, B.N.; Jasim, B.H.; Esteban, M.D.; Guerrero, J.M. A Novel Smart Energy Management as a Service over a Cloud

Computing Platform for Nanogrid Appliances. Sustainability 2020, 12, 9686. [CrossRef]
5. Alhasnawi, B.N.; Jasim, B.H.; Sedhom, B.E.; Hossain, E.; Guerrero, J.M. A New Decentralized Control Strategy of Microgrids in

the Internet of Energy Paradigm. Energies 2021, 14, 2183. [CrossRef]
6. Ali, M.; Basil, H. Grid-Forming and Grid-Following Based Microgrid Inverters Control. Iraqi J. Electr. Electron. Eng. 2022, 18,

111–131.

http://doi.org/10.3389/fenrg.2022.960141
http://doi.org/10.3390/en15165961
http://doi.org/10.3390/s22228709
http://www.ncbi.nlm.nih.gov/pubmed/36433307
http://doi.org/10.3390/su12229686
http://doi.org/10.3390/en14082183


Axioms 2023, 12, 33 24 of 25

7. Alhasnawi, B.N.; Jasim, B.H.; Siano, P.; Guerrero, J.M. A Novel Real-Time Electricity Scheduling for Home Energy Management
System Using the Internet of Energy. Energies 2021, 14, 3191. [CrossRef]

8. Alhasnawi, B.N.; Jasim, B.H.; Rahman, Z.-A.S.A.; Guerrero, J.M.; Esteban, M.D. A Novel Internet of Energy Based Optimal
Multi-Agent Control Scheme for Microgrid including Renewable Energy Resources. Int. J. Environ. Res. Public Health 2021,
18, 8146. [CrossRef]

9. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A survey on smart grid communication infrastructures: Motivations, requirements and
challenges. Communications Surveys Tutorials. IEEE 2013, 15, 5–20.

10. Ma, R.; Chen, H.-H.; Huang, Y.-R.; Meng, W. Smart grid communication: Its challenges and opportunities. Smart Grid. IEEE
Trans. 2013, 4, 36–46.

11. Jasim, A.M.; Jasim, B.H.; Neagu, B.-C. A New Decentralized PQ Control for Parallel Inverters in Grid-Tied Microgrids Propelled
by SMC-Based Buck–Boost Converters. Electronics 2022, 11, 3917. [CrossRef]

12. Logenthiran, T.; Srinivasan, D.; Shun, T. Demand Side Management in Smart Grid using Heuristic Optimization. IEEE Trans.
Smart Grid 2012, 3, 1244–1252. [CrossRef]

13. Yao, L.; Chang, W.-C.; Yen, R.-L. An iterative deepening genetic algorithm for scheduling of direct load control. IEEE Trans. Power
Syst. 2005, 20, 1414–1421. [CrossRef]

14. Awais, M.; Javaid, N.; Shaheen, N.; Iqbal, Z.; Rehman, G.; Muhammad, K.; Ahmad, I. An Efficient Genetic Algorithm Based
Demand Side Management Scheme for Smart Grid. In Proceedings of the 18th International Conference on Network-Based
Information Systems (NBiS-2015), Taipei, Taiwan, 2–4 September 2015; IEEE: Washington, DC, USA, 2015. [CrossRef]

15. Jasim, A.M.; Jasim, B.H.; Kraiem, H.; Flah, A. A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy
Management System. Sustainability 2022, 14, 10158. [CrossRef]

16. Usman, R.; Mirzania, P.; Alnaser, S.W.; Hart, P.; Long, C. Systematic Review of Demand-Side Management Strategies in Power
Systems of Developed and Developing Countries. Energies 2022, 15, 7858. [CrossRef]

17. Jasim, A.M.; Jasim, B.H.; Mohseni, S.; Brent, A.C. Consensus-Based Dispatch Optimization of a Microgrid Considering Meta-
Heuristic-Based Demand Response Scheduling and Network Packet Loss Characterization. Energy AI 2022, 11, 100212. [CrossRef]

18. Khan, A.R.; Mahmood, A.; Safdar, A.; Khan, Z.A.; Khan, N.A. Load forecasting, dynamic pricing and DSM in smart grid: A
review. Renew. Sustain. Energy Rev. 2016, 54, 1311–1322.

19. Graditi, G.; Ippolito, M.; Telaretti, E.; Zizzo, G. Technical and economical assessment of distributed electrochemical storages for
load shifting applications: An Italian case study. Renew. Sustain. Energy Rev. 2016, 57, 515–523. [CrossRef]

20. Flaim, T.; Levy, R.; Goldman, C. Dynamic Pricing in a Smart Grid World; NARUC: Washington, DC, USA, 2010.
21. Yaagoubi, N.; Mouftah, H. User-aware game theoretic approach for demand management. IEEE Trans. Smart Grid 2015, 6, 716–725.

[CrossRef]
22. Zhang, D.; Li, S.; Sun, M.; O’Neill, Z. An optimal and learning based demand response and home energy management system.

IEEE Trans. Smart Grid 2016, 7, 1790–1801. [CrossRef]
23. Song, L.; Xiao, Y.; van der Schaar, M. Demand side management in smart grids using a repeated game framework. IEEE J. Sel.

Areas Commun. 2014, 32, 1412–1424. [CrossRef]
24. Costanzo, G.T.; Zhu, G.; Anjos, M.F.; Savard, G. A System Architecture for Autonomous Demand Side Load Management in

Smart Buildings. IEEE Trans. Smart Grid 2012, 3, 2157–2165. [CrossRef]
25. Zhu, Z.; Tang, J.; Lambotharan, S.; Chin, W.H.; Fan, Z. An Integer Linear Programming Based Optimization for Home Demand-

Side Management in Smart Grid. In Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC,
USA, 16–20 January 2012; pp. 1–5. [CrossRef]

26. Barth, L.; Ludwig, N.; Mengelkamp, E.; Staudt, P. A comprehensive modelling framework for demand side flexibility in smart
grids. Comput. Sci.—Res. Dev. 2018, 33, 13–23. [CrossRef]

27. Kantarci, M.; Mouftah, H. Wireless Sensor Networks for Cost-Efficient Residential Energy Management in the Smart Grid”. IEEE
Trans. Smart Grid 2011, 2, 314–325. [CrossRef]

28. Agnetis, A.; de Pascale, G.; Detti, P.; Vicino, A. Load Scheduling for Household Energy Consumption Optimization. IEEE Trans.
Smart Grid 2013, 4, 2364–2373. [CrossRef]

29. Samadi, P.; Wong, V.W.; Schober, R. Load scheduling and power trading in systems with high penetration of renewable energy
resources. IEEE Trans. Smart Grid 2015, 7, 1802–1812. [CrossRef]

30. Ma, K.; Yao, T.; Yang, J.; Guan, X. Residential power scheduling for demand response in smart grid. Int. J. Electric. Power Energy
Syst. 2016, 78, 320–325. [CrossRef]

31. Javaid, N.; Ullah, I.; Akbar, M.; Iqbal, Z.; Khan, F.A.; Alrajeh, N.; Alabed, M.S. An Intelligent Load Management System With
Renewable Energy Integration for Smart Homes. IEEE Access 2017, 5, 13587–13600. [CrossRef]

32. Wu, Y.; Lau, V.K.N.; Tsang, D.H.K.; Qian, L.P.; Meng, L. Optimal Energy Scheduling for Residential Smart Grid with Centralized
Renewable Energy Source. IEEE Syst. J. 2014, 8, 562–576. [CrossRef]

33. Rahim, S.; Javaid, N.; Ahmed, A.; Shahid, A.K.; Zahoor, A.K.; Nabil, A.; Umar, Q. Exploiting heuristic algorithms to efficiently
utilize energy management controllers with renewable energy sources. Energy Build. 2016, 129, 452–470. [CrossRef]

34. Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A. User satisfaction-induced demand side load managementin residential
buildings with user budget constraint. Appl. Energy 2017, 187, 352–366. [CrossRef]

http://doi.org/10.3390/en14113191
http://doi.org/10.3390/ijerph18158146
http://doi.org/10.3390/electronics11233917
http://doi.org/10.1109/TSG.2012.2195686
http://doi.org/10.1109/TPWRS.2005.852151
http://doi.org/10.1109/nbis.2015.54
http://doi.org/10.3390/su141610158
http://doi.org/10.3390/en15217858
http://doi.org/10.1016/j.egyai.2022.100212
http://doi.org/10.1016/j.rser.2015.12.195
http://doi.org/10.1109/TSG.2014.2363098
http://doi.org/10.1109/TSG.2016.2552169
http://doi.org/10.1109/JSAC.2014.2332119
http://doi.org/10.1109/TSG.2012.2217358
http://doi.org/10.1109/ISGT.2012.6175785
http://doi.org/10.1007/s00450-017-0343-x
http://doi.org/10.1109/TSG.2011.2114678
http://doi.org/10.1109/TSG.2013.2254506
http://doi.org/10.1109/TSG.2015.2435708
http://doi.org/10.1016/j.ijepes.2015.11.099
http://doi.org/10.1109/ACCESS.2017.2715225
http://doi.org/10.1109/JSYST.2013.2261001
http://doi.org/10.1016/j.enbuild.2016.08.008
http://doi.org/10.1016/j.apenergy.2016.11.071


Axioms 2023, 12, 33 25 of 25

35. Ma, J.; Chen, H.H.; Song, L.; Li, Y. Residential load scheduling in smart grid: A cost efficiency perspective. IEEE Trans. Smart Grid
2016, 7, 771–784. [CrossRef]

36. Li, C.; Yu, X.; Yu, W.; Chen, G.; Wang, J. Efficient computation for sparse load shifting in demand side management. IEEE Trans.
Smart Grid 2017, 8, 250–261. [CrossRef]

37. Shengan, S.; Manisa, P.; Saifur, R. Demand Response as a Load Shaping Tool in an Intelligent Grid With Electric Vehicles. IEEE
Trans. Smart Grid 2011, 2, 624–631.

38. Yi, P.; Dong, X.; Iwayemi, A.; Zhou, C.; Li, S. Real-time Oppertunistic Scheduling for Residential Demand Response. IEEE Trans.
Smart Grid 2013, 4, 227–234.

39. Guo, Y.; Pan, M.; Fang, Y. Optimal Power Management of Residential Customers in the Smart Grid. IEEE Trans. Parallel Distrib.
Syst. 2012, 23, 1593–1606. [CrossRef]

40. Yang, P.; Chavali, P.; Gilboa, E.; Nehorai, A. Parallel Load Schedule Optimization with Renewable Distributed Generators in
Smart Grids. IEEE Trans. Smart Grid. 2013, 4, 1431–1441. [CrossRef]

41. Alhasnawi, B.N.; Jasim, B.H.; Rahman, Z.-A.S.A.; Siano, P. A Novel Robust Smart Energy Management and Demand Reductionfor
Smart Homes Based on Internet of Energy. Sensors 2021, 21, 4756. [CrossRef]

42. Kinhekar, N.; Padhy, N.P.; Furong, L.; Gupta, H.O. Utility oriented demand side management using smart AC and micro DC grid
cooperative. IEEE Trans. Power Syst. 2015, 31, 1151–1160. [CrossRef]

43. Babu, N.R.; Vijay, S.; Saha, D.; Saikia, L.C. Scheduling of Residential Appliances Using DSM with Energy Storage in Smart Grid
Environment. In Proceedings of the 2nd ICEPE, Shillong, India, 1–2 June 2018; pp. 1–6.

44. Hasmat, M.; Smriti, S.; Yog, R.S.; Aamir, A. Applications of Artificial Intelligence Techniques in Engineering. Springer Nat. 2018,
1, 643. [CrossRef]

45. Srivastava, S.; Malik, H.; Sharma, R. Special issue on intelligent tools and techniques for signals, machines and automation. J.
Intell. Fuzzy Syst. 2018, 35, 4895–4899. [CrossRef]

46. Waseem, M.; Lin, Z.; Liu, S.; Sajjad, I.A.; Aziz, T. Optimal GWCSO-based home appliances scheduling for demand response
considering end-users comfort. Electr. Power Syst. Res. 2020, 187, 106477. [CrossRef]

47. Chang, H.-H.; Chiu, W.-Y.; Sun, H.; Chen, C.-M. User-centric multi-objective approach to privacy preservation and energy cost
minimization in smart home. IEEE Syst. J. 2018, 13, 1030–1041.

48. Moon, S.; Lee, J. Multi-residential demand response scheduling with multi-class appliances in smart grid. IEEE Trans. Smart Grid
2016, 9, 2518–2528. [CrossRef]

49. Veras, J.M.; Silva, I.R.S.; Pinheiro, P.R.; Rabêlo, R.A.L.; Veloso, A.F.S.; Borges, F.A.S.; Rodrigues, J.J.P.C. A Multi-Objective Demand
Response Optimization Model for Scheduling Loads in a Home Energy Management System. Sensors 2018, 18, 3207. [CrossRef]

50. Ayub, S.; Ayob, S.M.; Tan, C.W.; Ayub, L.; Bukar, A.L. Optimal residence energy management with time and device-based
preferences using an enhanced binary grey wolf optimization algorithm. Sustain. Energy Technol. Assess 2020, 41, 100798.
[CrossRef]

51. Albogamy, F.R.; Khan, S.A.; Hafeez, G.; Murawwat, S.; Khan, S.; Haider, S.I.; Basit, A.; Thoben, K.D. Real-Time Energy
Management and Load Scheduling with Renewable Energy Integration in Smart Grid. Sustainability 2022, 14, 1792. [CrossRef]

52. Hafeez, G.; Alimgeer, K.S.; Wadud, Z.; Khan, I.; Usman, M.; Qazi, A.B.; Khan, F.A. An Innovative Optimization Strategy for
Efficient Energy Management with Day-Ahead Demand Response Signal and Energy Consumption Forecasting in Smart Grid
Using Artificial Neural Network. IEEE Access 2020, 8, 84415–84433. [CrossRef]

53. Philipo, G.H.; Kakande, J.N.; Krauter, S. Neural Network-Based Demand-Side Management in a Stand-Alone Solar PV-Battery
Microgrid Using Load-Shifting and Peak-Clipping. Energies 2022, 15, 5215. [CrossRef]

54. Mohammad, D.; Zeinab, M.; Om, P.M.; Gaurav, D.; Vijay, K. BOSA: Binary Orientation Search Algorithm. Int. J. Innov. Technol.
Explor. Eng. (IJITEE) 2019, 9, 5306–5310.

55. Ahmed, F.; Turki, M.A.; Hegazy, R.; Dalia, Y. Optimal energy management of micro-grid using sparrow search algorithm. Energy
Rep. 2022, 8, 758–773. [CrossRef]

56. Ibidun, C.; Ademola, P. Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem. Algorithms 2016, 9, 59.
[CrossRef]

57. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8,
22–34. [CrossRef]

58. Chen, Z. Modified cockroach swarm optimization. Energy Proc. 2011, 11, 4–9.
59. Chen, Z.; Tang, H. Cockroach swarm optimization for vehicle routing problems. Energy Procedia 2011, 13, 30–35.
60. Cheng, L.; Wang, Z.; Yanhong, S.; Guo, A. Cockroach swarm optimization algorithm for TSP. Adv. Eng 2011, 1, 226–229. [CrossRef]
61. Joanna, K.; Marek, P. Cockroach Swarm Optimization Algorithm for Travel Planning. Entropy 2017, 19, 213.
62. ZhaoHui, C.; HaiYan, T. Cockroach swarm optimization. In Proceedings of the 2nd International Conference on Computer

Engineering and Technology (ICCET ’10), Chengdu, China, 16–18 April 2010; Volume 6, pp. 652–655.
63. Obagbuwa, I.; Adewumi, A. An Improved Cockroach Swarm Optimization. Sci. World J. 2014, 2014, 1–13. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TSG.2015.2419818
http://doi.org/10.1109/TSG.2016.2521377
http://doi.org/10.1109/TPDS.2012.25
http://doi.org/10.1109/TSG.2013.2264728
http://doi.org/10.3390/s21144756
http://doi.org/10.1109/TPWRS.2015.2409894
http://doi.org/10.1007/978-981-13-1819-1
http://doi.org/10.3233/JIFS-169773
http://doi.org/10.1016/j.epsr.2020.106477
http://doi.org/10.1109/TSG.2016.2614546
http://doi.org/10.3390/s18103207
http://doi.org/10.1016/j.seta.2020.100798
http://doi.org/10.3390/su14031792
http://doi.org/10.1109/ACCESS.2020.2989316
http://doi.org/10.3390/en15145215
http://doi.org/10.1016/j.egyr.2021.12.022
http://doi.org/10.3390/a9030059
http://doi.org/10.1080/21642583.2019.1708830
http://doi.org/10.4028/www.scientific.net/AEF.1.226
http://doi.org/10.1155/2014/375358

	Introduction 
	Related Work 
	Problem Statement 
	The Proposed System Structure 
	Model Representation and Concept 
	Energy Management System 
	Energy Internet 

	Proposed DSM Methodology 
	Problem Formulation 
	Mathematical Framework for Appliance Scheduling 
	Objective Function 
	Constraints 

	Optimization Algorithms 
	Sparrow Search Algorithm 
	Binary Orientation Search Algorithm 
	Cockroach Swarm Optimization Algorithm (CSOA) 

	Performance Results 
	Conclusions 
	References

