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Abstract: Renewable energy penetration increases Smart Grid (SG) instability. A power balance
between consumption and production can mitigate this instability. For this, intelligent and optimizing
techniques can be used to properly combine and manage storage devices like Electric Vehicle Batteries
(EVBs) with Demand-Side Management (DSM) strategies. The EVB helps distribution networks
with auxiliary services, backup power, reliability, demand response, peak shaving, lower renewable
power production’s climate unpredictability, etc. In this paper, a new energy management system
based on Artificial Neural Networks (ANNs) is developed to maximize the performance of islanded
SG-connected EVBs. The proposed ANN controller can operate at specified periods based on the
demand curve and EVB charge level to implement a peak load shaving (PLS) DSM strategy. The
intelligent controller’s inputs include the time of day and the EVB’s State of Charge (SOC). After
the controller detects a peak demand, it alerts the EVB to start delivering power. This decrease
in peak demand enhances the load factor and benefits both SG investors and end users. In this
study, the adopted SG includes five parallel Distribution Generators (DGs) powered by renewable
resources, which are three solar Photovoltaics (PVs) and two Wind Turbines (WTs). Sharing power
among these DGs ensures the SG’s stability and efficiency. To fulfill demand problem-free, this study
dynamically alters the power flow toward equity in power sharing using virtual impedance-based
adaptive primary control level. This study proposes a decentralized robust hierarchical secondary
control system employing Genetic Algorithm (GA)-optimized Proportional-Integral (PI) controller
parameters with fine-grained online tuning using ANNs to restore frequency and voltage deviations.
The proposed system is evidenced to be effective through MATLAB simulations and real-time data
analysis on the ThingSpeak platform using internet energy technology. Our presented model not only
benefits users by enhancing their utility but also reduces energy costs with robust implementation of
a control structure by restoring any frequency and voltage deviations by distributing power equally
among DGs regardless of demand condition variations.

Keywords: microgrid; distribution generators; secondary control; genetic algorithm; artificial neural
network; virtual impedance; power sharing

1. Introduction
1.1. Motivation

SGs are small-scale power grids made up of a collection of smart substations, inte-
grated communications, loads, and distributed energy resources such as PV systems, WTs,
diesel generators, batteries, etc. that can function autonomously or in tandem with main
power grids. SGs can use multiple renewable-resource-based DGs, reduce pollution, and
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boost economic benefits. The SG energy management system ensures generating and
loading components perform efficiently and cost-effectively [1–4]. Most Renewable Sources
(RSs) are either naturally DC or DC-friendly, making integration with a low-voltage Direct
Current Transmission (DCT) system relatively simple. DCT systems appear to be an attrac-
tive option for SG distribution systems because of their superior efficiency, high reliability,
and simple integration with renewable sources of energy. Since the DCT transmits only
active power, its line impedances have only resistors, eliminating reactive power losses and
reducing active power losses. Thus, DCT is superior to Alternating Current Transmission
(ACT), while ACT can be employed near the load site for short distances following DG
inverters to maximize loss benefits [1].

SG poses significant power quality challenges, particularly when an excessive number
of DGs are incorporated [5]. Typically, a reliable control method is required to satisfy power
quality requirements and maintain the smooth running of the SG system. Large power,
voltage, and frequency variations occur in the islanded operation of SG as a result of the
lack of uncertainty in the determination of the optimal gains for the controllers such as
Proportional Integral (PI) controllers. Due to these issues, studies are being carried out to
improve the functionality of the SG in the island mode of operation. The proportional and
integral control gain coefficients need to be fine-tuned a lot to improve the performance
of PI controllers [6]. Soft computing techniques can be used to make these coefficients
static or dynamic throughout the process. The control gains are calculated using either the
Ziegler–Nichols (Z–N) method [7,8] or an adaptive or experimental method such as “trial
and error” [9–11]. Because of this, they may delay moving into a steady state of operation.
During the integration of DGs and load changes, proper PI parameter tuning is essential
and difficult to achieve [12]. This will ensure the improved performance of the system
and power quality. Due to their dependence on operating point conditions, traditional
controllers are less reliable and robust. Using intelligent learning algorithms, it is possible
to overcome the technical bottlenecks. Powerful online tuning controllers have a dramatic
effect on regulating secondary voltages and frequencies.

The most common method of SG control is called “droop control”. Frequency–voltage
droop is a popular and effective approach for managing parallel DGs. This method imi-
tates the functioning of a power system with a predetermined droop characteristic. This
wireless control method is easy to deploy and reliable since the DGs are not required to
communicate. Unfortunately, it has some drawbacks that might lower performance. Its
flaws include: its frequency and amplitude variations are load-dependent, leading to poor
load voltage control performance; an intrinsic tradeoff between voltage regulation and
power sharing across DGs; and impedance-mismatched inverters impair power-sharing
performance. Therefore, when the traditional droop control scheme is used, it is impossible
to avoid difficulties with insufficient power sharing. In order to maintain the stability and
cost-effective functioning of the SG, the power of the DGs must be shared continuously. It is
required to dynamically alter the power flow towards equity in terms of the power sharing
in order to optimize the total available power to meet the demand. The aforementioned
issues can be resolved by utilizing communication links with low bandwidth. By transmit-
ting restoration signals related to each individual DG unit, a communication method with
a narrow bandwidth can be adopted to improve the performance of the traditional droop
method. This can be accomplished through the use of hierarchy control as a multi-level
control for primary control [6].

The standard power-sharing technique is incapable of balancing a battery’s SOC
with varied initial values. There must be a direct connection between battery energy
management and the issue of fair power sharing when integrating an energy storage source
with parallel-connected DGs in SG. The optimal control and management of energy storage
based on precise estimation is crucial for the reliable supply of clean, new, and renewable
energy when needed. SG utility must meet time-varying peak demand [13]. Peak hours are
few, so generator units are inefficient most of the time. During peak demand, generator
units need more raw materials or excellent environmental conditions. Unfortunately,
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wind and solar energy are not always obtainable when and where they are most needed.
Furthermore, peak energy demand does not always occur during the day’s windiest or
sunniest hours. As a result, some utilities are struggling to meet demand because solar
and wind power are insufficient during certain times of the day. Solar energy can only be
collected during daylight hours. However, the highest demand for electricity occurs in
the mid-evening. Electric utilities will need to keep using Battery Storage Systems (BSS)
until this discrepancy is resolved. The BSS reduces the climatic variability of electrical
power production in renewable unit installations. It increases renewable unit penetration,
enhancing system efficiency and reliability. In addition, BSS plays an important role in
distribution networks by aiding auxiliary services, backup power, demand response, peak
shaving, renewable energy integration, voltage management, frequency control, and long-
term and seasonal storage. If everybody started using EVBs, it would be a fantastic solution.
The electric vehicle would be charged by being plugged in when it was not in use. Electric
utilities have the ability to siphon power from EVBs in their entirety whenever there is a
high demand for electricity. Getting people to switch to electric cars and installing charging
stations in parking garages and other public areas is one way to reduce the world’s excessive
energy consumption. Therefore, peak load reduction has emerged as an important area
of study. It permits SG utilities to reduce the peak energy production. The application of
a BSS or EVB is the most desirable potential strategy for peak load reduction [14]. In this
technique, PLS is accomplished by charging the BSS during periods of low demand and
discharging it during periods of high demand, as depicted in Figure 1.
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The PLS participation of EVB can optimize the daily load characteristics and improve
the utilization rate of generation units, boosting the overall operating efficiency of power
systems and reducing active power losses. Calculating PLS for energy storage is important
for promoting its use in power production. The primary benefit of EVB-based PLS is that
it enables SG utility to reduce peak demand without compromising the comfort of its
customers [15]. Scheduling the charge and discharge of EVB, however, is difficult [16].
Artificial Intelligent (AI)-based battery management and lifespan prolongation solutions
have garnered attention from manufacturing due to automation engineering and scientific
advances. The authors of [17] proposed the capacity forecaster based on knowledge-data-
driven attention (CFKDA) for Li-ion battery calendar health prognostics, which was the
first study to apply the attention mechanism to battery calendar health monitoring and man-
agement. By incorporating battery empirical information in its knowledge-driven attention
module, the CFKDA has improved its theoretical strength and prognostic performance.
A knowledge-guided data-driven methodology forecasts battery calendar ageing [18].
Support Vector Regression (SVR) is used in this data-driven model. The mechanism and
empirical information components of battery storage temperature, SOC, and time are con-
nected to create a knowledge-guided kernel to predict battery calendar ageing trajectories
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under observed circumstances. To improve generalization in unobserved settings, a classi-
cal Gaussian kernel is applied to all inputs in the knowledge-guided data-driven model.
Reference [19] critically reviews current AI-based production and management solutions
for long-life batteries. AI-based battery production and smart battery health are presented.
The most popular AI solutions for battery-life diagnosis, including state-of-health assess-
ment and ageing prediction, are discussed. Also shown are AI-designed battery longevity
solutions. By scheduling usage of EVB, we can increase a generator’s efficiency and lower
its operating and maintenance costs by using PLS services [20,21].

For internet-based SG system monitoring, the Energy Internet (EI) can be widely
adopted. The EI is the next step of today’s internet, where objects and things have compu-
tation and communication capabilities. The EI plays a crucial role in modern society by
fostering economic and social progress. Currently, the EI is being used widely in numerous
industries, including those dealing with “smart cities”, “smart healthcare”, “smart power
grids”, etc. The widely used ThingSpeak platform can be adopted to generate the proposed
communication structures. Users can aggregate, analyze, and visualize real-time data
streams with the help of ThingSpeak, an Internet of Things (IoT) analytics platform hosted
in the cloud. Using the ThingSpeak platform, users can connect their devices to the internet
and create real-time data visualizations. It is able to instantly visualize data presented by
the system gateways and perform online analysis and processing of data streams.

Based on the above, this paper addresses the SG issues of equal power sharing of
parallel DGs, SG line losses, and demand management by using proposed intelligent
control technique-based EVBs and intelligent secondary control-based parallel DGs with
online tuning control parameters based on ANNs and GAs.

1.2. Literature Review

Studies show that BSS and DSM are effective methods to deal with the above chal-
lenges. Because of the unpredictable and intermittent nature of RSs, DSM strategies and
BSSs are essential for increasing the penetration rate of green power production by reduc-
ing short-duration variability. A number of academics for a variety of uses have studied
BSS integration with renewable energy, notably peak shaving. Peak shaving is defined as
discharging a battery to promote load peaks, thereby lowering the maximum electricity
demand drawn from the main sources. Utility companies and homeowners alike can
reap significant financial benefits from this technology. To assist the local distribution and
transmission network, previous research has given several scheduling and management
techniques for EVB charging. Previous studies suggest using RSs like solar PV or wind
generation with energy storage to charge EVBs [20,21]. Intelligent control and scheduling
algorithms that assist the electrical grid govern EVB charging. Vehicle-to-grid (V2G) tech-
nology allows EV batteries to be discharged for peak shaving or supplementary services
in several of these studies [22,23]. The EVB performs well in peak load control [24] and
DSM [25]. DSM was provided in [26] through distributed energy generation and storage
optimization. The unpredictability and technical problems associated with the usage of
high-power RSs are described, and the benefits of DSM techniques and ESSs are instigated
as features to meet the existing challenges. In [27], the authors explored the significance
of different BSSs for future green power systems to store and dispatch renewable power
during varying scheduling periods. ESSs present novel opportunities for distribution
companies to lessen the impact of using RSs by dampening power fluctuations of RSs and
perfectly matched demand and supply. Battery technology may become more important
for grid stability as the energy market changes [28]. A dimensioning adjustment for battery
energy storage systems utilized for peak shaving based on a real-time control algorithm [29]
increases peak shaving performance. In [30], an additional PLS strategy was presented that
allowed for dynamic adjustments in EVB discharging rates without affecting battery usage
for electric vehicle travel. This strategy reduced peak demand by putting the unused power
of the grid-connected electric vehicles to use. Reference [31] compares three types of battery
in a BSS controller for load leveling and peak shaving. The controller was developed using
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the Matlab environment to monitor consumer load demand, and control BSS charging and
discharging, while meeting load demand and extending BSS life. Reference [32] proposes a
load-based peak shaving mechanism. Power load profile, battery SOC, and RS operation
characteristics are considered, and an adaptive load curve-fitting method is developed. The
study [33] concentrated on software that optimizes a microgrid’s energy storage schedule.
This schedule reduces electricity costs. Using GA or Mixed-Integer Linear Programming,
an optimization technique minimizes an objective function representing electricity use
information and costs. The goal of the study [34] is to produce a peak shaving algorithm for
an islanded Microgrid (MG) that is based on a decision tree. The proposed algorithm assists
an islanded MG in efficiently operating its generation units. DSM and a more cost-effective
battery storage scale design plan for home battery storage are examined in [35].

Regarding the recent control techniques of SG, most of the published literature on
decentralized secondary control of MG [36,37] provides a solution for power sharing and
recovering frequency/voltage with asymptotic convergence speeds. The publishers of [38]
used GA to compute the best parameters for PI and PID controllers in order to control fre-
quency in hybrid systems. The authors of reference [39] made a PSO-based controller to set
the frequency/voltage of an isolated MG. The presented controller optimized the system’s
dynamic behavior in terms of keeping the frequency and voltage within the specified limits.
In reference [40], the PSO-based controller was made just for island MG. Even though both
the source and the load changed a lot, the controller kept the frequency well within the
allowable range. The authors of [41] simulated a parallel DG-based microgrid system that
may be operated in island or grid-connected modes using conventional PI controllers and a
virtual impedance loop. This system can correctly share power amongst parallel DGs. Ref-
erence [1] developed a secondary control strategy employing optimized PI controllers based
on ANNs for accurate online parameter adjustment to address power sharing and improve
SG performance. A power sharing control approach and system performance improvement
in a grid-connected SG were provided by reference [42]. The control technique is based on
Proportional Resonant (PR) controllers, contrasted with model predictive control and droop
control. In our previous work [43], a consensus algorithm-based multi-agent system is pro-
posed to rectify voltage/frequency deviations and allow power sharing among DGs. Each
DG is considered as an agent exchanging information with its local neighbors over a sparse
cyber network system. In the compensation sublayer, intelligent voltage and frequency
compensators are online-adjustable PI controllers employing ANNs. This combination
leverages ANN’s capacity to handle parameter fluctuations and nonlinearity with the PI
controller’s simplicity. Table 1 provides a summary of the related previous studies.

Table 1. Summary of the related previous studies.

Reference
No.

Power-Sharing
Control

Control Parameter
Optimization

Studying Power
Losses PLS-Based DSM Energy-Internet-Based

Monitoring

[20–35] NO NO NO YES NO
[36,37,39] YES YES NO NO NO

[38,40] NO YES NO NO NO
[1] YES YES YES NO NO

[41,42]
[43]

YES
YES

NO
YES

NO
NO

NO
NO

NO
NO

According to the authors’ knowledge, PLS utilizing ANNs and EVBs for islanded SG
was not studied until recently, and no prior research has discussed the use of decentralized
secondary control with ANNs-optimized GA-based PI controllers to simultaneously restore
frequency/voltage and share active/reactive power over low-voltage DCT for eliminating
reactive power issues and reducing power losses.
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1.3. Paper Contributions

Existing PLS methods of energy storage rely on precise mathematical modeling. The
model of these methods is not simple enough, so machine learning tools or intelligent
optimization algorithms can be used. The proposed strategy regulates EVB reference
power intelligently to control charging/discharging of EVB dynamically, considering the
SG load profile and EVB operation characteristics. Furthermore, with this management
strategy, power sharing among DGs using decentralized secondary control with online
parameter tuning by ANNs has not been studied until now. So, there is a need for an energy
management software-based robust secondary control structure that effectively schedules
energy storage of EVB and enhances system performance. This study concentrates on the
management and control of islanded SG. In summary, the following points highlight the
importance and originality of this study:

1. An innovative energy management system based on ANNs is created to maximize the
performance of EVBs-connected islanded SG in zero-energy areas. The adopted SG
uses RSs like solar panels and wind turbines. The proposed approach uses effective
management process for intelligently managing system energy based on time of day
and SOC of EVB.

2. In this paper, we propose a method for optimally controlling each DG in SG using
droop, internal controllers, and decentralized secondary controllers. Moreover, the SG-
connected EVB control structure consists of optimal active/reactive power and current
controllers. With the proposed robust method, the voltage and frequency in the SG are
both dynamically and automatically adjusted, regardless of load conditions changing.

3. To manage load variations and enhance power quality, we develop an online robust
fine-tuning process based on decentralized secondary controllers with ANN learning
features. ANN and GA are adopted to tune the parameters of secondary controllers
in an online manner. GA determines and stores the optimal secondary PI param-
eters. After simulation start, an online ANN modifies the PI controller-based GA
parameters simultaneously. The ANN controller’s capability for learning increases
the extensibility of the proposed control mechanism.

4. To meet the needs of power distribution equally among DGs, the proposed control
strategy employs a virtual impedance technique based on primary control level.

5. Reduced power losses and elimination of reactive power issues motivate the adoption
of the DCT transmission system for supplying power to inverters. Three-phase SG
loads are typically powered by local AC transmission lines.

6. The information flow between the MATLAB program and the open-source IoT frame-
work ThingSpeak is used in this paper to generate the proposed communication
structures from the model. ThingSpeak mimics real-time cloud communication.

1.4. Paper Organization

The remaining sections of the paper are laid out as follows. The proposed SG frame-
work is outlined in Section 2. The adopted SG-based renewable and storage energies are
described in Section 3. Tuning PI controller parameters are presented in Section 4. EVB
energy management based on intelligent ANNs controllers is discussed in Section 5. In
Section 6, the decentralized intelligent secondary control of DG-based SG is described. In
Section 7, the outcomes of the simulations are shown. The paper is concluded in Section 8.

2. Proposed SG System

The proposed islanded SG is demonstrated in Figure 2. This SG consists of five RSs
(three solar PVs and two WTs), one local storage energy station, five inverters-interfaced
DGs (which provide load power according to their capacity), ten DC line impedances,
five AC transmission line impedances, and three loads. Hybrid solar–wind electricity
is environmentally friendly. Even on overcast days or at night when solar irradiation is
low, it may be erected and operated in places with ample solar and wind resources. So,
this unique method will provide spectacular, and reliable electric power, departing from
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hydrocarbon-based electrical energy production. Sunlight and wind may be transformed
into DC or AC power. The adopted solar PVs generate DC power, whereas the WT units
generate AC electricity that must be rectified into DC power via AC/DC converters. The
final DC outputs are already simply applied to DC/AC inverters. Since solar–wind energy
systems are unpredictable and highly dependent on weather, they need backup power
sources like batteries. Thus, the EVB can alleviate some RS issues. In this work, EVB plays
an important role in SG by providing backup power during peak demand periods and
managing load demand using PLS strategy. EVB’s PLS participation optimizes daily load
characteristics, increases generating unit utilization, boosts system efficiency, and reduces
active power losses. To execute the PLS DSM strategy, the proposed ANNs controller-based
EVB operates at specific times depending on the demand curve and EVB charge level,
which are inputs to the intelligent controller. After detecting a high demand, the controller
notifies the EVB to begin supplying electricity. In the adopted SG system, DC transmission
lines are adopted to transfer electricity from RSs to associated inverters because they have
minimal power losses and avoid reactive power issues. DC transmission improves grid
performance and protects against cascading blackouts, is environmentally friendly, and
does not require reactive power compensation [41].

DC line resistances for linking the RS-based DC outputs to the related inputs of VSIs are
[Rd1, Rd2, Rd3, Rd4, Rd5]. The impedances connect these DC lines with each other
[Rd1,2, Rd2,3, Rd3,4, Rd4,5, Rd5,1] are added to improve system reliability in the event of one
DG power failure or for maintenance purposes. The three-phase SG loads are powered by site-
specific AC transmission lines with [RA1 + LA1, RA2 + LA2, RA3 + LA3, RA4 + LA4, RA5 + LA5]
impedances. Inverters, LC filters at the DG’s output, and coupling impedances make up the
power components of the DGs. Table 2 shows the values of all adopted SG line impedances.
Figure 3 shows the DG control structure scheme. It has both primary and secondary control
levels. All of this structure’s observed data are in dq frame. Each primary control scheme
has power, current, and voltage controllers. Set points for the inverter’s output frequency
and voltage are set by the power control loop based on P/f and Q/V droop control charac-
teristics. The droop coefficients are mp and nq. Large droop controller slopes can speed up
load sharing, but they destabilize the system. Both instantaneous active (P) and reactive
(Q) power components are pumped through low-pass filters with 10 π cutoff frequency
to remove fluctuations from power calculations. To reduce the effect of line impedances
and achieve proper power sharing, the virtual impedance method with (resistor = 0.03 Ω
and inductor = 1.7 Ω) is used. The loops of power controller and virtual impedance create
reference voltage, frequency, and line impedance’s voltage drops, which are injected to
voltage and current controllers to create inverter reference voltages and currents in the dq
reference frame. Both current and voltage controllers reduce disturbances and dampen the
output filter.

Table 2. The SG line impedances.

AC Line Impedance Value (Ω + jH) DC Line Impedance Value (Ω) Impedance between DC Lines Value (Ω)

RA1 + jXA1 0.01273 + j0.219 Rd1 1 Rd1,2 0.0127
RA2 + jXA2 0.0159125 + j0.2748 Rd2 0.95 Rd2,3 0.0317
RA3 + jXA3 0.016549 + j0.2858 Rd3 0.76 Rd3,4 0.0317
RA4 + jXA4 0.019095 + j0.3298 Rd4 1.27 Rd4,5 0.0127
RA5 + jXA5 0.014003 + j0.2419 Rd5 1.14 Rd5,1 0.0381
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Because the droop controller cannot return the frequencies and voltages of DGs to
their nominal values, secondary controllers must be used. Secondary controllers correct
steady-state errors ignored by droop controllers. Figure 3 shows GA-ANN-based secondary
frequency and voltage controllers for each DG. The frequency signal is instantly measured
and compared to its reference value. The PI controller receives the error signal as an input
and uses it to calculate the frequency deviation. A voltage signal can be controlled in a
similar fashion to generate a voltage deviation. Adjusting PI controller parameters stabilizes
the frequency/voltage outputs. The secondary controller is a Local Controller (LC) that
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monitors load end voltage and frequency and supplements DG set-points. Secondary
control signals only slightly alter reference points. Secondary units ensure SG meeting runs
smoothly and without incident.

At the end, the ThingSpeak platform is proposed for real-time SG data monitoring.
Remote monitoring can analyze SG data. Cloud-based IoT online analytical processing
ThingSpeak aggregates, visualizes, and analyzes live data streams. MATLAB can transmit
data to ThingSpeak for real-time data visualization. It can analyze online data streams and
visualize gateway data.

3. Modeling of Renewable and Storage Energy Resources
3.1. Solar PV

In Equation (1), the diode alone and the two resistors define the I–V relationship that
is used to model the functioning of a PV cell [1,43]

I = IPHO − IOT(e
(

VSE
αVT

) − 1)− VSE
Rsh

(1)

where IPHO is the photocurrent, IOT is the diode’s reverse saturation current, Rsh is the
shunt resistor that controls the current leakage across the p-n junction, VSE represents the
series voltage (which includes the voltage drop across the PV series resistor), and α is the
ideality factor that shows how far the diodes are from their ideal state. VT , the thermal
voltage of a diode, is affected by temperature (T), the Boltzmann constant (k), the number
of series-connected cells (n), and the electron charge (q).

VT =
knT

q
(2)

The photocurrent is a function of both the solar irradiance hitting the module and the
PV cell’s temperature, as shown in Equation (3).

IPHO =
GIPHO,n + Gki∆T

Gre f
(3)

where ∆T is the difference in Celsius degrees between the PV cell’s actual temperature and
its nominal temperature, Gre f is the nominal irradiance, and IPHO,n is the photocurrent
evaluated at the nominal condition (typically 25 ◦C temperature and 1000 Watt/m2 irradi-
ance). The temperature coefficient, ki, and the solar irradiance, G, are both expressed in
terms of watts per square meter.

The open-circuit voltage (Voc) of the cell is temperature-dependent, as indicated by
Equation (4):

Voc = Voc, n + kv∆T (4)

where Voc, n is the Voc at standard temperature and kv is the temperature coefficient for this
voltage. In order to calculate the diode’s saturation current, we must solve for Io.

Io =
ki∆T + IS,N

e(
Voc, n+kv∆T

αVT
) − 1

(5)

where IS,N represents the short-circuit current under normal conditions.

3.2. WT Generator

The amount of power produced by a WT is defined by Equation (6) [44]

PW = 0.5AρCp(γ, β)V3
w (6)
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where ρ is air density, A is swept rotor area, Cp is the power coefficient which depends on
the pitch angle β and the tip speed ratio γ, and VW is wind speed.

The mathematical models used in the control system of a doubly fed induction gener-
ator are essential. The equations for the voltage developed in an induction motor with a
rotating dq-coordinate system are as follows [43]:

vds
vqs
vdr
vqr

 = p


λds
λqs
λdr
λqr

+


−ω1λds
ω1λqs
−ω2λdr
ω2λqr

+


−Rs 0 0 0

0 −Rs 0 0
0 0 Rs 0
0 0 0 Rs




ids
iqs
idr
iqr

 (7)


λds
λqs
λdr
λqr

 =


−Ls 0 Lm 0

0 −Ls 0 Lm
−Lm 0 Lr 0

0 −Lm 0 Lr




ids
iqs
idr
iqr

 (8)

A dynamic equation for a doubly fed induction generator:

J
np

dωr

dt
= Tm − npLm

(
iqsidr − iqrids

)
= Tm − Tem (9)

where the d- and q-axes, the stator, and the rotor are indicated by the subscripts d, q, s, and r,
respectively; L is inductance, λ is flux linkage, v and i are voltage and current, ω1 is angular
synchronous speed, and ω2 is slip speed, where ω2 = ω1 − ωr. The mechanical torque is
denoted by Tm, the rotor inductance and resistance by Lr and Rr, the stator resistance and
inductance by Rs and Ls, the mutual inductance by Lm, the number of poles by np, and the
rotor inertia constant by J.

If the stator voltage vector is used to guide the synchronously rotating dq-reference,
this will put the d-axis in phase with the stator voltage vector and the q-axis in phase
with the stator flux reference frame. Because of this, we have λds = 0 and λqs = λs. The
following equations can be found as in the stator voltage-oriented reference frame [44]:

ids = −
Lmidr

Ls
, Tem =

npλsLmidr

Ls
(10)

σ = 1− Lm
2

LsLr
(11)

vdr = σLr
didr
dt

+ Rridr − (ω1 −ωr)
(

Lmiqs + Lriqr
)

(12)

vqr = σLr
diqr

dt
+ Rriqr + (ω1 −ωr)(Lmids + Lridr) (13)

3.3. Energy Storage System

Terminal voltage and SOC are both useful indicators of battery health in a BSS [1,43–47]:

Vo = R.eB
∫

ibdt + Rbib + Vb − K
Q

Q +
∫

ibdt
(14)

SOC =

∫
100ibdt

Q
+ 100 (15)

where Rb represents the battery’s internal resistance BESS charging current (ib), K represents
the polarization voltage, and the open-circuit voltage is Vo. Battery capacity (Q), exponential
voltage (R), and total storage capacity (B) are all symbols used to describe the same thing.
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4. PI Controllers’ Parameter Tuning

Every DG necessitates dual internal controllers to manage primary control level-
based voltage and current feedback signals. Frequency and voltage deviations, as well
as power-sharing issues, are exacerbated by primary control. Because of this, the DG
requires secondary control to compensate for frequency and voltage signal deviations.
Every controller in both primary and secondary levels has proportional and integral gain
coefficients. There are two controllers for current and voltage loops in the primary level. At
the secondary level, there are also frequency and voltage loop controllers. Moreover, the
EVB control technique requires two PI controllers for power and current loops. Therefore,
we require twelve control coefficients. Using evolutionary algorithms like GA allows for
parameter tuning across a broader usable range. The speed of convergence is slow for
the standard GA, which is not an important factor in our work. GA has better global
convergence than PSO, but PSO is easier and more flexible. The main problem with PSO is
that it often results in premature convergence since it is difficult to fine-tune the velocity
step size in the search space [48]. GAs can process multiple strings at once. In this way, the
search space is thoroughly investigated. Results are more reliable, and the risk of falling
into a local minimum is greatly diminished [49].

By incorporating GA into the proposed control system, the scope of the initial search
is narrowed. We determine a suitable range to offer sufficient freedom for the GA and a
satisfactory control procedure based on the ranges of control parameters. The chromosome
in this model is a string with ten genes. In order to get the desired readings for the frequency
and voltage signals again, the following objective function (O.F) is applied.

O.F =

√√√√√√√√
∑N

n=1

(
kvl

∣∣∣∣∣
((√

|vdLoad(n)|2 +
∣∣∣vqLoad(n)

∣∣∣2)− vnomAC(n)

)∣∣∣∣∣
)2
+

{
∑N

n=1 k f | fnom(n)− f (n)|2
}
+{

∑N
n=1 kvo|vo(n)|2

} (16)

where N is the simulation time samples, n is the sample number, vdLoad and vqLoad are
the dq load voltage components, vnomAC is the SG system’s nominal AC voltage, and
fnom and f are the system’s nominal and measured frequencies. In addition, vo is the
inverter output voltage. The proposed system operates at a low voltage, 50 Hz, 220 V.
Voltage deviations are 11 V (5% of 220), and frequency deviations are 0.5 Hz (1% of 50).
Table 3 lists the GA-based offline control parameter tuning. Figure 4 shows the flowchart
of GA-based optimization. The convergence curve of the GA is illustrated in Figure 5.
The objective function optimizes control parameters after initialization. As a result, the
optimal control parameters indicated in Table 3 are achieved, where [Kpi Kii] are the
proportional and integral parameter gains of the primary current controller, [Kpv Kiv] are
the proportional and integral parameter gains of the primary voltage controller, [Kpvs Kivs]
are the voltage controller parameters of the Secondary Control Unit (SCU), and [Kp f s Ki f s]
are the frequency controller parameters of SCU. EVB-based load management structure
power and current controller parameters are [KpP KiP] and [KpC KiC]. Since this is the
initial offline step of the proposed approach, a slow convergence time may provide superior
control settings. By defining the GA settings as number population = 15, generation number
= 55, lower limit = 0, higher limit = [Kpv Kiv Kpi Kii Kpvs Kivs Kp f s Ki f s KpP KiP KpC KiC]
= [10 2000 1000 5 0.2 0.2 5 10 10 100 5 100], simulation time = 5.5 s. After sorting the
population to find members with the lowest voltage and frequency differences, crossover
and mutation operators produce a new generation. Since the @gaoptimset function has
been utilized, the mutation operator used by default is @mutationadaptfeasible. As the
suggested mutation function for restricted minimization problems, @mutationadaptfeasible
is used. The specified default mutation function creates randomly adaptable directions
relative to the previous successful or failed generation. Mutation follows boundaries and
linear restrictions. CrossoverFraction is changed between the values 0 and 1. A crossover
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percentage of n indicates that, among all non-elite offspring, n percent of the children in the
future generation will be the result of crossover, while the remainder will be the product of
mutation. Crossover uses the 0.6 fraction. If the termination criterion is met, the optimal
control parameters are determined. The elapsed time calculated to obtain the optimal
values is 31,998 s.

Table 3. The control parameter values using GA.

AC Line Impedance Value

Outer voltage controller proportional gain (Kpv) 7.56
Outer voltage controller integral gain (Kiv) 1838

Inner current controller proportional gain (Kpi) 462.3
Inner current controller integral gain (Kii) 3

Secondary voltage controller proportional gain (Kpvs) 0.086
Secondary voltage controller integral gain (Kivs) 0.16

Secondary frequency controller proportional gain (Kp f s) 2.19
Secondary frequency controller integral gain (Ki f s) 7.38
Battery power controller proportional gain (KpP) 9.1

Battery power controller integral gain (KiP) 67
Battery current controller proportional gain (KpC) 4.4

Battery current controller integral gain (KiC) 99
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In this research, the proposed system is “robust” because when we ran it twenty times,
the intended results were always the same and the standard deviations (the variation from the
mean value) of the control parameter values were extremely small. The standard deviation val-
ues of optimization-based parameters are [Kpv Kiv Kpi Kii Kpvs Kivs Kp f s Ki f s KpP KiP KpC KiC]
= [0.1 3 1.1 0.1 0.001 0.005 0.08 0.11 0.12 0.25 0.05 0.3]. Furthermore, these values of the opti-
mization algorithm’s parameters are not to be finally adopted in the proposed system, since
the system employs ANN to alter the system’s parameters in real time with more precision.
We develop an ANN-based SCU that interacts with a GA-optimized PI controller as shown
in Figure 3. To maintain the nominal set-points of both voltage and frequency online, the
GA must adjust initial process parameters. MG voltage and frequency could collapse if the
control action is ineffective. To prevent this, we use ANN-based SG decentralized SCU. The
presented SCUs based on ANNs adjust parameters online, which broadens the method’s
applicability. The studied system collects voltage and frequency data. These inputs are
used by an ANN to adjust the weights of its nodes. All DGs have accurate set-points. This
risk-free control operation guarantees constant SG voltage and frequency.

According to the system expert, the ANN-based controller will have 5 neurons in the
input layer and 20 neurons in the hidden layer. Input layer neurons are linear, but hidden
layer neurons are nonlinear. Nonlinearity allows smooth weight changes. The number of
control variables determines output-layer neurons. Figure 2 shows that the investigated SG
has five DGs. Each DG has voltage and frequency controllers. Each secondary controller
has proportional and integral gains. The output layer has two linear neurons per controller.

A neuron is the basic building block of ANN, and it has three parts: weights, bias, and
activation function f (net). Equation (17) describes the relationship of these parameters [50].

yp
j = netp

j = f
(
∑n

i=1 xp
i wp

ij − θi

)
(17)

where xp
i denotes incoming data at iteration p, n denotes input-layer neurons, and wp

ij
denotes hidden-layer weights; f (net) can be logsigmoid, sign, etc. The back-propagation
algorithm requires activation function derivatives ( f ′ (net)).

The differential of the hidden layer’s activation function is given by

f ′
(

netp
j

)
= f

(
netp

j

)[
1− f

(
netp

j

)]
(18)

The nodes of the output layer are calculated using

yp
k = netp

k = f
(
∑Q

j=1 yp
j wp

jk − θj

)
k = 1, 2 (19)
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where Q is the hidden layer’s neurons and wp
jk is its weight vector. To calculate a PI

controller’s two parameters, use the following equations:

Kp
P = Op

1 (20)

Kp
i = Op

2 (21)

The input vector activates the output and hidden layers in feed-forward. The primary
goal of the ANN structure is to minimize frequency and voltage deviations, thereby en-
hancing the MG’s stability. This study’s feedback procedure uses supervised learning. The
learning approach uses back-propagation. The proposed learning process reduces the error
signal to optimize. The neuron k and p iteration error function is [50]:

ep
k = ydp

k − yp
k (22)

where yp
k and ydp

k are measured and desired outputs. Voltage and frequency desired values
are [220 V 50 Hz]. The weights are updated using the error signal (ep

k ) as follows:

wp+1
jk = wp

jk + ∆wp
jk (23)

wp+1
ij = wp

ij + ∆wp
ij (24)

where ∆wp
ij and ∆wp

jk are system error weight changes and i, j, and k indicate input, hidden,
and output neurons.

∆wp
jk = ηyp

j δ
p
k (25)

where a small positive constant (η) is the learning rate and δ
p
k is the error gradient in neuron

k in the output layer at iteration p.
An error gradient is set up when the derivative of the activation function is multiplied

by the error at the neuron’s output. Because of this, for neuron k in the output layer,
we have

δ
p
k =

∂yp
k

∂Xp
k

ep
k (26)

where the net weighted input to neuron k during the same iteration in the process is
represented by Xp

k . Specifically, for a sigmoid activation function, Equation (26) can be
written as:

δ
p
k =

∂

{
1

1+e−Xp
k

}
∂Xp

k
ep

k =
e−Xp

k{
1 + e−Xp

k

}2 ep
k (27)

Therefore, we obtain:
δ

p
k = yp

k

(
1− yp

k

)
ep

k (28)

where,

yp
k =

1

1 + e−Xp
k

(29)

The hidden-layer weight update can be calculated using the same equation as the
output layer:

∆wp
ij = ηxp

i δ
p
j (30)

where δ
p
j is the hidden-layer j neuron’s error gradient.

δ
p
j = yp

j

{
1− yp

j

}
×∑R

k=1 δ
p
k wp

jk (31)
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where R represents the total number of neurons in the target layer’s output.

yp
j =

1

1 + e−∑n
i=1 xp

i wp
ij−θj

(32)

The training procedure will proceed until the absolute minimum of errors is achieved.
Both the ANN- and GA-based PI secondary frequency and voltage controllers have

two secondary outputs. With the proposed controllers, we can adjust the frequency with
their outputs [Kp f ANN Ki f ANN ] and [Kp f sKi f s]. The parameters [KpvANN KivANN ] and
[KpvsKivs] for controlling the voltage are similar.

∆Vsec = KpvANNKpvs × Ev + KivANNKivs ×
∫

Ev (33)

∆ fsec = Kp f ANNKp f s × E f + Ki f ANNKi f s ×
∫

E f (34)

where Ev and E f are voltage and frequency error signals. The deviation between the target
and actual values is expressed by the error signal.

5. Intelligent ANN-Controller-Based EVB Energy Management

Batteries are becoming one of the most essential energy storage options due to the
transition to renewable energy. Battery management is crucial for efficient, safe, and
long-lasting function. Yet, the regularly changing load and operating circumstances, etc.,
provide obstacles for conventional battery management. Under witnessed and unwitnessed
storage circumstances, study [51] presents a transferred recurrent NN-based architecture for
calendar capacity prognostics. A base model and transfer model make up this transferred
recurrent ANN structure. Transfer learning was used for battery state assessment and
ageing prognostics in the article [52]. Conventional battery management’s general concerns
and transfer learning’s solutions are highlighted. Next, the unique issues of each subject
are identified and transfer-learning-based solutions are discussed, followed by a review of
the state of the art in terms of concepts, algorithm frameworks, benefits, and limitations.
Moreover, high RS penetration and decentralization have increased system instability.
To reduce instability, a balance must be maintained between consumption demand and
production rate. ANNs can be used to integrate EVBs with demand-side management. This
paper develops an ANN-based energy management system for SG-connected EVB. ANNs
are adopted to schedule power from EVB from/to SG in order to increase the system’s
reliability, maintain the supply–demand balance, and reduce system power losses during
peak demand hours. Information about the battery’s charge level and the demand curve
can be used to set the controller’s timing for peak and off-peak hours. The flowchart of
the training process of ANN-based battery control is shown in Figure 6. As illustrated in
Figure 6, the ANN-controller-based EVB generates the reference power (Pre f ,ESS) for its
control unit depending on various time-of-day periods and battery SOC situations.

The intelligent controller’s inputs are time of day and SOC of EVB. During normal
operating hours, the SG meets all load power requirements and charging EVB (charging
mode). Once the ANN controller detects a peak, it notifies the EVB to begin supplying
the building’s appliances with energy (discharging mode). Running the EVB during peak
hours lowers the peak-to-average power ratio, allowing appliances to run more efficiently
and reducing active power losses. During the SG’s off-peak hours, this depleted EVB
will be fully recharged. By discharging ESSs during peak demand hours and charging
them during off-peak hours, the proposed peak-shaving-based technique lowers peak
consumption, saves demand power, and maintains supply–demand balance.
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Figure 7 illustrates the overall optimal PQ control technique of EVB using PI controllers.
Each PI controller in the dq axes is primarily controlled independently using the PQ control
technique for managing active/reactive power. The GA is adopted to optimize the PI con-
troller parameters. Two of the four PI controllers are outer controllers to regulate active (P)
and reactive (Q) powers, while the other two are inner current controllers to control battery
inverter stability and reduce harmonics. The outputs of active and reactive PI controllers
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are the reference dq currents (Idre f and Iqre f ) that are applied to the current controllers. The
formulae for the power controllers are represented by Equations (35) and (36), respectively.

Idre f = KpP ×
(

Pre f ,ESS − P
)
+ KiP ×

∫ (
Pre f ,ESS − P

)
(35)

Iqre f = KpP ×
(

Q−Qre f

)
+ KiP ×

∫ (
Q−Qre f

)
(36)

where Pre f ,ESS and Qre f are the reference active and reactive powers, respectively.
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The periodic three-phase voltages (Va, Vb, Vc) and currents (Ia, Ib, Ic) are associated
with 3 ph instantaneous active power and reactive power. These formulae are used in
the calculations:

P = Va × Ia + Vb × Ib + Vc × Ic (37)

Q =
1√
3
[(Vb −Vc)× Ia + (Vc −Va)× Ib + (Va −Vc)× Ic] (38)

As can be seen in Figure 7, the primary feature of the optimal current controllers is
their ability to regulate the dq axes current component, thereby adjusting the active and
reactive power of the EVB. The outputs of these outer controllers are the voltages in the
dq frame.

Vd = KpC ×
(

Idre f − Idinv

)
+ KiC ×

∫ (
Idre f − Idinv

)
(39)

Vq = KpC ×
(

Iqre f − Iqinv

)
+ KiC ×

∫ (
Iqre f − Iqinv

)
(40)

A Phase-Locked Loop (PLL) is employed to compute the voltage angle, with the
resulting voltage signals being fed into a reference system for the purpose of defining the
transformation between the dq frame and abc frame. Using the abc final generation voltage,
the PWM signals for the switching inverter are generated.
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6. Decentralized Intelligent Secondary Control of DG-Based SG

Parallel inverters are managed via frequency–voltage droop. Sadly, it contains various
flaws that might reduce performance. Its disadvantages include load-dependent frequency
and amplitude changes, a built-in tradeoff between voltage regulation and DG power
sharing, and impedance mismatched inverters that reduce power-sharing performance.
The SG’s stability and cost-effectiveness depend on DG power sharing. The standard
droop control approach cannot prevent power-sharing issues. To optimize power supply
to match demand, power flow must be dynamically adjusted toward equity. This study
introduces optimization-based intelligent secondary control for power sharing. In this
control technique, each DG unit has an intelligent, decentralized SCU to correct voltage
and frequency abnormalities and make sure the deployed parallel DGs are effectively
sharing load power. As illustrated in Figure 3, Equations (41) and (42) represent the power
controller’s outputs:

ω = ωre f −mP + ∆ fsec (41)

Vdre f = Vre f − nQ + ∆Vsec , Vdre f = 0 (42)

where ω represents the measured frequency (rad/sec.); the active and reactive power of
a given DG are represented by the P and Q signals, respectively; Vre f and (ωre f or ωn)
represent the reference values of the SG voltage and frequency; ∆ fsec and ∆Vsec denote the
deviations of frequency and voltage (outputs of the SCUs); and Vdre f and Vqre f denote the
reference voltages in the dq-frame.

To reduce voltage and frequency variations, supplementary outputs are added to the
usual droop equations. Using Equations (43) and (44), virtual impedance circuits have
been incorporated into the main control to guarantee that the DGs distribute the load
power equitably.

Vdver = Rv Id −ωre f Lv Iq (43)

Vqver = Rv Iq −ωre f Lv Id (44)

where Rv and Lv represent the virtual resistance and the inductance, Id and Iq represent
inverter measured currents in the dq-frame, and Vdver and Vqver represent the compensation
voltages for droop voltages caused by mismatched line impedances.

Idre f and Iqre f , which are reference dq-frame currents, are supplied to the internal
current controller via the exterior voltage controller using Equations (45) and (46).

Idre f =

{
Kpv

(
Vdre f −Vdinv −Vdver

)
+ Kiv

∫ (
Vdre f −Vdinv −Vdver

)}
+ Id −ωre f C f Vqinv (45)

Iqre f =

{
Kpv

(
Vqre f −Vqinv −Vqver

)
+ Kiv

∫ (
Vqre f −Vqinv −Vqver

)}
+ Id −ωre f C f Vdinv (46)

where Vqinv and Vdinv denote the inverter measured voltages in the dq-frame inverter,
ωre f C f Vqinv and ωre f C f Vdinv denote the cross-decoupled variables used to regulate the
voltage independently along the dq axis, and C f represents the capacitor of the inverter
power filter.

The internal current controller uses Equations (47) and (48) to generate the reference
inverter voltage in the dq-frame:

Vdre f ,inv =

{
Kpi

(
Idre f − Id

)
+ Kii

∫ (
Idre f − Id

)}
−ωre f L f Iq (47)

Vqre f ,inv =

{
Kpi

(
Iqre f − Iq

)
+ Kii

∫ (
Iqre f − Iq

)}
−ωre f L f Id (48)

where ωre f L f Id and ωre f L f Iq denote the cross-decoupled values utilized to individually
regulate the current along the dq axis. Lastly, L f is the inductor of the inverter power filter.



Energies 2023, 16, 2570 20 of 29

The inverse Park transformation is then applied to the dq0-frame reference voltage
values to convert them to the abc-frame representation:Va

Vb
Vc

 =

 cos(ωt) −sin(ωt) 1
cos
(
− 2π

3 + ωt
)
−sin

(
− 2π

3 + ωt
)

1
cos
( 2π

3 + ωt
)
−sin

(
− 2π

3 + ωt
)

1

Vdre f ,inv
Vqre f ,inv

0

 (49)

To activate the associated VSI’s power electronics switches, these three-phase signals
are fed into a Pulse Width Modulation (PWM) generator.

7. Simulation Results

To assess the performance of the suggested control structure, the proposed islanded
SG, shown in Figure 2, is executed under load response variations based on EVB. After
applying load management to the SG, frequency and voltage profiles, sharing the load
power, and system losses are observed.

7.1. EVB-Based Load Management Results

Figure 8 illustrates the total load profile (green curve) with a maximum consumption
power of 182 kW. This curve is the summation of all adopted individual SG loads (load1,
load2, load3, and static load). Figure 9 demonstrates the SG power generation curve as well
as the EVB power curve. It is interpreted that during peak times, the load draws power
from EVB in addition to SG power generation. Consequently, as depicted in Figure 10,
the peak power requirement is reduced. During peak hours, the load demand and SG
generation are reduced from 182 kW to below 150 kW. Solar and wind power are not always
available when they are needed. In addition, energy may not be required during sunny or
windy weather. The most electricity is used in the early mid-evening. Until this problem
is fixed, electric utilities cannot stop using BSS. As Figure 10 shows, the answer is to use
stored energy. EVBs would be a great solution if everyone used them. When electric cars
are not being used, they would be plugged into a power source. When there is a lot of
demand for electricity, electric utilities could take power from all EVBs. High energy use
can be solved by convincing people to buy electric cars and installing charging stations in
parking lots. The SOC level of the EVB is demonstrated in Figure 11. In the peak demand
hours, the BEV continues to discharge (from hour = 8 to hour = 20). The power can be
stored in batteries during periods of low demand and then released to meet load during
times of high peak demand. As a result, the system’s performance is enhanced, and its
reliance on SG generation resources is reduced.
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7.2. Voltage/Frequency Deviations Restoration and Power-Sharing Results

The proposed technique has the expected performance in terms of minimizing voltage
and frequency deviations when the load changes. Each DG’s voltage and frequency
is shown in Figure 12a,b, respectively. The proposed control technique is shown to be
resistant to fluctuations in the load. After some adjusting, the voltage and frequency have
reached their standard settings (50 Hz and 220 V). The frequency and voltage deviations
are illustrated in Figure 13a,b, respectively. The proposed secondary control level serves
to compensate for these deviations. Results of the proposed methods for active power
sharing are shown in Figure 14. Adopting the proposed control structure based on virtual
impedance ensures that the five DGs are in balance with respect to transient and steady-
state load sharing, and that all inverters are in phase with one another. Therefore, the
number of adopted DGs equally divides the power demand at any load step change by
five. Figure 15 displays the update curves for these control system parameters across all
SCUs. These results show that ANN-based SCUs adjust the control parameters of all DGs
to ensure that stable voltage and frequency profiles are achieved. Figure 16 illustrates the
voltage and current signals for the AC bus. It is found that voltage signals are sinusoidal
with constant amplitude regardless of load changes, whereas the amplitude of current
signals varies in response to load changes. The root-mean-square values of these signals
are illustrated in Figure 17.
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7.3. System Power Losses Results

Figure 18a,b shows power losses without and with EVB due to the impedances of
the transmission lines. It is evident that EVB helps reduce losses during peak demand
hours. The paper proposes a method for stabilizing frequency and voltage signals at their
set points using ANNs with GA-optimized PI controllers, which modifies the parameters
of the SCUs in all DGs in response to changes in operating points.
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7.4. Energy Internet Platform Results

As previously mentioned, the proposed real-time monitoring system was built on the
ThingSpeak platform. The ThingSpeak toolbox in MATLAB/Simulink was used for cloud-
based communication between the ThingSpeak platform and MATLAB/Simulink. As a
result, the monitoring system enables building owners to view and oversee their properties
from anywhere via the internet. Figure 19 illustrates the frequency and voltage responses
of each DG on the ThingSpeak platform after the proposed control system strategy has
been applied. There is no doubt that they are settled at their nominal values (50 Hz and
220 V). Every 15 s, the monitoring platform refreshes its results and shows the current
variation from each source at the time the page was accessed. Figure 20a,b represents,
respectively, the power generated by each DG and the total power production of the SG. If
the price signal in Figure 21a is adopted, Figure 21b displays the total cost of electricity as
it is displayed on the ThingSpeak platform.
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8. Conclusions

Since wind and solar energy are sporadic, RSs penetration exacerbates SG stability.
DSM helps to fulfill demand when RSs power are inadequate. In this paper, a PLS DSM
strategy based on storage systems is proposed to deal with this issue and make sure that
SG’s production and consumption are in balance. A new energy management system based
on ANNs is proposed to improve the performance of SG-connected EVBs and meet load
demand when RS power is scarce. This paper argues that charging stations in parking
garages and other public areas can reduce energy use, especially at peak demand hours.
ANNs have been combined with EVBs and DSM to achieve this goal. Based on the demand
curve and EVB charge level, the proposed ANN controller can operate at specific times. The
controller’s inputs are time of day and SOC of EVB. Running the EVB during peak hours
lowers the peak-to-average power ratio, allowing loads to operate more effectively. The
suggested SG includes three solar PVs and two WTs. Distributed power-sharing control
for DGs via virtual impedance-based adaptive primary control has also been presented.
This study provides robust decentralized GA-based hierarchal secondary control to repair
frequency and voltage discrepancies. In the proposed secondary control unit, a GA is used
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to optimize all control parameters, while an ANN is used to better fine-tune controller
parameters in an online manner. Moreover, DC transmission lines are adopted to transport
electricity from RSs to connected inverters because they have low power losses, reduce
reactive power concerns, increase grid performance, and prevent cascading blackouts. The
simulation results are exhibited on both the MATLAB software and the Energy Internet
ThingSpeak platform. The results show that each DG’s voltage and frequency are stable
at their nominal values (50 Hz and 220 volts), and parallel DGs share load power evenly
regardless of variations in demand, thereby improving system stability, lowering energy
costs, and enhancing the utility of the system for its users. The peak of total power losses
may approach 20 kW without EVB-based demand management, but it can be reduced to
10 kW with the proposed EVB-based DSM.

The limitation of our work is that the control parameters are selected by integrating GA
and ANNs in an online manner. This results in the system not always operating properly
with a certain SG’s configuration: for instance, in an AC-connected ring configuration of
DGs, owing to the additional AC line impedances between any two DGs. By integrating
offline optimization with consensus algorithm-based ANNs for online control parameter
tweaking and exchanging information (voltage, frequency, and power) with each DG’s
local neighbors over a sparse cyber communication network, this issue may be handled in
the future.
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