Results in Control and Optimization 12 (2023) 100291

Contents lists available at ScienceDirect

Results in

i imi i Control and
Results in Control and Optimization Coa e

journal homepage: www.elsevier.com/locate/rico

Check for

Solving nonlinear stochastic differential equations via wisied
fourth-degree hat functions
Jehad K. Mohammed *°, Ayad R. Khudair ©*

a Department of Mathematics, College of Education for Pure Science, University of Basrah, Basrah, Iraq
b Department of Materials Management Techniques, Amara Technical Institute, Southern Technical University, Iraq
¢ Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq

ARTICLE INFO ABSTRACT

Keywords: The article focuses on introducing novel fourth-degree hat functions (FDHFs) for constructing
Fourth-degree hat basis functions new operations matrices used to find numerical solutions for nonlinear stochastic differential
Itd integral equations (NSDEs). The technique’s effort is summarized by utilizing FDHFs to construct

Brownian motion process

Nonlinear stochastic differential equations
Operational matrix

Error analysis

operations matrices that transform the given problem into nonlinear algebraic equations. The
advantage of this technique lies in its simplicity for calculating the unknown coefficients
of the function’s approximation without requiring any integration. As a result, the proposed
approach incurs low computational expenses. Additionally, an error analysis of this approach
was conducted, demonstrating a convergence rate of O(h’). Several examples were implemented
to support and illustrate the effectiveness and capability of the proposed technique.

1. Introduction

The history of stochastic differential equations (SDEs) is related to the exciting invention of the microscope, which led to great
developments in most modern natural sciences. In fact, Robert Brown (1773-1858) used the microscope to examine liquids and
observed rapid oscillatory motion for molecules in the fluid. This motion was called Brownian motion (BM) [1]. Unfortunately, BM
remained unexplained for centuries because, at that time, most scientists were unaware of the existence of atoms and molecules.

In 1900, Louis Bachelier (1870-1946) became the first person to study BM mathematically by valuing stock options in his
PhD thesis [2]. In 1905, Albert Einstein (1879-1955) provided a physical explanation for BM and formulated it in a mathematical
equation called the diffusion equation. Three years later, Paul Langevin (1872-1946) used Newton’s second law and a statistical
approach to introduce a simpler and more mechanically compatible physical description of BM compared to Einstein’s explana-
tion [3]. Langevin’s approach resulted in an ordinary differential equation for the first two moments of the distribution, while
Einstein’s approach yielded a partial differential equation governing the entire probability distribution [4].

The existence of BM was rigorously proved by Norbert Wiener (1894-1964), who constructed a mathematical formulation known
as the Wiener process [5]. Prior to 1933, probability theory was not considered related to mathematics until Andrey Kolmogorov’s
work in his book “Foundations of the Theory of Probability”, where he used measure theory to establish a firm connection between
probability theory and mathematics. In 1937, Maurice Fréchet (1878-1973) extended the concept of convergence of real sequences
to different types of convergence for sequences of random variables [6].

The ideas of mean square (m.s.) continuity, m.s. differentiability, and m.s. integrability of stochastic processes were introduced
by Evgenievich Slutsky (1880-1948). Kiyosi It6 (1915-2008) recognized the difficulty of studying differential equations with a noise
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term and proved that the mean integral of the noise term does not converge in the m.s. sense to a unique limit [7]. To overcome this
difficulty, It6 devised a new approach, creating a formula called the It6 integral, which forms the basis of Itd calculus (stochastic
calculus). Itd is considered the pioneer of SDEs and was awarded the “Carl Friedrich Gauss Prize for Applications of Mathematics”
in 2006 [2].

However, SDEs are primarily deterministic differential equations with an additional white noise term. The deterministic term
describes the behavior of the phenomenon, while the stochastic term represents the random perturbation or “noise” that influences
the phenomenon. Stochastic behavior naturally arises in various phenomena affected by random perturbations, such as biology [8],
population dynamics [9], the movement of ions in materials [10], problems of reactor dynamics [11], optimal option pricing in
finance [12], and various engineering problems [13].

When discussing the importance of mathematical modeling in real-life systems [14-17], fractional differential equations and
stochastic differential equations (SDEs) are often utilized. These equations find applications in various fields such as mechanics,
physics, medicine, and social sciences. They are particularly useful in studying stochastic dynamical systems with memory, such as
economics, including general stock markets, insurance, portfolio management, and financial markets [18-28]. However, obtaining
analytical solutions to SDEs is frequently challenging or even impossible. Hence, the development of numerical methods for
solving this type of equation is inevitable. As a result, a number of authors have proposed numerical methods for solving these
equations, such as stochastic collocation [29-32], spline interpolation methods [33-36], wavelet methods [37,38], wavelet-based
numerical schemes [39], variational iteration method [40], Adomian decomposition method [41-43], Ito-Taylor expansions [44],
stochastic Runge-Kutta methods [45], the Euler-Maruyama Method [46,47], and Petrov—-Galerkin methods [48,49]. Recently, many
orthogonal basic functions and polynomials have been implemented for solving SDEs, including block pulse functions [50-52],
hat functions [53-63], delta functions [64], Legendre polynomials [65-67], triangular functions [68], Euler polynomials [69],
polynomial chaos method [70], and Bernstein polynomials [71]. In this article, the effort is concentrated on the construction of
novel FDHFs and studying their properties to build a new operations matrix technique for solving SDEs.

The remainder of the article is structured as follows: Section 2 provides fundamental motivations and novelties of this paper.
Section 3 provides fundamental definitions and characteristics of stochastic calculus. In Section 4, we build FDHFs and discuss
their properties while also deriving operational matrices of integration and stochastic integration. Building upon the results from
the previous sections, Section 5 introduces a new algorithm for solving the NSDE, while Section 6 focuses on the error analysis of
the proposed method. In Section 7, we provide illustrated examples to support and demonstrate the capability and efficacy of the
proposed method.

2. Motivations

The novelty of solving SDEs using FDHFs lies in the application of a non-traditional numerical method to address a complex
mathematical problem. In fact, SDEs involve random fluctuations and are notoriously challenging to solve analytically. Traditional
numerical methods for SDEs, such as the Euler-Maruyama method or the Milstein method, are based on discretization schemes
that can suffer from issues such as numerical instability and poor accuracy. These methods often require small time steps to
achieve reasonable accuracy, which can be computationally expensive and limit their practical applicability. However, the present
technique can provide accurate approximations of the solution to SDEs using fewer basis functions compared to other methods,
reducing computational complexity. Also, the piecewise linear nature of FDHFs enables the capturing of discontinuities and jumps
present in certain stochastic processes. In addition, the flexibility of hat functions allows for adaptive mesh refinement, concentrating
computational resources in regions of interest and achieving higher accuracy where needed.

3. Preliminary

This section introduces the reader to fundamental concepts in continuous-time stochastic processes, along with key concepts and
tools in stochastic calculus that will be utilized throughout the paper. Stochastic processes have been extensively studied and are
well-documented in the literature. For further information, we recommend referring to the following references: [72-75].

3.1. Brownian motion

Brownian motion is a continuous-time stochastic process having stationary and independent Gaussian distributed increments,
and continuous paths. To begin, we need to review the definition of BM, which is a basic example of a stochastic process.

Definition 3.1 ([76]). The stochastic process B(t), t > 0 is called a standard Brownian motion or Wiener process if the properties
listed below are met:

There are independent increments of the process. This means that the random variables B(r,) — B(t,_;), B(t,_;) — B(t,_2), ... ,
B(t,) — B(t)) are independent increments for all times 0 <¢; <t, <.. <1, <T.

There are stationary increments for the process. This means the increment B (¢ + h)— B (¢) has a distribution that is independent
of t.

B(t), t > 0 is a continuous function of time ¢.

For all t > 0, B(t) ~ N(0, ).

The stochastic process B(f) has continuous paths.
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3.2. It6 integral

The goal of this subsection is to define the It6 stochastic integral in order to understand stochastic differential equations. This is
significant because we will define SDEs in terms of this integral in this paper.

Definition 3.2 ([7]). Let y(f) be measurable stochastic process on the filtration {$,} for any ¢ > 0. If the following mean square
limit exist

q £-1
/ y(®)dB(t) = lim ZY(t,-)(B(fm)— B(1)). 1)
» -0 =
Then the above integration is called It6 integral of y(r), where 7, = p + ";—I’i , i=0,1,...,7 and B(t) is a Brownian motion. In other
words,
¢-1 2

E

q
/ YOdB@® = Y, y(t) (Btiy) = Ba)) | | =0, as £ = co.
4

i=0
3.3. Stochastic differential equations

Consider the general form of the SDE.
dy(t) = f(t, y(0)dt + g(t, y())d B(1), t€[0,7T], (&)
Wo) = Yo
where B(?) is the Brownian motion, f is the drift coefficient, and g is the diffusion coefficient. The SDE is linear if f and g are
linear, and nonlinear if they are not. Eq. (2) has the following integral form:
t t
(1) = ytp) +/ F (s, y(8))ds +/ 8(s, y(8))d B(s), 3)
0 0
¥(to) = ¥o.

where the first integral is on the right-hand side of Eq. (3) is an ordinary Riemann-Stieltjes integral, and the second integral is the
Itd stochastic integral. We say that a stochastic process y(7) solves the stochastic differential equation if it satisfies this equation.
This subsection’s main goal is to find conditions on the coefficients f and g that ensure the existence and uniqueness of solutions.
Now we make the following assumptions about the problem’s data:

Assumption 1. Assume that the functions f and g satisfy the Lipschitz condition and that for every ¢ > 0, there exists a constant
H, such that

If @y — @0+ llgly) — g0l < Hy lly— x| (€]

Assumption 2. Assume that the functions f and g satisfy the Lipschitz condition and that for every ¢ > 0, there exists a constant
H, such that

LF @I+ g I < Hy(1+ IyID. (5)

Now consider the NSDE in its general form for the unknown function y(z):

dy(r) = Ly(t,5)o(y@)dt + L,(t, s)p(y(t))d B(1), te[0,T], (6)
Wip) = g(@).

Eq. (6) has the following integral form:

t

t
(1) =g+ /0 Ly(#, s)o(y(s))ds + /0 Ly(t, )p(¥(s))d B(s), t€][0,T], )
Wip) = g(@),

where g(t), L,(t,s), and L,(t, s) for s,t € [0,T] are known stochastic processes, while y(¢) is an unknown stochastic process that must
be calculated. The functions o(y(¢)) and ¢(y(r)) are two well-known analytic functions on R, B(¢) is the standard Wiener process
defined in the same probability space (22,3, P), and /0’ Ly(t, s)p(y(s))d B(s) is the Itd integral. In fact, Eq. (6) covered a wide range
of important SDEs in financial mathematics and physical systems, such as the pricing of options, and Black-Scholes equations, the
differential equations with thermal fluctuations, Heston stochastic volatility equation, Ornstein-Uhlenbeck equation, and so on [77].
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4. Fourth-Degree hat functions and their properties

This section is devoted to constructing the FDHFs. We will first divide the interval Q = [0, T] into equidistant subintervals, and
then each of these subintervals must be divided again into four equidistant subintervals with a length equal to h, where h = % and
n € N. The FDHFs form a set of (4n + 1) linearly independent functions in L?[0,T]. These functions are defined as follows:

(t=h)(t=2h)(t=3h)(1—4h) 0<t<dh
&) = 24nt - (8)
A otherwise,
ifk=1,2,...,n,
—(1=4kh)(1—(4k=2)h) (t—(4k—=3)h)(1—(4k—4)h) (4k — 4 < t < 4kh
T , << ,
S D= on . ()]
0, otherwise,
(1=4kh)(t—(4k—1)h)(t—(4k—3)h)(1—(4k—4)h) (4k — M < 1 < 4kh
4 s =t = )
¢, 0= n _ (10)
0, otherwise,
(t=(4k=2)h)(1—(4k—1)h)(t—4kh)(t—(4k—4)h) (4k — 4)h < t < 4kh
4 ’ =t = )
NGRS bh , an
: 0, otherwise,
ifk=1,2,....,n—1,
(r—(4k—1)h)(r—(4k—2)2h:§:4—(4k—3)h)(t—(4k—4)h)’ Ak — D <1 < 4kh,
_ ) (=@k+DR)(—(@k+2)) 1—(4k+3)h)(i—(dk+4)h)
Ear(D) Yt s 4kh <t < 4(k + Dh, (12)
0, otherwise,
and
(=T =) (=(T=2)(~(T=3m)t=(T=4h) T —dh<i<T
IROE 2ant T (13)
A otherwise.

To clarify the definition of FDHFs on the interval [0, 1] and n = 2, one can see Fig. 1 which shows the 9-set of FDHFs.
The following are the basic properties of FDHFs:

1. Using the definition of FDHFs, there is a very important relationship as follows:

i=.

f,.(jh)={(1)’ jag YEI=012. dn (14)

2. The total sum of FDHFs is one, which means:
4n
2En=1. (15)
i=0

3. The functions &)(), & (), ..., &, (t) are linearly independent for all [0, T'].
4. The FDHFs can be used to approximate any arbitrary function y(t) € L2([0, T]), as shown below.

Y1) = yy, (1) = iyk-fk(r) =Y"z0n ="y, (16)
where

E(1) = [&(0), & 1), &), ..., &4, O, 17)
and

Y =[50, V1> Voo o> Yanl - (18)

The coefficients in Eq. (16) are given by
Yo = y(kh), k=0,1,....4n. (19)

5. In a similar way, on [0,7T] X [0, T], the function L(t,s) can be expanded by the FDHFs as follows:

4n 4n
L(t,5) = Lyy(t,8) = ) Y L, E0Es) = ZTOY () = 21 ()Y TZ(0), (20)
r=0 k=0
where ¥ = (Lxr)(4n+1>x<4n+1>’ and L,,(t,5) = L(xh,rh), Ve, r=0,1,2,...,4n.
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Fig. 1. Plot of FDHFs with 7 =1 and n=2.

4.1. Operational matrices of integration

In this subsection, we derive both the operational matrix for integrating the vector =(¢), which is symbolized by P, as well as
Itd’s stochastic operational matrix for integrating the vector =(r), which is symbolized by Pg, for FDHFs in Theorems 4.1 and 4.2,
respectively, that will be used in our proposed method.

To construct an operational matrix P that satisfies

t
/ E(s)ds ~PE(1), (21)
0

where Z(r) is the vector defined in relation (17). Now we are attempting to write /0' £.(s)ds as a linear combination of the functions
E0D), &1 (@), ..., &, (1) as follows:

/ E(s)ds ~ Z P, & (1), Ve =0,1,2,....4n. (22)
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The coefficients P, can be calculated as follows:
rh
P,” = / & (s)ds, Vr,k=0,1,2,...,4n. (23)
0
As a direct consequence of this, we can state the following theorem:

Theorem 4.1. Suppose =(1) is a vector defined by (17). Then, we can express the integration of =(r) as:

t
/ E(s)ds ~ P E@), (24)
0
where P is the (4n + 1) X (4n + 1) operational integration matrix for the FDHFs, which is defined as:
O Ql Q2 Q2 Q2 Q2 QZ QZ
Q3 Q4 Q5 QG Qﬁ Qﬁ Qs Q6
Q3 Q7 Q4 Q5 Q6 Qs Q6 Q6
A 03 Q7 Q7 Q4 Os QO - Qp O
P= m Q3 Q7 Q7 Q7 Q4 Q5 Q6 Q5 s (25)
03 O 0O Q7 O 0O - Qp O
03 0; O 07 07 O 0, Os
03 0; 0; O 07 Oy 0; 0,4

646 992 918 1024

-264 192 648 384
106 32 378 1024 ’
-19 -8 =27 224

where O, = (251,232,243,224) , Q, = (224,224,224,224) , 05 = (0,0,0,0)T, 0, =

oS © o o

1024 1024 1024 1024 1024 1024 1024 1024 0 0 0
384 384 384 384 384 384 384 384 0 0 0
O5=| 1024 1024 1024 1024 [ 27| 1024 1024 1024 1004 | 0 @[ 0 o 0
475 456 467 448 448 448 448 448 0 0 0

Now, to construct an operational matrix Pg, we give the following theorem:

Theorem 4.2. Suppose =(t) is a vector defined by (17). Then, we can express the It6 integration of =(z) as:

t
/ E(s)d B(s) ~ Pg Z(1), (26)
0
where Py is the (4n + 1) X (4n + 1) stochastic operational integration matrix for the FDHFs that are given as:
0 Boa(h)  Poa(h)  Bos(h)  Poa(h)  Boath) ... Boa(h)
m m 13 Ny My My My
m s M M3 My My My
Py = m s fls m U] My My i @7)
m s M5 s m 13 My
m s fls ns M5 M My
m N5 s s M5 s s m (4n+1)x(4n+1)
where
B(4k = 3) + Pag—3 413 Bak—3.4k—2 Pak—3.ax-1 Bak—3.4k
_ Sak—2,4k=3 B4k = 2) + Gap—2,4x—2 Cak—2,4k~1 Cak—2,4k
np =
Paj—1,4k-3 Pa—14k—2 B(4k — 1) + @411 4x-1 Pak—14k
Yak4k—3 Yakak—2 Y4k k-1 B(4k) + vay 4k
Bak—3ak  Par—zax  Par—3ar  Pak—3ak Bak—3ak  Par—zax  Par—3ar  Pak—3ak 00 00
_ | Sak—24k  Sak—24k  Sak—24k  Sak-2.4k _ | Sak—24k  Sak—24k  Sak-24k  Sak-24k _]10 0 0 O
n = b My = ’nS_OOOO s m =
Pak—14k  Pak—14k  Pak—14k  Pak—14k Pak—1,4k  Pak—14k  Pak—14k  Pak—14k
Y4k Ak+1 Vakak+2  Vakak+3  VakAk+4 Yakak+4  Vakak+4  Vakak+4  VakAk+4 0 0 0 O
T — j .
(0 0 0 0),andpy, =55 (253 — 15hs? +35h%s — 251%) B(s)ds,  j=1,2,3.4,if k=1.2,....n

_1 [ih
Bar—s, = -1 / (45% = 3(16k = Dhs® + 2(96k* — 84k + 14)h%s
2 6ht Juk-an

—(256k> — 336k% + 112k — 8)h®) B(s)ds, j =4k — 3,4k — 2,4k — 1,4k,
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—1

jh
— / (25® — 122k — 1)hs* + (96k* — 96k + 19)h%s
2h* J@ak—an

Cak-2,j =

—(128k> — 192k> + 76k — 6)h°) B(s)ds, j =4k — 3,4k — 2,4k — 1,4k,

jh
Pait) = / (45% = 3(16k — 9)hs> +2(96k> — 108k + 26)h7s
Y 6ht Juk-ah
—(256k® — 432k + 208k — 24)h®) B(s)ds, j = 4k — 3,4k — 2,4k — 1,4k,
ifk=1,2,...,n—1,

—1

jh
— / (25® — 3(8k — 5)hs? + (96k* — 120k + 35)h%s
12h* Jak-1)n

Yak,j =

—(128k> — 240k + 140k — 25)h®) B(s)ds, j =4k — 3,4k — 2,4k — 1,4k,

-1
Yakj = _12h4 <
J

h
— (128k% — 240k + 140k — 25)h%) + / (25 = 3(8k + 5)hs® + (96k> + 120k + 35)h>s
4kh

and

4kh
/ (25> = 3(8k — 5)hs”® + (96k* — 120k + 35)h%s
A(k—1)h

—(128k> + 240k> + 140k + 25)h%)) B(s)ds, j =4k + 1,4k + 2,4k + 3,4k + 4.

Proof. Using integration by parts and the definitions of &) , i =0, 1, ...,4n, we can obtain the following results:

t t
/ So(s)dB(s) = §o(f)3(1)—/ g o()B(s)ds, (28)
0 0
where
1
gy =4 124 (2% — 15> + 35h% — 251%) , 0<1<dh,
, otherwise.
When we expand relation (28) in terms of FDHFs, we get:
t 4n
/ &(s)dB(s) = Y wy; &),
0 j=0

where

jh
w; = /0 &y(s)d B(s)
jh
= &,(jh)B(jh) - L (25® — 15hs® + 35h%s — 25h%) B(s)ds. (29)
12h* /o

Thence, from the relations (14) and (29), we obtain:

0, Ji=0,

iz Jo' (253 =155 +35h%s — 251°) B(s)ds, i=1

@ =1 7 Jo (25% = 15hs® + 35h%s — 25h%) B(s)ds, j=2
o Jo (28° = 15hs? + 3525 — 25K ) B(s)ds, j=3

i Jo(25° = 15hs? + 35h%s — 25K°) B(s)ds, i>4,

ifk=1,2,...,n.So

t t
/ Eap—1(8)d B(s) = / Eqp—1(8)d B(s)
0 (k—d)h

t
=&y (OB@) - / §,4k,1(S)B(S)ds, (30)
(4k—4)h
where
—(48- ~9)hr? 2_ 2 343052 om3
6’ (l) _ (4t 3(16k—9)ht=+2(96k 108k225)h t—(256k” —432k=+208k—24)h )’ (4k _ 4)]1 <i< 4kh’
4k—1 -

0, otherwise.
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When we expand relation (30) in terms of FDHFs, we get:

4n

t
/ Enc1 (D dB(s) = Y wgpyy; &0,
0 =0
where

jh
D (4k-1); :/ Eak—1)(8)d B(s)
(@k—2)h
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Jjh
= Eqr—nyGMBGh) + # / (45> = 3(16k — 9)hs® +2(96k> — 108k + 26)h’s

(4k—4)h

—(256k* — 432k + 208k — 24)h*) B(s)ds.

Thence, from the relations (14) and (31), we obtain:

0,

e fieon (453 = 3(16k — 9)hs? +2(96k> — 108k +26)h%s
—(256k> — 432k* + 208k — 24)h*) B(s)ds,

e JS (453 = 3(16k — 9)hs +2(96k> — 108k +26)h%s

Dgp—1)) = —(256k> — 432k? + 208k — 24)h3) B(s)ds,

6h4 J(4k—4)h
—(256k3 — 432k? + 208k — 24)h3) B(s)ds,

i fian (457 = 3(16k — 9)hs +2(96k> — 108k +26)h’s
—(256k3 — 432k + 208k — 24)h®) B(s)ds,

Similarly, for the computation of /o’ E4k—2(s)d B(s), we obtain:
t 1
[ eunaso= [ aawane
0 (4k—4)h

1
=Sy (OB@) — / & 4ea(9)B(s)ds,
(4k—4)h

where

<4k -4,

J=4k-3,

j=4k-2,

B((4k = Dh) + = [V (463 —3(16k — 9)hs? + 2(96k> — 108k + 26)h%s

j=dk-1,

263 —12(2k—1)ht? +(96k% ~96k+19)h%1—(128k3 —192k2 +76k—6)h>
(2 -12Ck- DA +¢ TR KON 4k —4)h <t < 4kh,

7 T ,
& 4k—2(l) = 2h

5

When we expand relation (32) in terms of FDHFs, we get:

4n

t
/0 Ena () dB(s) = Y Wgp_a); &0,
j=0
where

jh
Wyp-2)j = / E(ak—2)(8)d B(s)
(4k—4)h

otherwise.

Jjh
= Eur_ny(iMBGh) — L / (253 — 122k — 1)hs® + (96k> — 96k + 19)h?s
(4k—4)h

2h4

—(128k> — 192k + 76k — 6)h°) B(s)ds.

Based on the relations (14) and (33), we obtain:

0, j<4k—4,
— 4k=3)h
e fean (257 = 122k = 1)hs? + (96K — 96k + 19)h%s

—(128k> — 192k% + 76k — 6)h*) B(s)ds, j=4k-3,
B((4k = 2)h) — 5k [OE0 (257 — 122k — Dhs® + (96K — 96k + 19)h%s

Dap—2); =3 —(128k* — 192k> + 76k — 6)h*) B(s)ds, j=4k-2,

e fcon (257 = 122k = 1)hs? + (96K — 96k + 19)h%s

—(128k> — 192k* + 76k — 6)h*) B(s)ds, j=4k-1,
—1 r4kh
5 Juakeay (257 = 122k = Dhs® + (96k> — 96k + 19)h%s

—(128k3 — 192k? + 76k — 6)h*) B(s)ds, j > 4k.

8
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Also, for the computation of fot E4r_3(s)d B(s), we get:

I3 I3
/ Eys()dB(s) = / Eves()dB(s)
0 ( )h

4k—4
1
=&y 3(OB@) - / §l4k_3(5)3(5)dsa B4
(4k—4)h
where
3_ _ 2 2_ 24, 3_ 2 _ 3
) (413 =3(16k—T)hi2+2(96k 84k+]44)ht (256k3—336k2+112k—8)h ), @k — d)h <1 < 4kh,
Eus) = oh
R otherwise.
When we expand relation (34) in terms of FDHFs, we get:
P N
/0 Eax—3(s)d B(s) ~ Z Wax-3); 6 (0
j=0
where
jh
Wyk-3); = / & (ak—3)(s)d B(s)
(4k—4)h
jh
= Eur_3(JN)BGR) — % / (45 = 3(16k — T)hs® + 2(96k> — 84k + 14)hs
6h* J(ak—-a)n
—(256k* — 336k> + 112k — 8)h®) B(s)ds. (35)
Thence, from the relations (14) and (35), we obtain:
0, j<4k-—4,

B((4k = 3)h) — = [OESN (453 —3(16k — T)hs® + 2096k — 84k + 14)hs

—(256k> — 336k% + 112k — 8)h%) B(s)ds,  j=4k -3,
S fsan (453 = 3(16k — T)hs® + 2(96k? — 84k + 14)h%s
Wp-3)) = —(256k3 — 336k* + 112k — 8)h®) B(s)ds, Jj=4k=-2,
S (453 = 3(16k — T)hs® + 296k — 84k + 14)h%s
—(256k> — 336k* + 112k — 8)h*) B(s)dss, Jj=4k-1,
2 faton (45 = 3016k — T)hs? +2(96k> — 84k + 14)h%s
—(256k> — 336k% + 112k — 8)h%) B(s)ds, j =4k

Now, if k =1,2,...,n—1. So

t t
/ &4 (s)d B(s) = / Eaic(s)d B(s)
0 4(k=1)h

t

=& (DB —/ & () B(s)ds, (36)
4(k=Dh
where

3 2 2 2 3 2 3

23 —3(8k=5)hi2+(96k —120k+?;;'i; =285 40+ AOK=2500 4 p _ )y < ¢ < dkh,
! 3_ 2 2 2, 3 2 3

& () = 263 =3@k+S)h? +96k +120k+?;;§t 2804240+ 40K gy ¢ < A(k + 1)h,

0, otherwise.

When we expand relation (36) in terms of FDHFs, we get:

4n

t
/ £ (8)dB(s) = Y wy; &),
0 j=0
where

jh
Wy =/ &4 ()d B(s)
A(k—1)h
T
= & UMBUR) — —— (25 — 3(8k — S)hs® + (96k> — 120k + 35)h’s
12h* Jage—1)n

— (128K — 240k? + 140k — 25)h> + 2s° — 3(8k + 5)hs?
+(96K? + 120k + 35)h%s — (128k> + 240k> + 140k + 25)h®) B(s)ds. (37)

9
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Thence, from the relations (14) and (37), we obtain:

0, j<4k—4,
o faeon (257 = 3(8k — 5)hs? + (96K — 120k + 35)h%s

—(128k> — 240k? + 140k — 25)h*) B(s)ds, j=4k-3,
Sk s (253 = 3(8k — 5)hs? + (96K — 120k +35)hs

—(128k> — 240k? + 140k — 25)h3) B(s)ds, j=4k-2,
o o on (25% = 3(8k — 5)hs” + (96K — 120k + 35)h%s

—(128k3 — 240k? + 140k — 25)h3) B(s)ds, j=4k—1,
B(dkh) — o [0 (253 = 3(8k — 5)hs? + (96K — 120k +35)hs
—(128k3 — 240k? + 140k — 25)h3) B(s)ds, j =4k,

it (a2 257 = 38k = )hs? + (96K = 120k + 35)1%s
W) = —(128K3 — 240k2 + 140k — 25)h3) + [FHDn 03 _ 38k + 5)hs?
4kh

+(96k? + 120k + 35)h2s — (128k> + 240k? + 140k + 25)h*)) B(s)ds, j=4k+1,
it (Jite2 1 257 = 38k = HHhs? + (96K = 120k + 35)h%s

—(128Kk% — 240K + 140k — 25)1%) + [+ (253 — 3(8k + 5)hs?
+(96/2 + 120k + 35)h%s — (128K + 240k + 140k +25)h%)) B(s)ds, j=4k+2,
— ( et 257 = 3(8k = 5)hs® + (96k% — 120k + 35)h’s

—(128Kk% — 240K + 140k — 25)1%) + [+ (253 — 3(8k + 5)hs?
+(96/? + 120k + 35)h%s — (128K + 240k? + 140k +25)h%)) B(s)ds, j=4k+3,
— (ﬁ(;,’j”,)h (25% = 3(8k — 5)hs? + (96k> — 120k + 35)h%s

—(128Kk% — 240K + 140k — 25)1%) + [0+ (253 = 3(8k + 5)hs?
+(96k? + 120k + 35)h2s — (128k> + 240k? + 140k + 25)h*)) B(s)ds, j > 4(k + 1).

Finally, for the computation of for &4(s)dB(s), we get:

t t
/ E4n()d B(s) = / Ean(s) d B(s)
0 T—4h

1
= &4, () B@) — & 4,(9)B(s)ds, (38)
T—4h
where
(23 —3QT—5h)2+(6T2 30T h+35h%)i—(2T3 —15T% h+35T h> - 25h3)) T—dh<t<T
&0 = 12h% ’
0, otherwise.

When we expand relation (38) in terms of FDHFs, we get:

4n

/ E4n(s) dB(s) = meé(t)

J=

where

jh
w4nj=/ ” E4n(8)d B(s)
T—

1
12n%

—QT? - 15T2h +35Th* — 25h%)B(s)ds. (39)

= &,(iMB(h) - (2s — 32T = 5h)s* + (6T% = 30Th + 35h%))s

10
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Thence, from the relations (14) and (39), we obtain:

0, j<4n-4,
i Jan @8 =3QT = 5h)s® + (6T = 30Th + 35h%)s

—(2T3 — 15T%h 4 35T h* — 25h3)B(s)dss, j=4n-3,
T i 253 = 3T = 5h)s* + (6T — 30Th + 35h%))s

Wy = —(2T3 — 15T%h 4+ 35T h* — 25h3)B(s)dss, j=4n-2,

Tz J1an @s® = 3QT = 5h)s? + (6T = 30Th + 35h%))s

—(2T3 — 15T%h 4 35T h* — 25h3)B(s)dss, j=4n—1,
B(T)— o [1 4y 25% = 3QT = 5h)s® + (6T — 30T h + 35h%))s

—(2T3 — 15T%h 4+ 35T h* — 25h3)B(s)dss, j=4n.

As a result, the proof has been completed.
5. Description of the proposed computational method
This section focuses on designing a computational method based on FDHFs to solve NSDEs. This method converts the NSDE (7)

problem into a nonlinear algebraic system, which is then numerically solved.
First, the functions g(r), L, (t, s)o(¥(s)), and L,(z, s)¢(y(s)) must be approximated as follows:

4n
8(1) = 84,() = . 8 &0, (40)
k=0
4n  4n
Ly@9)00(5) = Ly 4y (- 9004 () = X ¥ W DE5). (41)
=0 k=0
and
4n  4n
Ly (t, )P(/(5)) 2 Loy (1 )14 (5) = 3 D" 0, (& (DE,(5), 42)
7=0 k=0
where
vij = L1Gh, jR)o(y(jh), Vi,j=0,1,...,4n, 43)
w; ; = Ly(ih, jip(y(jh)), Vi,j=0,1,...,4n. (44)

Second, we assume the solution of Eq. (7) has the following form:

4n

NOEDWRAG) (45)

k=0

Hence, the NSDE (7) is transformed into

4n 4n 4n  4n t
D yb =Y 850+ DY Li(ch,th) o (y,) &.(1) / £.(s)ds
k=0 k=0 7=0 k=0 0
4n  4n t
+ 303 Lylch, th) d(y,) £c(1) / £.(s)d B(s). (46)
7=0 k=0 0

Then at the ith node point (ih), Eq. (46) becomes:
4n 4n 4n 4n

ih
D iy = Y g & (i) + Y Y Li(ch, th) 0(,) (i) /0 £(s)ds
k=0 k=0 7=0 k=0

4n  4n

ih
+ 203 Ly(ch, th) iy, )&, (ih) /0 £.()dB(s), (47)

7=0 k=0
where i =0,1,2,...,4n.
By employing Eq. (14) and simplifying the system given in Eq. (47), we obtain:

4n ih 4n ih
yi=g + Z L,(in, Th)ff(yr)/ & (s)ds + Z L,(ih, Th)¢(yf)/ & ()d B(s). (48)
=0 0 =0 0
By using Egs. (24) and (26) together, we have reached the following:
4n 4n
V=g + ) (Lihth)o))P,, + Y (Lylih, th)p(y))PY,, i=0,1,2,...,4n, (49)
=0 =0

11
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where P and Pg are the operational matrix of integration and stochastic operational matrix of integration given in Egs. (25) and
(27), respectively.

Finally, the approximate solution of Eq. (7) can be obtained using Eq. (45) after solving the nonlinear system (49) using one of
the numerical methods and finding the unknown coefficients, y,,Vk =0,1,2,...,4n.

6. Error analysis

This section focuses on the error analysis of the proposed approach for solving NSDE. First, we begin by defining

lIyll = sup |y(®)]. (50)
te

Theorem 6.1. Suppose that t, = kh, k =0, 1,...,4n, g(t) € C3(2) and g,,(1) = Zi"zo g(1,.)é.(t) be the FDHFs expanded of g(1). As well,
suppose that e(t) = g(t) — g4,(1), t € 2. Next, we have

lls®) — g4, ®|| < AR, (51)

where 1 is a constant number, and therefore |le(t)|| ~ O(h).

Proof. Suppose that
8(1) — 84, (1), eV,
e,-(t) _ 84n i
0, te -V,
where V, = {t|ih <t < (i+4)h, h= 41n}, i=0,4,8,...,4n — 4. Then, we get:

4n

ei(t) = g() — g4, (1) = g(1) = Y. g(ch)E (1),
k=0

e;(1) = g(t) — [gUME;(N) + g((i + D& (D) + g(( + 2ME; (1) + g(( + 3R 5D
+8(( + D), (O]

When the fourth-degree interpolation error is used, then we have [78-80]

(=i =+ D) -G+ 2R -+ - +DHh) dg(x)

(1) =
&i® 120 ar

5

where y; € (ih, (i + 4)h).
Suppose that (1) = (t — ih)(t — (i + 1)h)(t — (i + 2)h)(t — (i + 3)h)(t — (i + 4)h). Because V; is compacted and ¢(r) is a continuous
function, we have:

sup |p(t)| = max |p()| = 3.6314R°.
eV, eV,

Therefore, we have

1 d>g(x;)
(D < —= t .
le;®] < 20 [g( )|' i
As a result, we have
d3g(x)
= | < X S|4
[le®)]| i:O,E%n—@Seug le;0] < [_:O’E'a'in_z‘o 03026h
After that, there is € € {0,4, ...,4n — 4}, we get:
gy >
lel < max 00302655 | TEX| ¢ 03006n5 |8 |
i=04,...4n—4 dr dr
Lastly, by using the relation (50), we obtain
dS 5
lle(®]l < 0.03026A° % < 0.03026h° % <. (52)

According to the relation (52), we get
lle®)l = OK).

Eventually, the proof was completed.

12
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Theorem 6.2. Assume that L,(,s) € C3(2 x ), and e(t,s) = L,(t,s) — Loan(,5), (t,5) € D = (2 x Q) be the truncation error where
Lot s) = Z;Z‘O Zjﬁo L, (ih, jh)&()E;(s) is the FDHFs approximate of L.(t,s). Following that, we get

Lo 0, s)” <A, (53)

where A,, 7 = 1,2 are constant numbers, and therefore ||e(t, s)|| =~ O(h>).

Proof. Suppose that

L.(t,s) = Lyyn(t,s),  (t,5) €V,
e, (1, 5) =
0, (t.s)€D—V,,
where Vo ={(t,9)lgh <t < (@+Hh, rh<s<(r+dh, h= 4—7;}, q,r=0,4,8,...,4n — 4. Then, we get:
4n  4n

€qr(1:9) = Lo(t,9) = Logany(t,9) = Lo(t,5) = 3 3 Lo(ih, jHE0E;(5),
i=0 j=0
€qp(1:5) = Le(t,5) = [L(gh. rh)E,(D06,(5) + Lo(@h, (r + DIE D11 (5) + -+
+ Lo(gh. (r+ DE (DG 1a(5) + -+
L@+ D, (r+ DNE (0 (5))

When the fourth-degree interpolation error is used, then we have [81]:

(1 =gt —(g+ DM — (g + 2P — (g + 3N —(g+Hh) P Li(x49)

2, 8) = 50 prC
(s = rh)(s — (r + Dh)(s — (r + 2h)(s — (r + 3)h)(s — (r + Hh) P L.(t,1,)
+ .
120 053
=gt =@+ D) ...t =g+ DR —rh) ... (s = (r+Dh) 0L (7,.7,)
14400 a5oss

where y,, 7, € (gh,(q +4)h) and #,,7, € (rh,(r +4)h).
Suppose that u (1) = (t — qgh)(t — (g + D)t — (g +2)h)(t — (g + 3)h)(t — (¢ + 4)h) as well as v(s) = (s — rh)(s — (r + DA)(s — (r + 2)h)(s —
(r+3)h)(s — (r + 4)h). Thus, we get:

5Lz ) SL(tn,

e 0.9)] < oo 1) qu‘ L <)|'J
OOL, (7, 7))
14400 OO —3555—|

Since sup,e(n grayn 14 (O] = 3.6314h°, and sup e, 14y 10(s)| = 3.6314h%, we obtain

t, = t,
llect, )l oS e t.5)]
r_()4
PL(xp9)| |L.,
<0.03026h°  max sup AL B (1)
q=04,.. 4n 1(, S)GV o’ s
r=04,..
0L (7 71,)
+0.03026A° | ——=4" 1 ) |
015055
Then there are a,1 € {0,4,...,4n — 4}, where
*L_(y,, ALt L (7.7
ller, )ll < 0.03026R° sup M| N PEE) | 030060 T )|\
(t.5)€V,, or 0s3 915055
Lastly, by using the relation (50), we obtain
0L (1, PL_(t, 0L (1.
lle(z, )l < 0.03026A° (5.5) cEON 0030268 ()
or ds3 505>
<A 5

According to relation (54), we get:
llet, )l| = O(A).

Finally, the proof is completed.

13
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Theorem 6.3. Suppose the exact solution is y(t) and y,, () is the fourth-degree of the hat series approximate solution of Eq. (7). Furthermore,
suppose

@ NGl < Z,, rte L,
@@ el < Z,, 1eQ,
(i) | L@ 9| <v,, 7=12, (1,9)€ENXLK,
@) 1—vM;T — M{A\Th> — v, M,Y — MyA,Yh> > 0,
where Z,, Z,, v|, vo, M, and M, are all positive constants, and
Y =sup{B();t € 2}.
Furthermore, suppose that the nonlinear terms o(y(t)) and ¢(y(t)) fulfill Lipschitz’s condition, i.e.,

le®) = 6a, )| < My [|9(0) = 34, D)) » (55)

|pE) = G, )] < My ||y = 34,0 - (56)
Then
A+ ZMT + Zy Y)W

1) — Hll < ) 57
O =22l < = ViM,T = M, A,Th5 = vy M,Y — My A, Y hS 57)
and ||y(1) — y4, ()| = OK3).
Proof. Now, using fourth-degree hat functions to approximate Eq. (7), we obtain:
t t
Van(t) = 84, (1) +/ L4 (1, )0 (4, (s))d s +/ Lo (t, $)P(y4,(5))d B(s), t€ . (58)
0 0

Using norm properties and Egs. (7) and (58), we have:
t
90 = v < 180 = gan0)] + / |16t 5)0G) = Lygan @ 910250 a5
0

+ /0 e 90069 = Lt 9605, 4305
Therefore,
150 = 4] < [l80) = gan® + 111l | L1 2. )0 0(5) = Lian (- 9500
B [ L 980D = Logant: )b an(5D) -
It is clear that ||¢|| < T, while noting that Y = || B||, we have
90 = 3] < [86) = gan®] + T || L1 )0 0() = Ligany (1, 10|
Y Lot 906 = Lagan 1. )80, (59)
Now, according to Egs. (53) and (55) and hypotheses (i) and (iii), we conclude that
|46 9005 = Ligan (@ 910 Gan()|
< L1 o) = 00| + || L1 5) = Lian (@ 9 [l00:0) = 0]
+[| L4t.9) = Ligan @ 9] leGo
SVM, [[y@) =y, O + My [|y@) = ya, O] + Z 4 1. (60)
By applying Egs. (53) and (56) as well as hypotheses (ii) and (iii), we obtain
L2 9965 = Lagan 1. 600,
< Lo N GD) = $anO]| + || Latt.5) = Lagan 1.9)| [ 9050 = blan(o)]
+[|£26:9) = Lagan@.9)]| 1p
VM, |90 = i, O] + Madoh® [|y(0) = ya, O] + Zo Ao . (61)
Using Theorem 6.1 as well as Egs. (59), (60), and (61), we can now obtain the following:
1Y) = y4u®|| < AR + v M{T ||y(®) = v, || + M4, TR ||3(0) = y4, ()| + Z, 4, TH’
F VMY [|9(0) = ya, O] + My Y B3 ||9(0) = v, O|| + Zo A Y 1. (62)

14
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Table 1

The absolute errors for Example 7.1.

Results in Control and Optimization 12 (2023) 100291

Time GHFs MHFs AHFs Present method
m=1,n=24 m=2,n=12 m=3,n=38 m=4,n=6

0.125 2.8467999 x 107* 2.2180293 x 107* 1.7122739x 10~ 1.2466918 x 10~
0.250 3.8129877 x 107* 3.4086141 x 107* 3.4383876 x 107* 1.7466224 x 10~
0.375 1.0486267 x 10~° 7.8732379 x 1074 7.1210596 x 107* 6.2833165 x 107*
0.500 1.2213487 x 1073 9.7799104 x 107* 1.1191313x107° 8.3703359 x 107*
0.625 1.3838426 x 10~° 1.1955101 x 10~° 1.1639424 x 107° 7.3948241 x 107*
0.750 1.8037148 x 1073 1.5201921 x 1073 1.6052961 x 1073 1.0010297 x 1073
0.875 1.6331990 x 1073 1.4177357 x 1073 1.4084576 x 10> 9.1134462 x 107*
1.000 1.8601470 x 1073 1.6951507 x 10~° 1.6980067 x 10~° 1.2607231 x 10~°

According to Eq. (62) and the assumption (iv), we get:
A+ Z\MT + Zy Y)W
— v M\T — M{A\ThS —v; MyY — My, YRS
Moreover, we can deduce from Eq. (63) that:
() = ya,(0)]| = OR). O

Through the above analysis, one can draw many advantages from the proposed method, as follows:

(63)

l¥® = ya, @] < .

v Using FDHFs, problem under consideration is converted to a system of algebraic equations which can be easily solved.
v/ The proposed approach is convergent and the rate of convergence is O(h%).

v/ It is simple to calculate the unknown coefficients of the function’s approximation based on this approach without integrating
anything. Consequently, the proposed approach has a low computational expense.

v Because of the simplicity of FDHFs, this approach is a powerful mathematical tool to solve various kinds of equations with little
additional works.

7. Numerical examples

Certain numerical examples have been solved to prove the accuracy, efficiency, as well as dependability of the method that is
suggested and described in the preceding section. The Tables and Figures, contained below show the numerical results of this method.
In comparison with the exact solution, the approximate solution demonstrates that this method’s accuracy and applicability are both
favorable. To prove the vantage of this method over other methods, we made a comparison between the mean error obtained from
the proposed method and that obtained by the methods of hat basis functions, i.e., generalized hat basis functions (GHFs), modified
hat basis functions (MHFs), and Adjustment hat basis functions (AHFs). We use the same length of subintervals (same 7 = %, where
m is the degree of polynomials that used in the definition of bases function in each method) to ensure a fair comparison between
these base functions; that is, we use the same number of basis functions in each method. All computations in this paper have
been performed using Maple 2020. The numerical results mentioned in the tables were obtained by running Maple software-based
computer programs. The error in our suggested method was discussed and examined using the absolute error function, as shown
below.

e(t) = |y(1) = y4p ()],

where y(t) and y,, (1) are the exact solution and the approximate solution of NSDE (7), respectively.

Example 7.1. We discuss the stochastic differential equation of option pricing, which is given by: [82]
dS(t) = uS@dt + 6 S(t)d B(t). (64

The exact solution is S(1) = S©)e ™ 74BN \where S©O) = 1, y = %, and o = %

Table 1 shows a comparison of the absolute error obtained using the suggested method for n = 6 with the absolute errors of
GHFs for n = 24, MHFs for n = 12, and AHFs for n = 8. As shown in this Table, the results obtained using our suggested method are
better than those obtained by using the other hat functions methods. Moreover, Fig. 2 shows the exact and approximate solutions
calculated using our method for n = 6. As can be seen, our suggested method for solving this problem is both accurate and fast and
easy to implement.

Example 7.2. Take into consideration the following NSDE [83]:
___L _2 Lag_p
dy(n) = 900y(t)(1 y-(@)dt + 30(1 Y (0)dB(1), t€0,1], (65)
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— Approximate solution Exact solution

1.09

1.08

1.07

1.06

1.05

1.04 -

1.03

1.02

1.01
1 —

T T T T T T T T T T
0 0.2 0.4 0.6 0.8 1
Fig. 2. The approximate and exact solution of Example 7.1 for m =4 and n=6.
Table 2
The absolute errors for Example 7.2.
Time GHFs MHFs AHFs Present method
m=1,n=24 m=2,n=12 m=3,n=8 m=4,n==6

0.125 2.7928130 x 107> 2.4814940 x 10~ 2.0400690 x 107° 1.6936240 x 10~
0.250 3.0907780 x 107° 2.9044020 x 1073 2.7227830 x 10~° 1.9024290 x 1073
0.375 9.5118200 x 107> 7.8680180 x 107° 6.8963700 x 107° 7.2041950 x 107°
0.500 9.4241180 x 107° 8.0186010 x 107> 7.7696120 x 107 6.9532690 x 107°
0.625 1.1787564 x 107* 1.0837266 x 10~* 9.4989170 x 10~° 7.5862360 x 10~
0.750 1.3636557 x 107 1.2117259 x 107* 1.0727745x 107 9.1880550 x 10~°
0.875 1.3105202 x 107* 1.2087019 x 107* 1.0938854 x 10~ 8.7081410 x 10~°
1.000 1.3734810x 107* 1.3061978 x 107* 1.1463472 x 107 9.6373190 x 10~°

1

where y(0) = o

and the exact solution to this equation is y(t) = tanh(%B(t) + arctanh(%)).

Table 2 shows a comparison of the absolute error obtained using the suggested method for n = 6 with the absolute errors of
GHFs for n = 24, MHFs for n = 12, and AHFs for n = 8. As shown in this Table, the results obtained using our suggested method are
better than those obtained by using the other hat functions methods. Moreover, Fig. 3 shows the exact and approximate solutions
calculated using our method for n = 6. As can be seen, our suggested method for solving this problem is both accurate and fast and
easy to implement.

Example 7.3. Take into consideration the following NSDE [84]:

dy@t) = —1—16 sin(y(#))cos> (1)) + %cosz(y(t))dB(t), te[0,1], (66)

For y(0) = % the exact solution of this NSDE is y(r) = arctan(%B(t) + tan(%)).

Table 3 shows a comparison of the absolute error obtained using the suggested method for n = 6 with the absolute errors of
GHFs for n = 24, MHFs for n = 12, and AHFs for n = 8. As shown in this Table, the results obtained using our suggested method are
better than those obtained by using the other hat functions methods. Moreover, Fig. 4 shows the exact and approximate solutions
calculated using our method for n = 6. As can be seen, our suggested method for solving this problem is both accurate and fast and
easy to implement.

Example 7.4. Take into consideration the following NSDE [83]:

1 1
dy) = - tanh(y(1))sech*(y(t)) + 255ch(O)dB@), 1 €[0,1], (67)
For y(0) = % the exact solution of this NSDE is y(r) = arcsinh(2—lOB(t) + sinh(%)).
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— Approximate solution

Exact solution

0.102

0.100

0.098 -

0.096

0.094

0.092

0.2

Fig. 3. The approximate and exact solution of Example 7.2 for m =4 and n=6.

0.4

0.6

— Approximate solution

Exact solution

0.8

Table 3

The absolute errors for Example 7.3.

0.2

Fig. 4. The approximate and exact solution of Example 7.3 for m =4 and n=6.

0.4

0.6

0.8

Time

GHFs
m=1,n=24

MHFs
m=2,n=12

AHFs
m=3,n=38

Present method
m=4,n=6

0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000

8.9078580 x 10~°
1.7273269 x 10~
3.1939696 x 10~°
2.5994360 x 107
1.8556922 x 107
2.5491245 x 107°
6.3009202 x 1073
3.0681918 x 107°

2.3702533 x 107*
1.5964788 x 10~
4.3901188 x 10~°
1.3179872x 1073
3.0877012 x 1073
7.2882496 x 107*
4.8949379 x 1073
4.1396683 x 107

1.9580883 x 107*
2.2412381 x 1073
3.7322939 x 10~°
6.6494761 x 107
1.5971960 x 10~°
9.3402864 x 107
7.8117225 x 1073
2.0188410 x 107°

1.8082771 x 107*
8.0152909 x 107*
6.6506474 x 10~°
2.2658036 x 107
4.4612011 x 1073
5.1032955 x 107
2.5012577 x 1073
2.9954754 x 107
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— Approximate solution Exact solution

0.102
0.100
0.098 1
0.096
0.094
0.092
T T T T
0 0.1 0.2 03 0.4 0.5
Fig. 5. The approximate and exact solution of Example 7.4 for m=4 and n=6.
Table 4
The absolute errors for Example 7.4.
Time GHFs MHFs AHFs Present method
m=1,n=24 m=2,n=12 m=3,n=38 m=4,n=06
0.125 3.9535570 x 107° 5.4358530 x 107° 5.0273440 x 107° 4.8772240 x 107°
0.250 4.9369540 x 10~° 3.6166890 x 10~° 1.0018047 x 10~ 4.2602040 x 107°
0.375 5.7688676 x 10~ 6.9481071 x 10~ 6.3026366 x 10~ 9.1584092 x 10~
0.500 1.9739477 x 10~ 3.2351344 x 107* 1.9740436 x 10~ 2.3194892 x 107*
0.625 8.2270372 x 107* 9.4418996 x 107* 6.3983681 x 107* 1.0784057 x 10~°
0.750 5.4544166 x 107* 7.2560586 x 107* 1.1725651 x 10~ 1.2989674 x 10~°
0.875 3.2041392 x 107* 4.6260325 x 107* 1.8398321 x 10~ 7.1106639 x 107*
1.000 1.2659096 x 10> 1.3799745x 1073 7.5573765 x 107* 1.2488298 x 103
Table 5

The absolute errors for Example 7.5.

Time GHFs MHFs AHFs Present method
m=1,n=24 m=2,n=12 m=3,n=38 m=4,n=6
0.125 5.0894620 x 1077 45374620 x 1077 3.7144620 x 1077 3.0964620 x 1077
0.250 5.6508804 x 10~ 53378804 x 1077 5.0038804 x 1077 3.5068804 x 1077
0.375 1.7532806 x 10~ 1.4530806 x 107 1.2742806 x 107 1.3310806 x 10~
0.500 1.7445638 x 107° 14887638 x 107° 14428638 x 107° 1.2845638 x 107°
0.625 2.1668476 x 107° 1.9985476 x 10~ 1.7512476 x 10~° 1.3930476 x 10~°
0.750 2.5226843 x 107° 2.2489843 x 107° 1.9882843 x 107° 1.7057843 x 10~
0.875 2.4201219 x 107° 2.2434219 x 107° 2.0320219 x 107° 1.6117219x107°
1.000 2.5429527 x 107° 2.4334527 x 107° 2.1347527 x 107° 1.7932527 x 107°

Table 4 shows a comparison of the absolute error obtained using the suggested method for n = 6 with the absolute errors of
GHFs for n = 24, MHFs for n = 12, and AHFs for n = 8. As shown in this Table, the results obtained using our suggested method are
better than those obtained by using the other hat functions methods. Moreover, Fig. 5 shows the exact and approximate solutions
calculated using our method for n = 6. As can be seen, our suggested method for solving this problem is both accurate and fast and
easy to implement.

Example 7.5. Take into consideration the following NSDE [85]:

dy(n) = a*y@)(1 + y*@))dt + a(l + y*(1))d B(t), te[0,1], (68)

For y(0) = y,, the exact solution of this NSDE is y(r) = tan(aB(t) + arctan(y,)).

We used the proposed method to solve the problem for a = 0.001, y, = 1. Table 5 shows a comparison of the absolute error
obtained using the suggested method for n = 6 with the absolute errors of GHFs for n = 24, MHFs for n = 12, and AHFs for n = 8. As
shown in this Table, the results obtained using our suggested method are better than those obtained by using the other hat functions
methods. Moreover, Fig. 6 shows the exact and approximate solutions calculated using our method for n = 6. As can be seen, our
suggested method for solving this problem is both accurate and fast and easy to implement.
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—— Approximate solution Exact solution

1.0001 4

0.9999 4

0.9998 4

0.9997 1

0.9996 4

0.9995 4

Fig. 6. The approximate and exact solution of Example 7.5 for m=4 and n = 6.

8. Conclusion

The analytical solution of SDEs is typically difficult to obtain, necessitating the use of approximate solutions in many cases.
This paper introduces a new numerical method based on FDHFs to solve these equations. This method transforms SDE into a
system of nonlinear algebraic equations that can be solved using one of the well-known iterative methods. Several theorems were
employed to discuss the convergence analysis of our proposed method. We have proven that our suggested method for solving the
aforementioned equation has a convergence rate of O(h°). The results obtained by the present method are efficient and convenient
compared to the exact solution and the results of other hat basis function methods. Therefore, we can conclude that the proposed
method demonstrates favorable accuracy and applicability.
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