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Abstract  This paper employs rigid-plastic finite element 
DEFORMTM 3D software to estimate the plastic 
deformation behavior of an aluminum billet during its 
axisymmetric extrusion through a conical die. The die and 
container are assumed to be rigid bodies and the temperature 
change induced during extrusion is ignored. The important 
parameters which effect on the extrusion process were 
assumed to be: the reduction of area (0.75), semi- cone die 
angles (5, 6, 7, 8, 10, 12, and 14o) coefficient of friction is 
0.05 and the extrusion speed is 250 mm/s. Under various 
extrusion conditions, the present numerical analysis 
estimates the stresses, the die load and the flow velocity of 
the billet at the die exit. Genetic algorithm coupled with 
neural network is employed to find optimum die angle 
leading to minimum stresses without any constraint. The 
simulation results confirm the suitability of the current finite 
element software for modeling the three-dimensional cold 
extrusion of aluminum rod. 
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1. Introduction 
Forward extrusion is a forming process in which a work 

piece is pushed through a die whose exit diameter is smaller 
than that of the work piece. The work piece flows through the 
die in the same direction as the punch, and can either be 
contained (high reductions) or open (low reductions) prior to 
entering the reduction portion of the die. The effects of 
pockets in the porthole die on the metal flow, temperature at 
the die bearing exit and the extrusion load. Two different 
multi-hole portholes die with and without pockets in lower 
die were designed.  

Pockets in lower die play an important role, such as more 
even metal flow and plastic deformation, lower temperature 
rise at the bearing exit and lower peak extrusion load, which 

indicates the possibility of increasing the extrusion speed and 
productivity which is beneficial to the extrusion process [1]. 

A new approach to the optimal design of the die shape in 
extrusion is presented by Chung et.al. [2]. Optimization of 
the design variables is conducted by a genetic algorithm, 
where the fitness values are evaluated on the basis of a finite 
element method (FEM) analysis model.  

The approach is applied to the determination of the die 
shapes that are optimal with regard to various objective 
functions. Friction is a kind of response occurring during 
extrusion process. When friction occurs between tool and 
work piece which leads to adhesions (cold-weld), abrasion of 
die and work material. To reduce the friction, it requires a 
suitable lubricant. Lubrication plays an important role in 
cold extrusion process since good lubricants prevent direct 
metallic contact, with the reduction of extrusion load and the 
improvement of product quality and tool life [3].  

Studies show that for die cone semi-angles under 45°, the 
dead metal zone does not form. It has been established by 
various studies that the size and shape of the dead metal zone, 
and the pattern and homogeneity of flow lines in extrusion 
are directly related to the die cone angle, to friction at the 
billet-container interface, and to a lesser extent at the 
billet-die interface friction [4, 5]. 

Estimated die extrusion parameter, on the extrusion 
pressures the effects of die land and percentage reduction in 
area. The extrusion pressure contributions due to the die land 
was found increased with die land length for any given 
percentage reduction and also increase with increasing 
percentage die reductions at any given die land length [6]. 
Control of material flow in combined forward rod extrusion 
seeks for optimal solution with short time and low risks and 
cost were estimate by Ajiboyeet.et al. [6]. They discussed the 
respective influences of the tool geometry, friction, 
lubrication, and workpiece properties on balanced material 
flow in a composite extrusion process [7].The importance of 
analysis for the extrusion process lies in the determination of 
forming load, flow characteristics, temperature and state of 
stress and strain [8]. 
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Typical flow patterns observed in extrusion are shown in 
Fig. (1)[9]. Flow pattern S is found in the absence of friction 
at the container and die interfaces, during extrusion of 
homogeneous materials. A Flow pattern is obtained in 
extrusion of homogeneous materials in the presence of 
friction at the die interface only. In the corner of the leading 
edge of the billet, a separate metal zone (known as the dead 
metal zone) is formed between the die face and the container 
wall. Flow pattern B is obtained in homogeneous materials 
when there is friction at both die and container interfaces, 
resulting in an extended dead metal zone. Flow pattern C is 
observed with billets having inhomogeneous material 
properties or with non-uniform temperature distribution in 
the billet; a more extended dead metal zone is formed and the 
material undergoes a more severe shear deformation at the 
container wall [9]. The geometrical features of the die land 
are a critical feature in obtaining defect free cold extruded 
parts. As the die land length directly influences the amount 
of friction at the die–billet interface, extrusion die designers 
uses this geometrical parameter to control the metal flow 
from the die. Appropriate die land geometrical features will 
allow uniform distribution of residual stresses in the 
extruded part as it emerges from the die. Various proposals 
have been made by researchers to provide a numerical basis 
for the design of the die land parameter [10, 11].  

In the present paper, employs rigid-plastic finite element 
DEFORMTM 3D software simulation in three-dimensions 
in different die angles and using artificial neural network to 
develop the relationships between the input and output of the 
stresses during cold extrusion of Al 1100. Using these 
relationships in genetic algorithm to find the minimum 
stresses which leading to the optimum die angle. 

 
Figure 1.  Different types of metal flow in metal extrusion [9]. 

2. Finite Element Modeling of Rod 
Extrusion 

In this work the finite element code Deform-3D V6.1 was 
used in modeling and analyzing the direct extrusion process 
of AL1100 billet. This software is specifically designed to 

analyze bulk plastic deformation, and is especially suited for 
the present analysis. It takes advantage of the fact that plastic 
deformation is usually highly localized. The present analyses 
adopt the following assumptions: (1) both the container and 
the die are rigid bodies, (2) the extrusion billet is a 
rigid-plastic material, (3) the important parameters which 
effect on the extrusion process were assumed to be: the 
reduction of area is constant (R.A. = 0.75), semi- cone die 
angles (α = (5o, 6o, 7o, 10o, 12o, and 14o)) coefficient of 
frictions (μ = 0.05) and the extrusion speed is (V = 250 
mm/s). According to symmetry quarter model was 
considered, tetrahedral element type with 5980 number of 
element and 17940 nodes were chosen in simulating the 
aluminum rod. Since the present study concentrate on the 
stress distribution on the extruded bar, a rigid die and punch 
was considered to ignore any deformation in the die and 
punch. Figure (2) shows the die-punch setup and the 3D 
finite element model. 

 
Figure 2.  Quarter metal of (a) punch, die, and billet arrangement, (b) 
Bottom die, (c) Workpiece, (d) Top die (punch) 

2.1. Applying the Boundary Conditions 

After building the model, the following step was to apply 
velocity to the structure in preparation for solution. In order 
to properly model structures behavior, it is necessary to 
apply velocity with respect to a specified time interval. 
Unlike most implicit analysis, all resulting stress is an 
explicit analysis and must be time- dependent in nature. The 
following are the parts and the boundary conditions applied 
to the die and extrusion part respectively:  

(i). The Die Part 
Since the die is rigid which does not contain elements to 

the regions of the part and does not deform, the boundary 
conditions applied are: zero displacement in all directions 
and zero rotations in all direction.  
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(ii). The Extrusion Part 
Since the extrusion part is plastic this is the only part that 

suffers deformation during the extrusion process. The 
boundary conditions are: zero velocity in the x and y 
directions and 250 mm/sec. on the z-direction. 

2.2. Material Type and Properties 

Aluminum-1100 billet with diameter 10mm was chosen to 
be extruded to final rod diameter of 5 mm with extrusion 
ratio of 0.75. The chemical composition of Al-1100 is shown 
in Table (1), while the important physical and mechanical 
properties are shown in Table (2). 

Table 1.  Chemical Composition of Al-1100 [12] 

Element % Element % 

Al 99.6 Mn 0.03 

Cu 0.05 Si 0.25 

Fe 0.35 Ti 0.03 

Mg 0.03 Zi 0.05 

V 0.05   

Table 2.  Physical and Mechanical Properties of Al-1100 [13] 

Property Value 

Density 2.71 gm/cm3 

Brinell Hardness 23 

Ultimate Tensile Strength 89.6 Mpa 

Tensile Yield Strength 34.5 Mpa 

Elongation at Break 35.00% @ Thickness 1.59 mm 
45.00% @ Diameter 12.7 mm 

Modulus of Elasticity 68.9 Gpa 

Poisson's Ratio 0.33 

Shear Modulus 26 Gpa 

Shear Strength 62.1 Mpa 

3. Design and Training of ANN Model 
for Stresses Prediction 

Artificial Neural Networks are based on the basic model 
of the human brain with capability of generalization and 
learning. The term "artificial" means that neural nets are 
implemented in computer programs that are able to handle 
the large number of necessary calculations during the 
learning process. 

Artificial neural networks (ANN) are a large class of 
parallel processing architectures, which can mimic complex 
and nonlinear relationships through the application of many 
nonlinear processing units called neurons. The relationship 
can be ‘learned’ by a neural network through adequate 
training from the experimental data. It can not only make 
decisions based on incomplete and disorderly information, 
but can also generalize rules from those cases on which it 

was trained and apply these rules to new cases. Usually, the 
structure of an ANN is hierarchical with neurons grouped in 
different layers designed as an input layer, hidden layers and 
on output layer, as shown in Fig. 3. Signals are supplied to 
the neurons of the input layer; each neuron of this layer then 
generates an output signal, which is transferred to the 
neurons of the hidden layer. The output signals are generated 
by the last layer (output layer).  

In this work, the inputs of the model are time step and die 
angle. The outputs are stress distribution along the x, y, and 
z-axis and effective stress respectively at different die angles, 
which each stress have one program. 

In this study, artificial neural networks ANN with 2–25 
neurons was trained; it was found that ANN with 8 neurons 
for x-stress, 6 neurons for y-stress, 8 neurons for z-stress, and 
5 neurons for effective stress in one hidden layer gives a 
minimum RMS error and maximum correlation coefficient 
(R). In the first step, training act was performed for adjusting 
connection weights between input layer to hidden layer and 
between hidden layer and output layer until the network to 
produce outputs that are close enough to the desired outputs. 

 
Figure 3.  Schematic structure of back propagation neural network 

4. Genetic Algorithm Model 
The genetic algorithm is a method for solving both 

constrained and unconstrained optimization problems that is 
based on natural selection, the process that drives biological 
evolution. The genetic algorithm repeatedly modifies a 
population of individual solutions. At each step, the genetic 
algorithm selects individuals at random from the current 
population to be parents and uses them to produce the 
children for the next generation. Over successive generations, 
the population "evolves" toward an optimal solution. Genetic 
algorithm can be used to solve a variety of optimization 
problems that are not well suited for standard optimization 
algorithms, including problems in which the objective 
function is discontinuous, non-differentiable, stochastic, or 
highly nonlinear. 

Genetic algorithm (GA) optimization technique can be 
used to overcome this inherent limitation of ANN. GA are 
search techniques for an optimal value, mimicking the 
mechanism of biological evolution. They have a high ability 
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to find an optimal value [14]. A genetic algorithm mimics the 
natural selection process by which a superior creature 
evolves whilst inferior creatures fade out from their 
population as generations go by. In an analogy to the present 
design problem, a superior creature is a set of strings or a set 
of design variables that can lead to minimization of the 
objective function [2]. 

5. Result and Discussion 

5.1 Comparison of Extrusion Force with other Works 

The extrusion force is validated by comparing some 
results of this present work with previous studies. Figure (4) 
shows a Comparison with the present finite element results, 
this result compared with the experimental work of Gouveia 
et al. [15] for the same conditions (initial diameter and initial 
height equal to 15 and 45 mm, a constant punch velocity of 
4.3 mm/s, semi-cone die angle is 300 and reduction in area is 
60% were used in the experimental investigation) to validate 
the present work and the maximum error was 9.42% between 
the present work and experimental work for Gouveia et al. 
They were a good agreement. 

5.2 Finite Element Results 

Type of metal flow and stress distribution in metal 
extrusion process is a highly complex for the complicated die 
design. Therefore finding the optimum die angle is most 
important task in extrusion process. The effect of the die 
semi-angle on the extrusion force for an extrusion process 
performed under conditions Do=10 mm, Df =5 mm, R.A. = 
75%, and μ=0.05. It is seen that the extrusion force initially 
increases monotonously until the die is completely filled by 
the billet. It can be seen that the extrusion force increases as 
the semi-angle is increased but there is an optimum angle in 
these conduction. Extrusion force can be estimated analytical 
shown in equation (1) and (2) [16]. 

𝑃𝑃𝑒𝑒𝑒𝑒 =  𝑌𝑌 � 1+𝐵𝐵
𝐵𝐵

 � �1 − � 𝑅𝑅2
𝑅𝑅1

 �
2𝐵𝐵
�            (1) 

F = 𝑃𝑃𝑒𝑒𝑒𝑒 * 𝐴𝐴𝑜𝑜                  (2) 

Where 𝑃𝑃𝑒𝑒𝑒𝑒 is the extrusion punch pressure, Y is the yield 
strength of material, F is the extrusion force, 𝐴𝐴𝑜𝑜 is the billet 
area, 𝑅𝑅1  = radius before extrusion, 𝑅𝑅2  = radius after 
extrusion, B = µcot α, µ is the friction coefficient, α is the 
semi-cone die angle.  

Figure (5) shows the extrusion force against stroke 
diagram for different semi-cone die angle. Results from the 
finite elements also compared with the analytical results 
derived from equations (1) and (2). It can note that there is a 
convergence between the analytical results with that of the 
finite element model. 

 
Figure 4.  Comparison of extrusion force with Gouveia et al. model [15]. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 5.  Extrusion force versus stroke at different semi-cone die angle 

 

(a) 
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(b) 

Figure 6.  Flow exit velocity distribution for various semi-cone die angle 
during extrusion process (a) α = 5o and (b) α = 14o 

Figure (6) illustrates the flow velocity distributions in 
billets extruded through dies with two different semi-angles 
under the same extrusion conditions. It can be seen that the 
flow velocity decreases as the semi-angle increases. 
Specifically, the flow velocity reduces from 1030 mm/s to 
913 mm/s as the semi-angle increases over the range 5◦ ≤ α 
≤14◦. 

5.3. Neural Network Results 

In present study, two type of stresses affected the work 
piece are taken into account the normal stresses along the x, y, 
and z-axis and effective stress at different die angles. These 
stresses were collected from the finite element results and 
then data were randomly divided into two partitions: training, 
and testing data. The testing data was used for estimating the 
performance of the trained network on new data, which 
never was seen by the network during the training. 

Table 3 shows the performance of neural network 
predictions and mean square error for both the training and 
testing data. Meanwhile, the comparisons between the FAM 
results and corresponding predicted results for both the 
training and testing datasets of Al-1100 are shown in Figure 
(7, 8, 9 and 10). The trendline involved in Figure (7, 8, 9 and 
10) indicates close agreement between the predicted and 
FAM results stresses. The results show that a very good 
correlation between FAM results and predicted results has 
been obtained, which suggests that the neural network is able 
to predict the compressive deformation behaviors of Al-1100 
successfully. 

 

Table 3.  Statistical analysis of the performance of ANN model for training 
and testing predictions 

Stresses 
Correlation Coefficient (R) Mean Square Error (MSE) 

Training Testing Training Testing 

X axis 0.9363 0.9145 0.0644 0.0371 

Y axis 0.9768 0.9396 0.0769 0.0019 

Z axis 0.9955 0.9503 0.0597 0.0128 

Effective 0.9045 0.9170 0.0461 0.0028 

 
(a) 

 
(b) 

Figure 7.  Comparisons between predicted effective stresses: (a) Training 
data; (b) Testing data. 
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(a) 

 
(b) 

Figure 8.  Comparisons between predicted X-axis stress: (a) Training data 
(b) Testing data 

 
(a) 

 
(b) 

Figure 9.  Comparisons between predicted Y-axis stress: (a) Training data 
(b) Testing data. 

 
(a) 

 
(b) 

Figure 10.  Comparisons between predicted Z-axis stress: (a) Training data 
(b) Testing data. 
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5.4. Genetic Algorithm Results 

5.4.1. Single–objective optimization of extrusion process 
Minimum Effective stress; in this investigation, a 

genetic algorithm with a single point crossover has been used. 
Each individual was constructed with a fitness function, 
which was obtained from ANN model. The initial population 
was chosen to be 20 and Crossover Fraction was chosen to be 
0.8. 
The optimum values of process parameters and the best 
possible of effective, X-axis, Y-axis and Z-axis stresses 
which is show in the table (4). From this table it can be seen 
that the effective stress is 123.38 MPa, X-axis stress is 
215.918 MPa, Y-axis stress is 245.52 MPa and Z-axis stress 
is 250.26 MPa which can be resulted when step time is 
0.0266 sec and extrusion die angle is 12.2o. 

Minimum X-stress; similarly in the case of effective 
stress, the genetic algorithm was Population size and 
crossover fraction are 20 and 0.75 of GA parameters were 
found to be able to optimize the process parameters. From 
table (4) it is clear that the optimal X-axis stress 161.03 MPa, 
effective stress is 120.84 MPa, Y-axis stress is 148.26 MPa 
and Z-axis stress is 180.41 MPa which can be resulted when 

step time is 0.0235 sec and extrusion die angle is 13.8o.  
Minimum y-stress; population size and crossover 

fraction is 20 and 0.80 of GA parameters were found to be 
able to optimize the process parameters, respectively. From 
table (4), it is evident that the optimal Y-axis stress is 195.6 
MPa, effective stress is 122.07 MPa, X-axis stress is 187.74 
MPa and Z-axis stress is 214.41 MPa which can be resulted 
when step time is 0.0285 sec and extrusion die angle is 12.4o. 

Minimum z-stress; population size and crossover 
fraction is 20 and 0.8 of GA parameters were found to be 
able to optimize the process parameters, respectively. From 
table (4), it is evident that the optimal Z-axis stress is 109.11 
MPa, effective stress is 118.25 MPa, X-axis stress is 105.01 
MPa and Y-axis stress is 48.98 MPa which can be resulted 
when step time is 0.0368 sec and extrusion die angle is 12.5o. 

5.4.2. Multi –objective optimization of extrusion process 
Multi objective genetic algorithm in MATLAB toolbox is 

used to get more than one optimum value of welded plate's 
strength. Table (5) shows results of best set of solutions for 
multi objective genetic algorithm. It can be seen that when 
want to obtain value of angle. 

Table 4.  The optimum values of extrusion process parameters and the optimal values of stress for single objective function. 

objective 
Input process control variable Optimal Values 

Step time Die angle Effective stress X-stress Y-stress Z-stress 

Min. effective stress 0.0266 12.2 123.38 215.918 245.52 250.26 

Min. X-stress 0.0235 13.8 120.84 161.03 148.26 180.41 

Min. Y-stress 0.0285 12.4 122.07 187.74 195.60 214.41 

Min. Z-stress 0.0368 12.5 118.25 105.01 48.98 109.11 

Table 5.  The optimum values of the extrusion process parameters and the best optimal values of stresses for multi objective function. 

Objective 
Input process control variable Optimal Values 

Step time Die angle Effective stress X-stress Y-stress Z-stress 
Min. effective stress & Min. 

Y-stress 0.0396 12.51 124.26 185.00 149.50 317.79 

Min. effective stress & Min. 
Z-stress 0.0362 12.02 124.97 252.07 244.24 116.17 

Min. X,  & Y-stresses 0.0401 12.19 124.24 177.29 184.76 313.41 

Min. X, & Z-stresses 0.0468 12.89 125.46 196.24 231.61 128.19 
Min. effective stress, Min. Y & 

Z-stresses 0.0353 13.27 125.03 218.34 182.71 166.01 

Min. X, Y & Z-stresses 0.0355 12.82 125.02 220.28 224.69 121.89 
Min. effective stress, Min. X, Y & 

Z-stresses 0.0345 13.11 124.96 222.01 229.15 124.61 
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6. Conclusions 
1. The finite element model was successfully simulated 

the stress distribution in the direct rod extrusion of 
Al-1100. Also this study demonstrated that optimum 
die angle reduce the magnitude of effective stresses, 
stresses x, y, and z. 

2. ANN model with three layers and one hidden layer 8 
neurons for x-stress, 6 neurons for y-stress, 8 neurons 
for z-stress, and 5 neurons for effective stress in one 
hidden layer gives a minimum RMS error and 
maximum correlation coefficient (R) is a useful 
method for the prediction of stresses where the die 
angle and step time are input parameters and there is 
a close agreement between the predicted and FAM 
results stresses. 

3. Combine of genetic algorithm and ANN model was 
used for optimization the stresses in Al-1100 in cold 
compression.  

4. The results show that the optimal angle between 12o 
and 14o because the stresses at these angle less when 
compared with other angle. 
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