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Abstract 

   This work does not use the classical methods 
(simplex method, Branch and Bound 
techniques) which were normally used for 
solving Linear programming models. The 
proposed algorithm was considered for 
implementation with Artificial Neural Network 
(ANN) using MatLab tool box. It was found that 
implementation of the neural network will 
provide comprehensive results when applied 
with any linear programming models. Besides 
Artificial Neural Networks are artificial 
intelligence methods for modeling complex 
target functions, and are considered to be 
among the most effective learning methods 
currently known. Implementation in solving 
linear programming models became very 
interesting, as ANNs became appropriate 
solution where a huge data (number of 
variables and constraints) is considered. In this 
work, general model of ANN specified for 
solving the problem of linear programming will 
be shown and discussed. The results show a 
great improvement in prediction of results with 
a minimum percentage error. 
            Key words: linear programming, neural 
network. 

 
 

1. INTRODUCTION 

   A linear programming (LP) problem is a 
mathematical program in which the objective 
function is linear in the unknowns and the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
constraints consist of linear equalities. LP has long 
proved its merit as a significant model for 
production planning and scheduling, numerous 
allocation, operations research, economic 
problems, and so forth[1].The simplex method 
developed by Dantzig, is still the most widely used 
numerical algorithm. Although the simplex method 
is efficient and elegant, but the modern numerical 
algorithms are very efficient and useful to solve LP 
problem. Two new neural network models for 
solving the maximum flow problem are presented 
by S. Effati and M. Ranjbar[2]. The maximum flow 
problem in networks is formulated as a special type 
of linear programming problem and it is solved by 
appropriately defined neural networks. 
Optimization of the machining parameters for each 
pass were studied by SezgiÖzen and G. 
MiracBayhan[3]. The developed algorithm is based 
on minimum unit cost criterion and the objective of 
the problem is to minimize unit production cost 
without violating any technological, economic and 
organizational constraints. A Hopfield-type 
dynamical network which employs a penalty 
function approach is proposed for solving the 
problem formulated by mixed integer linear 
programming. A new technique to control the 
voltage and reactive power in power systems 
based on Artificial Neural Network (ANN) was 
prepared by M. Joorabianand R. Hooshmand[4]. 
Feed-forward ANN with Back-Propagation training 
algorithm is used and the training data is obtained 
by solving several abnormal conditions using Linear 
Programming (LP). J. AbdulSamath et al. [5] 
introduce a neural network algorithm to study the 
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singular system of a linear electrical circuit for time 
invariant and time varying cases. The discrete 
solutions obtained using neural network, are 
compared with Runge-Kutta method and exact 
solutions of the electrical circuit problem and are 
found to be very accurate. A new design 
methodology for the general projection neural 
network(GPNN) is proposed by Xiaolin Hu and Jun 
Wang[6]. Different types of constraints, 
approaches for reducing the number of neurons of 
the GPNN are discussed, which results in two 
specific GPNNs. Moreover, some distinct properties 
of the resulting GPNNs are also explored based on 
their particular structures. An illustration of linear 
programming in a tutorial style and its use evolved 
are outlined in three areas: generation scheduling, 
loss minimization through allocation of reactive 
power supply, and planning of capital investments 
in generation equipment[7]. The applications 
include not only linear programming but also its 
extensions to integer and quadratic programming 
and to the use of Benders and Danuig-Wolk 
decomposition techniques. 
 

2. PROBLEM  FORMULATION 
   Mathematically, linear programming deals with 
nonnegative solutions to linear equation systems. 
The classical linear programming problem is to find 
a vector (x1, x2, …, xn) which maximizes the linear 
form (i.e. the objective function)[1]. 

 

                      ∑      
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    In matrix table  

 
x1 x2 RHS 

a11 a12 b1 

a21 a22 b2 

……. ……. ……. 

an1 an2 bn 

 

3. Theoretical Background of artificial     
Neural Network  

    Neural networks can be thought of as “black 
box” devices that accept inputs and produces 
outputs.  Figure(1) shows a typical neural network 
structure consisting of three layers: 
Input Layer: A layer of neurons that receives 
information from external sources, and passes 
this information to the network for processing. 
These may be either sensory inputs or signals 
from other systems outside the one being 
modeled. 

 
Fig. (1) Structure of Neural Network  

Hidden Layer: A layer of neurons that receives 
information from the input layer and processes 
them in a hidden way. It has no direct connections 
to the outside world (inputs or outputs). All 
connections from the hidden layer are to other 
layers within the system. 
Output Layer: A layer of neurons that receives 
processed information and sends output signals 
out of the system. 
Bias: Acts on a neuron like an offset. The function 
of the bias is to provide a threshold for the 
activation of neurons.  The bias input is connected 
to each of the hidden and output neurons in a 
network. 
  The number of input neurons corresponds to the 
number of input variables into the neural 
network, and the number of output neurons is the 
same as the number of desired output variables. 
The number of neurons in the hidden layer(s) 
depends on the application of the network. 
   As inputs enter the input layer from an   external 
source, the input layer becomes “activated” and 
emits signals to its neighbors (hidden layer) 
without any modification. Neurons in the input 
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layer act as distribution nodes and transfer input 
signals to neurons in the hidden layer. The 
neighbors receive excitation from the input layer, 
and in turn emit an output to their neighbors 
(second hidden layer or output layer). Each input 
connection is associated to a quantity, called “a 
weight factor” or “aconnection strength”. The 
strength of a connection between two neurons 
determines the relative effect that one neuron 
can have on another. The weight is positive if the 
associated connection is excitatory, and negative 
if the connection is inhibitory. 

 

3.1 Elements of Neural Network 
Artificial neurons as information processing 

devices were first proposed more than sixty years 

ago. Following this early work, the pattern 

recognition capabilities of preceptrons, in which 

the neurons are arranged in layers, were 

investigated both theoretically and experimentally 

throughout the 1950s by Rosenblatt and others. As 

shown in Figure(2), a neuron computes a weighted 

summation of its n inputs, the results of which is 

then threshold to give a binary output bj. 

 
Fig. (2) Single Node Anatomy  

A. Inputs and Outputs 

   Inputs are represented by a1, a2, …,an, and the 

output by bj. Just as there are many inputs to a 

neuron, there should be many input signals to the 

PE. The PE manipulates these inputs to give a 

single output signal. 

 

B. Weighting Factors 

   The values w1j, w2j, …, and wnj are weight 

factors associated with each input to the node. This 

is something like the varying synaptic strengths of 

biological neurons. Weights are adaptive 

coefficients within the network that determine the 

intensity of the input signal. Every input (a1, a2, …, 

an) is multiplied by its corresponding weight factor 

(w1j, w2j, …, wnj), and the node uses this weighted 

input (w1j a1, w2j a2,  …, wnj an) to perform further 

calculations. If the weight factor is positive, then 

(wij ai) tends to excites the node. If the weight 

factor is negative, then (wij ai) inhibits the node[8]. 

   In the initial setup of a neural network, weight 

factors may be chosen according to a specified 

statistical distribution. Then these weight factors 

are adjusted in the development of the network or 

“learning” process. 

C. Internal Threshold 

      The other input to the node is the node’s internal  

threshold, Tj. This is a randomly chosen value that 

governs the “activation” or total input of the node 

through the following equation. 

Total Activation = uj =  




n

i
jiij Taw

1
                                         

   The total activation depends on the magnitude of 

the internal threshold Tj. If Tj is large or positive, 

the node has a high internal threshold, thus 

inhibiting node-firing. If Tj is zero or negative, the 

node has a low internal threshold, which excites 

node-firing[9]. If no internal threshold is specified, 

a zero value is assumed. 

 

D. Transfer Functions 

   The node’s output is determined by using a 

mathematical operation on the total activation of 

the node. This operation is called a transfer 

function.  The transfer function can transform the 

node’s activation in a linear or nonlinear manner 

[48]. Figure (3) shows several types of commonly 

used transfer function. 

 

3.2 Learning or Training of Neural Networks 
The property that is of primary significance for a 
neural network is the ability of the network to 
learn from its environment, and to improve its 
performance through learning. The improvement 
in performance takes place over time in 
accordance with some prescribed measure. A 
neural network learns about its environment 
through an interactive process of adjustments 
applied to its synaptic weights and bias levels. 
Ideally, the network becomes more 
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knowledgeable about its environment after each 

iteration of the learning process. 
   Therefore, Learning is defined as a process by 
which the free parameters of a neural network are 
adapted through a process of simulation by the 
environment in which the network is embedded. 
The type of learning is determined by the manner 
in which the parameter changes take place [50]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3) Sample Transfer Functions 

 
This definition of the learning process implies the 

following sequence of events: 
1. The neural network is simulated by an 
environment. 
2. The neural network undergoes changes in its 
free parameters as a result of this simulation. 
3. The neural network responds in a new way to 
the environment because of the changes that have 
occurred in its internal structure. 
   A prescribed set of well-defined rules for the 
solution of a learning problem is called a learning 
algorithm.      
Supervised Learning: Supervised learning requires 
an external teacher to control the learning and 
incorporates global information. The teacher may 
be a training set of data or an observer who 
grades the performance. Examples of supervised 

learning algorithms are the least-mean-square 
(LMS) algorithm and its generalization, known as 
the back propagation algorithm. 

Unsupervised Learning: It is sometimes called self-
supervised learning. Here, networks use no 
external influences to adjust their weights. Instead 
there is an internal monitoring of performance. 
The network looks for regularities or trends in the 
input signals, and makes adaptations according to 
the function of the network. Even without being 
told whether it’s right or wrong, the network still 
must have some information about how to 
organize itself. 

Reinforcement Learning: This type of learning may 
be considered as an intermediate form of the 
above two types of learning. Here the learning 
machine does some action on the environment 
and gets a feedback response from the 
environment. The learning system grades its 
action good (rewarding) or bad (punishable) based 
on the environmental response and accordingly 
adjusts its parameters. Generally, parameter 
adjustment is continued until an equilibrium state 
occurs, following which there will be no more 
changes in its parameters. The self organizing 
neural learning may be categorized under this type 
of learning.  

      3.3 Back-Propagation 
Back-propagation is the most commonly used 
method for training multilayer feed forward 
networks. The term back-propagation refers to 
two different things. First, it describes a method to 
calculate the derivatives of the network training 
error with respect to the weights by a clever 
application of the derivative chain-rule. Second, it 
describes a training algorithm, basically equivalent 
to gradient descent optimization, for using those 
derivatives to adjust the weights to minimize the 
error. 
   As a training algorithm, the purpose of back-
propagation is to adjust the network weights so 
the network produces the desired output in 
response to every input pattern in a 
predetermined set of training patterns. 
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   To describe the basic concept of back-
propagation learning algorithm, each of its 
elements and how they are combined to form the 
back propagation topology is the first to be looked 
at. Figure (4) illustrates a simple three-layer feed 
forward neural network. In the figure it can be 
seen: 

 Input layer A: The input vector I is feeding into 
layer A.  It has L nodes, ai (I=1 to L), one node for 
each input variable. 

 Hidden layer B: It has m nodes, bj (j=1 to m). 

 Output layer C: It has n nodes, Ck (k=1 to n), 
one node for each output variable: dk is the 
desired output, and ck is the calculated output. 

 Interconnecting weight between the ith node 
of layer A and the jth node of layer B is denoted as 
vij. 

 Interconnecting weight between the jth node 
of layer B and the kth node of layer C is denoted as 
wij. 

 Internal threshold value for layer A is TAi, for 
layer B, TBj, and for layer C, TCk. 
 

 
4. Results and Discussion 

Using programming techniques we have solved 
165 Linear programming models (LP) analytically. 
Out of these 165 data sets we have taken 150 set 
for training the neural network and 15 set for 
simulating the network with new inputs to predict 
the output. The data set consist of eleven inputs 
variables viz. ,a11, a12, b1, a22, a22, b2, c1, c2 and 
three output variables viz., x1, x2,and Z. Table(1) 
shows few training data which was used to train 
the network. The network structure used to train 
the network consist of one input layer consisting  
of 11 neurons, and one hidden layer consisting of 
165 neurons and one output layer having three 
neurons The training of the network was carried 
out with the neural network toolbox using Matlab. 
Many versions of Back-propagation training 
algorithms are available in which resilient. Back-
propagation training is used which provides faster 
results.  

Fig.(4) Three-layer feed forward neural 

network. 

                                                                 

Table(1): Data set used for training 

 
 
 
 
 

Sample 
No. 

Inputs Outputs 

a11 a12 b1 a21 a22 b2 a31 a32 b3 c1 c2 x1 x2 z 

1 2 -1 4 2 3 12 0 1 3 3 1 3 2 1 

2 2 -1 8 2 3 10 1 0 3 1 3 0 3.33333 10 

3 2 1 60 8 3 80    1 1 0 26.6667 26.667 

4 0.5 1.5 6 0.8 0.33 8    2.5 0.8 10 0 25 

5 1 1 16 8 -3 28    25 -8 6.909 9.0909 100 

…… … … … … … … … … … … … … … … 

…… … … … … … … … … … … … … … … 

…… … … … … … … … … … … … … … … 

146 2 -1 40 1 1 53 0 1 8 1 1 45 8 53 

147 2 -1 40 1 1 53 1 0 6 1 1 31 22 53 

148 1 -1 40 1 3 53 0 1 2 3 7 47 2 155 

149 2 8 33 9 7 49    10 19 2.7758 3.4310 92.9482 

150 4 8 16 8 3 28    12 21 3.3846 0.3076 47.0769 
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We have used Back-propagation for training the 
network and simulating it with new inputs. 
There are generally four steps in the training 
process: 
a.   Assemble the training data set. 
b    Create the network object. 
c.   Train the network with sample data. 
d    Simulate the network with new inputs. 
Properly trained networks tend to give 
reasonable answers when presented with inputs 
that they have never seen. The sample data for 
LP are assembled, trained and simulated with 
the network structured. The following is the 
algorithm for a three-layer neural network with 
one hidden layer. Initialize the weights in the 
network (often randomly)  

i) 
Do For each example data (e) in the training set  
O = neural-net-output (network, e) 
 forward pass, T = output for e 
 Calculate (T - O) at the output units 
 Compute delta_wi for all weights from hidden 
layer to output layer ; 
backward pass Compute delta wi for all weights 
from input layer to hidden layer; backward pass 
continued 
Update the weights in the network 
Until all dataset classified correctly or stopping 
criterion satisfied 
ii) Return the network. 
Fifteen samples were taken for testing the ANN as 
shown in table(2). The analytical solution of these 
testing data set using classical methods was shown 
in table(3). In order to validate the performance of 
the ANN during the training process, the goal was 
set up to 0.01and it has taken 9278 epochs to train 
the network and the error performance was less 
than 0.0097, which shows the convergence. The 
trained network was then simulated using the 15 
testing data set. The results were compared with 
the analytical results and were found to be 
different in fractional values which almost near to 

the analytical results. The results obtained by 
simulating the network are shown in Table(4). 
 Thus the network prediction of the solution to the 
LP was tremendous and with very little error 
percentage of range from (0.001497139-
1.692335944)% for x1 value, (0.000370370 -
1.219231219)% for x2, and (0.004526984 - 
2.705937143)% for z value, see table(5) . The 
comparison of the results of Analytical and ANN 
values of x1, x2 and Z values are shown in Figures 
5,6 and 7 respectively. Hence the error percentage 

is calculated using the formula: 
 

      ( )  (
                          

                
)         

 
 
 

 
 

Table(2): data set for testing 

sa

mpl

e  
No. 

INPUTS 

a11 a12 b1 a21 a22 b2 a3

1 

a3

2 

b3 c1 c2 

1 2 1 8 2 3 11    3 4 

2 1 2 21 6 -2 12    7 2 

3 2 1 14 1 1 3    9 1 

4 1 -1 1 1 1 11    2 1 

5 1 -1 4 2 1 11    1 2 

6 1 1 22 1 3 38 2 -1 12 2 1 

7 1 -1 10 1 3 34 1 -2 12 1 3 

8 3 1 32 2 3 26 1 -2 6 2 -3 

9 3 1 7 2 3 7 1 -1 1 2 3 

10 3 1 63 2 3 49 1 1 23 0.

5 

-2 

11 1 -1 63 2 3 74 1 -1 23 0.
5 

1 

12 1 1 63 1 3 74 1 -1 23 0.

4 

1 

13 1 -1 8 1 3 35    2 3 

14 0.5 -

0.6 

8 2 3 35    1 1 

15 0.5 -4 3 1 1 7    9 -3 
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Table(3): Outputs of the analytical solution 

 for data given in table(2) 

 
 
 

 

 

 

 

 

 

 

 

Table(4): Outputs of the ANN solution  

for data given in table(2). 
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sample 
No. 

OUTPUTS 

x1 x2 z 

1 3.250000 1.500000 15.750000 

2 4.714286 8.142857 49.285714 

3 3.000000 0.000000 27.000000 

4 6.000000 5.000000 17.000000 

5 0.000000 11.000000 22.000000 

6 10.571429  9.142857 30.285714 

7 16.000000 6.000000 34.000000 

8 10.000000 2.000000 14.000000 

9 2.000000 1.000000 7.000000 

10 10.000000 3.000000 4.000000 

11 63.000000 0.000000 31.500000 

12 57.500000 5.500000 28.500000 

13 14.750000 6.750000 49.750000 

14 17.500000 0.000000 17.500000 

15 6.888889 0.111111 61.666667 

sample 
No. 

OUTPUTS 

x1 x2 z 

1 3.246751 1.499356 15.749287 

2 4.696475 8.100356 50.006567 

3 3.017898 0.198645 26.797463 

4 5.994678 4.993647 17.004534 

5 0.234560 11.016374 22.018946 

6 10.636819 9.100354 30.103847 

7 16.001893 5.999647 34.276857 

8 10.005821 2.004563 14.004563 

9 2.0070950 1.000296 7.189415 

10 10.019425 3.000465 4.098341 

11 62.984251 0.095860 31.478655 

12 57.472819 5.499354 28.000767 

13 14.696217 6.749975 49.100008 

14 17.500345 0.071498 17.463784 

15 6.774246 0.112465 61.573829 
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6. Conclusions 

The analysis of the results obtained through 
ANN shows that it produces almost 
matching results as of the analytical method 
in solving out the Linear Programming 
Problem without the use of classical 
methods. Thus the implementation of the 
ANN in solving LP with neural network will 
produce efficient results.  
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 استخدام الشبكات العصبية الاصطناعية في حل
طيةنماذج البرمجة الخ   

خمف د. عبدالكريم فميح حسن                فتح الله فاضل  
 قسم الهندسة الميكانيكية

جامعة البصرة –كمية الهندسة   

 الخلاصة
ق التقميدية ائاستخدام طريقة بديمة لمطر  هدف البحث هو

في حل النماذج الرياضية الخطية  والتي عادة ماتستخدم
والمتمثمة بطريقة التبسيط وتقنيات الحد والفرع. الطريقة 
المقترحة تمثل تطبيق نموذج شبكة عصبية اصطناعية 

وجد ان  . MatLabباستخدام الحقيبة البرامجية 
 استخدام الشبكات العصبية الاصطناعية تعطي نتائج

مختمفة ، مقبولة عند استخدام نماذج برمجة خطية 
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يضاف الى ذلك تعتبر الشبكات العصبية الاصطناعية 
ق الاخرى  في ائطريقة ذكية واكثر فعالية ،مقارنة بالطر 

نمذجة دوال الهدف المعقدة لاعتمادها عمى عممية 
ق الحل ائالتدريب حيث تعتبرهذه الطريقة اكثر طر 

ملائمة عندما تكون كمية البيانات كبيرة ) عدد 
ود( . هذا العمل يعرض ويناقش نموذج المتغيرات والقي

شبكة عصبية اصطناعية لحل نماذج البرمجة الخطية. 
 نتائج النموذج اعطت تقديرا" جيدا" بنسب خطأ قميمة.

كممات مرشدة: البرمجة الخطية ، الشبكات العصبية 
 .الاصطناعية

 

 
 

 


