
Journal of Kufa for Mathematics and Computer

 Vol.2, no.1, may,2014,pp 113- 121

113

Abstract

 This work does not use the classical methods
(simplex method, Branch and Bound
techniques) which were normally used for
solving Linear programming models. The
proposed algorithm was considered for
implementation with Artificial Neural Network
(ANN) using MatLab tool box. It was found that
implementation of the neural network will
provide comprehensive results when applied
with any linear programming models. Besides
Artificial Neural Networks are artificial
intelligence methods for modeling complex
target functions, and are considered to be
among the most effective learning methods
currently known. Implementation in solving
linear programming models became very
interesting, as ANNs became appropriate
solution where a huge data (number of
variables and constraints) is considered. In this
work, general model of ANN specified for
solving the problem of linear programming will
be shown and discussed. The results show a
great improvement in prediction of results with
a minimum percentage error.
 Key words: linear programming, neural
network.

1. INTRODUCTION

 A linear programming (LP) problem is a
mathematical program in which the objective
function is linear in the unknowns and the

constraints consist of linear equalities. LP has long
proved its merit as a significant model for
production planning and scheduling, numerous
allocation, operations research, economic
problems, and so forth[1].The simplex method
developed by Dantzig, is still the most widely used
numerical algorithm. Although the simplex method
is efficient and elegant, but the modern numerical
algorithms are very efficient and useful to solve LP
problem. Two new neural network models for
solving the maximum flow problem are presented
by S. Effati and M. Ranjbar[2]. The maximum flow
problem in networks is formulated as a special type
of linear programming problem and it is solved by
appropriately defined neural networks.
Optimization of the machining parameters for each
pass were studied by SezgiÖzen and G.
MiracBayhan[3]. The developed algorithm is based
on minimum unit cost criterion and the objective of
the problem is to minimize unit production cost
without violating any technological, economic and
organizational constraints. A Hopfield-type
dynamical network which employs a penalty
function approach is proposed for solving the
problem formulated by mixed integer linear
programming. A new technique to control the
voltage and reactive power in power systems
based on Artificial Neural Network (ANN) was
prepared by M. Joorabianand R. Hooshmand[4].
Feed-forward ANN with Back-Propagation training
algorithm is used and the training data is obtained
by solving several abnormal conditions using Linear
Programming (LP). J. AbdulSamath et al. [5]
introduce a neural network algorithm to study the

ARTIFICIAL NEURAL NETWORK IMPLEMENTATION FOR

SOLVING

LINEAR PROGRAMMING MODELS

Dr. ABDUL KAREEM F. HASSAN FATH ALLAH FADHIL KHALAF
Mechanical Engineering Department

 College of Engineering

 University of Basrah

Dr. ABDUL KAREEM F. HASSAN FATH ALLAH FADHIL KHALAF

114

singular system of a linear electrical circuit for time
invariant and time varying cases. The discrete
solutions obtained using neural network, are
compared with Runge-Kutta method and exact
solutions of the electrical circuit problem and are
found to be very accurate. A new design
methodology for the general projection neural
network(GPNN) is proposed by Xiaolin Hu and Jun
Wang[6]. Different types of constraints,
approaches for reducing the number of neurons of
the GPNN are discussed, which results in two
specific GPNNs. Moreover, some distinct properties
of the resulting GPNNs are also explored based on
their particular structures. An illustration of linear
programming in a tutorial style and its use evolved
are outlined in three areas: generation scheduling,
loss minimization through allocation of reactive
power supply, and planning of capital investments
in generation equipment[7]. The applications
include not only linear programming but also its
extensions to integer and quadratic programming
and to the use of Benders and Danuig-Wolk
decomposition techniques.

2. PROBLEM FORMULATION
 Mathematically, linear programming deals with
nonnegative solutions to linear equation systems.
The classical linear programming problem is to find
a vector (x1, x2, …, xn) which maximizes the linear
form (i.e. the objective function)[1].

 ∑

∑

 In matrix table

x1 x2 RHS

a11 a12 b1

a21 a22 b2

……. ……. …….

an1 an2 bn

3. Theoretical Background of artificial
Neural Network

 Neural networks can be thought of as “black
box” devices that accept inputs and produces
outputs. Figure(1) shows a typical neural network
structure consisting of three layers:
Input Layer: A layer of neurons that receives
information from external sources, and passes
this information to the network for processing.
These may be either sensory inputs or signals
from other systems outside the one being
modeled.

Fig. (1) Structure of Neural Network

Hidden Layer: A layer of neurons that receives
information from the input layer and processes
them in a hidden way. It has no direct connections
to the outside world (inputs or outputs). All
connections from the hidden layer are to other
layers within the system.
Output Layer: A layer of neurons that receives
processed information and sends output signals
out of the system.
Bias: Acts on a neuron like an offset. The function
of the bias is to provide a threshold for the
activation of neurons. The bias input is connected
to each of the hidden and output neurons in a
network.
 The number of input neurons corresponds to the
number of input variables into the neural
network, and the number of output neurons is the
same as the number of desired output variables.
The number of neurons in the hidden layer(s)
depends on the application of the network.
 As inputs enter the input layer from an external
source, the input layer becomes “activated” and
emits signals to its neighbors (hidden layer)
without any modification. Neurons in the input

Journal of Kufa for Mathematics and Computer

 Vol.2, no.1, may,2014,pp 113- 121

115

layer act as distribution nodes and transfer input
signals to neurons in the hidden layer. The
neighbors receive excitation from the input layer,
and in turn emit an output to their neighbors
(second hidden layer or output layer). Each input
connection is associated to a quantity, called “a
weight factor” or “aconnection strength”. The
strength of a connection between two neurons
determines the relative effect that one neuron
can have on another. The weight is positive if the
associated connection is excitatory, and negative
if the connection is inhibitory.

3.1 Elements of Neural Network
Artificial neurons as information processing

devices were first proposed more than sixty years

ago. Following this early work, the pattern

recognition capabilities of preceptrons, in which

the neurons are arranged in layers, were

investigated both theoretically and experimentally

throughout the 1950s by Rosenblatt and others. As

shown in Figure(2), a neuron computes a weighted

summation of its n inputs, the results of which is

then threshold to give a binary output bj.

Fig. (2) Single Node Anatomy

A. Inputs and Outputs

 Inputs are represented by a1, a2, …,an, and the

output by bj. Just as there are many inputs to a

neuron, there should be many input signals to the

PE. The PE manipulates these inputs to give a

single output signal.

B. Weighting Factors

 The values w1j, w2j, …, and wnj are weight

factors associated with each input to the node. This

is something like the varying synaptic strengths of

biological neurons. Weights are adaptive

coefficients within the network that determine the

intensity of the input signal. Every input (a1, a2, …,

an) is multiplied by its corresponding weight factor

(w1j, w2j, …, wnj), and the node uses this weighted

input (w1j a1, w2j a2, …, wnj an) to perform further

calculations. If the weight factor is positive, then

(wij ai) tends to excites the node. If the weight

factor is negative, then (wij ai) inhibits the node[8].

 In the initial setup of a neural network, weight

factors may be chosen according to a specified

statistical distribution. Then these weight factors

are adjusted in the development of the network or

“learning” process.

C. Internal Threshold

 The other input to the node is the node’s internal

threshold, Tj. This is a randomly chosen value that

governs the “activation” or total input of the node

through the following equation.

Total Activation = uj =

n

i
jiij Taw

1

 The total activation depends on the magnitude of

the internal threshold Tj. If Tj is large or positive,

the node has a high internal threshold, thus

inhibiting node-firing. If Tj is zero or negative, the

node has a low internal threshold, which excites

node-firing[9]. If no internal threshold is specified,

a zero value is assumed.

D. Transfer Functions

 The node’s output is determined by using a

mathematical operation on the total activation of

the node. This operation is called a transfer

function. The transfer function can transform the

node’s activation in a linear or nonlinear manner

[48]. Figure (3) shows several types of commonly

used transfer function.

3.2 Learning or Training of Neural Networks
The property that is of primary significance for a
neural network is the ability of the network to
learn from its environment, and to improve its
performance through learning. The improvement
in performance takes place over time in
accordance with some prescribed measure. A
neural network learns about its environment
through an interactive process of adjustments
applied to its synaptic weights and bias levels.
Ideally, the network becomes more

Dr. ABDUL KAREEM F. HASSAN FATH ALLAH FADHIL KHALAF

116

knowledgeable about its environment after each

iteration of the learning process.
 Therefore, Learning is defined as a process by
which the free parameters of a neural network are
adapted through a process of simulation by the
environment in which the network is embedded.
The type of learning is determined by the manner
in which the parameter changes take place [50].

Figure (3) Sample Transfer Functions

This definition of the learning process implies the

following sequence of events:
1. The neural network is simulated by an
environment.
2. The neural network undergoes changes in its
free parameters as a result of this simulation.
3. The neural network responds in a new way to
the environment because of the changes that have
occurred in its internal structure.
 A prescribed set of well-defined rules for the
solution of a learning problem is called a learning
algorithm.
Supervised Learning: Supervised learning requires
an external teacher to control the learning and
incorporates global information. The teacher may
be a training set of data or an observer who
grades the performance. Examples of supervised

learning algorithms are the least-mean-square
(LMS) algorithm and its generalization, known as
the back propagation algorithm.

Unsupervised Learning: It is sometimes called self-
supervised learning. Here, networks use no
external influences to adjust their weights. Instead
there is an internal monitoring of performance.
The network looks for regularities or trends in the
input signals, and makes adaptations according to
the function of the network. Even without being
told whether it’s right or wrong, the network still
must have some information about how to
organize itself.

Reinforcement Learning: This type of learning may
be considered as an intermediate form of the
above two types of learning. Here the learning
machine does some action on the environment
and gets a feedback response from the
environment. The learning system grades its
action good (rewarding) or bad (punishable) based
on the environmental response and accordingly
adjusts its parameters. Generally, parameter
adjustment is continued until an equilibrium state
occurs, following which there will be no more
changes in its parameters. The self organizing
neural learning may be categorized under this type
of learning.

 3.3 Back-Propagation
Back-propagation is the most commonly used
method for training multilayer feed forward
networks. The term back-propagation refers to
two different things. First, it describes a method to
calculate the derivatives of the network training
error with respect to the weights by a clever
application of the derivative chain-rule. Second, it
describes a training algorithm, basically equivalent
to gradient descent optimization, for using those
derivatives to adjust the weights to minimize the
error.
 As a training algorithm, the purpose of back-
propagation is to adjust the network weights so
the network produces the desired output in
response to every input pattern in a
predetermined set of training patterns.

Hard

Limiter
y

x
1

-1

x < 0 , y =

-1

Ramping

Function
y

x
1

1

x < 0 , y =

0 a b

A hyperbolic

transfer Functions
Sigmoid

Functions

y = 1 / (1+e-x)

c

y=tanh(x)=(ex-e-

d

Journal of Kufa for Mathematics and Computer

 Vol.2, no.1, may,2014,pp 113- 121

117

 To describe the basic concept of back-
propagation learning algorithm, each of its
elements and how they are combined to form the
back propagation topology is the first to be looked
at. Figure (4) illustrates a simple three-layer feed
forward neural network. In the figure it can be
seen:

 Input layer A: The input vector I is feeding into
layer A. It has L nodes, ai (I=1 to L), one node for
each input variable.

 Hidden layer B: It has m nodes, bj (j=1 to m).

 Output layer C: It has n nodes, Ck (k=1 to n),
one node for each output variable: dk is the
desired output, and ck is the calculated output.

 Interconnecting weight between the ith node
of layer A and the jth node of layer B is denoted as
vij.

 Interconnecting weight between the jth node
of layer B and the kth node of layer C is denoted as
wij.

 Internal threshold value for layer A is TAi, for
layer B, TBj, and for layer C, TCk.

4. Results and Discussion

Using programming techniques we have solved
165 Linear programming models (LP) analytically.
Out of these 165 data sets we have taken 150 set
for training the neural network and 15 set for
simulating the network with new inputs to predict
the output. The data set consist of eleven inputs
variables viz. ,a11, a12, b1, a22, a22, b2, c1, c2 and
three output variables viz., x1, x2,and Z. Table(1)
shows few training data which was used to train
the network. The network structure used to train
the network consist of one input layer consisting
of 11 neurons, and one hidden layer consisting of
165 neurons and one output layer having three
neurons The training of the network was carried
out with the neural network toolbox using Matlab.
Many versions of Back-propagation training
algorithms are available in which resilient. Back-
propagation training is used which provides faster
results.

Fig.(4) Three-layer feed forward neural

network.

Table(1): Data set used for training

Sample
No.

Inputs Outputs

a11 a12 b1 a21 a22 b2 a31 a32 b3 c1 c2 x1 x2 z

1 2 -1 4 2 3 12 0 1 3 3 1 3 2 1

2 2 -1 8 2 3 10 1 0 3 1 3 0 3.33333 10

3 2 1 60 8 3 80 1 1 0 26.6667 26.667

4 0.5 1.5 6 0.8 0.33 8 2.5 0.8 10 0 25

5 1 1 16 8 -3 28 25 -8 6.909 9.0909 100

…… … … … … … … … … … … … … … …

…… … … … … … … … … … … … … … …

…… … … … … … … … … … … … … … …

146 2 -1 40 1 1 53 0 1 8 1 1 45 8 53

147 2 -1 40 1 1 53 1 0 6 1 1 31 22 53

148 1 -1 40 1 3 53 0 1 2 3 7 47 2 155

149 2 8 33 9 7 49 10 19 2.7758 3.4310 92.9482

150 4 8 16 8 3 28 12 21 3.3846 0.3076 47.0769

Dr. ABDUL KAREEM F. HASSAN FATH ALLAH FADHIL KHALAF

118

We have used Back-propagation for training the
network and simulating it with new inputs.
There are generally four steps in the training
process:
a. Assemble the training data set.
b Create the network object.
c. Train the network with sample data.
d Simulate the network with new inputs.
Properly trained networks tend to give
reasonable answers when presented with inputs
that they have never seen. The sample data for
LP are assembled, trained and simulated with
the network structured. The following is the
algorithm for a three-layer neural network with
one hidden layer. Initialize the weights in the
network (often randomly)

i)
Do For each example data (e) in the training set
O = neural-net-output (network, e)
 forward pass, T = output for e
 Calculate (T - O) at the output units
 Compute delta_wi for all weights from hidden
layer to output layer ;
backward pass Compute delta wi for all weights
from input layer to hidden layer; backward pass
continued
Update the weights in the network
Until all dataset classified correctly or stopping
criterion satisfied
ii) Return the network.
Fifteen samples were taken for testing the ANN as
shown in table(2). The analytical solution of these
testing data set using classical methods was shown
in table(3). In order to validate the performance of
the ANN during the training process, the goal was
set up to 0.01and it has taken 9278 epochs to train
the network and the error performance was less
than 0.0097, which shows the convergence. The
trained network was then simulated using the 15
testing data set. The results were compared with
the analytical results and were found to be
different in fractional values which almost near to

the analytical results. The results obtained by
simulating the network are shown in Table(4).
 Thus the network prediction of the solution to the
LP was tremendous and with very little error
percentage of range from (0.001497139-
1.692335944)% for x1 value, (0.000370370 -
1.219231219)% for x2, and (0.004526984 -
2.705937143)% for z value, see table(5) . The
comparison of the results of Analytical and ANN
values of x1, x2 and Z values are shown in Figures
5,6 and 7 respectively. Hence the error percentage

is calculated using the formula:

 () (

)

Table(2): data set for testing

sa

mpl

e
No.

INPUTS

a11 a12 b1 a21 a22 b2 a3

1

a3

2

b3 c1 c2

1 2 1 8 2 3 11 3 4

2 1 2 21 6 -2 12 7 2

3 2 1 14 1 1 3 9 1

4 1 -1 1 1 1 11 2 1

5 1 -1 4 2 1 11 1 2

6 1 1 22 1 3 38 2 -1 12 2 1

7 1 -1 10 1 3 34 1 -2 12 1 3

8 3 1 32 2 3 26 1 -2 6 2 -3

9 3 1 7 2 3 7 1 -1 1 2 3

10 3 1 63 2 3 49 1 1 23 0.

5

-2

11 1 -1 63 2 3 74 1 -1 23 0.
5

1

12 1 1 63 1 3 74 1 -1 23 0.

4

1

13 1 -1 8 1 3 35 2 3

14 0.5 -

0.6

8 2 3 35 1 1

15 0.5 -4 3 1 1 7 9 -3

Journal of Kufa for Mathematics and Computer

 Vol.2, no.1, may,2014,pp 113- 121

119

Table(3): Outputs of the analytical solution

 for data given in table(2)

Table(4): Outputs of the ANN solution

for data given in table(2).

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

z Data set

Fig.(7): Comparison of z value
Analytical

ANN

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x2 Data set

Fig.(6): Comparison of x2 value
Analytical

ANN

sample
No.

OUTPUTS

x1 x2 z

1 3.250000 1.500000 15.750000

2 4.714286 8.142857 49.285714

3 3.000000 0.000000 27.000000

4 6.000000 5.000000 17.000000

5 0.000000 11.000000 22.000000

6 10.571429 9.142857 30.285714

7 16.000000 6.000000 34.000000

8 10.000000 2.000000 14.000000

9 2.000000 1.000000 7.000000

10 10.000000 3.000000 4.000000

11 63.000000 0.000000 31.500000

12 57.500000 5.500000 28.500000

13 14.750000 6.750000 49.750000

14 17.500000 0.000000 17.500000

15 6.888889 0.111111 61.666667

sample
No.

OUTPUTS

x1 x2 z

1 3.246751 1.499356 15.749287

2 4.696475 8.100356 50.006567

3 3.017898 0.198645 26.797463

4 5.994678 4.993647 17.004534

5 0.234560 11.016374 22.018946

6 10.636819 9.100354 30.103847

7 16.001893 5.999647 34.276857

8 10.005821 2.004563 14.004563

9 2.0070950 1.000296 7.189415

10 10.019425 3.000465 4.098341

11 62.984251 0.095860 31.478655

12 57.472819 5.499354 28.000767

13 14.696217 6.749975 49.100008

14 17.500345 0.071498 17.463784

15 6.774246 0.112465 61.573829

Dr. ABDUL KAREEM F. HASSAN FATH ALLAH FADHIL

KHALAF

120

6. Conclusions

The analysis of the results obtained through
ANN shows that it produces almost
matching results as of the analytical method
in solving out the Linear Programming
Problem without the use of classical
methods. Thus the implementation of the
ANN in solving LP with neural network will
produce efficient results.

References

[1]FENG-TSE LIN, "A Genetic Algorithm for
Linear Programming With Fuzzy
Constraints", Journal of information science
and engineering 24, 801-817 (2008) pp. 801-
817.
[2] S. Effati, M. Ranjbar, "Neural network
models for solving the maximum flow
problem", Applications and Applied
Mathematics: An International
Journal(AAM), Vol. 3, No. 1 (June 2008) pp.
149 – 164.
[3] SezgiÖzen, G. MiracBayhan, "
Optimization of Depth of Cut in Multi-pass
Machining Using
Hopfield Type Neural Networks",
Proceedings of the 2011 International
Conference on Industrial Engineering and
Operations Management Kuala Lumpur,
Malaysia, January 2011, pp. 22 – 24.
[4] M. Joorabian, R. Hooshmand,
"Application of Artificial neural Network in
Voltage and reactive power Control", Ph.D.

thesis, Department of Electrical Engineering
Shahid Chamran University, Iran, 2009.
 [5] J. AbdulSamath, P.Senthil Kumar,
Ayisha Begum, "Solution of Linear Electrical
Circuit Problem using Neural Networks",
International Journal of Computer
Applications (0975 –8887) Volume 2 –No.1,
May 2010.
[6] Xiaolin Hu, Jun Wang, "Solving Generally
Constrained Generalized Linear Variational
Inequalities Using the General Projection
Neural Networks", IEEE Transactions on
Neural Network,Vol.18,No. 6, November
2007, pp. 1697-1708.
[7] Jerome K. Delson, S. M. Shahidehporv,
" Linear Programming Applications to Power
System Economics, Planning and
Operations", Transactions on Power System,
Vol. 7. No. 3, August 1992. pp. 1155-1163.
[8] Long Cheng, Zeng-Guang Hou, Min Tan,”
A Delayed Projection Neural Network for
Solving Linear Variational Inequalities”, IEEE
TRANSACTIONS ON NEURAL NETWORKS,
VOL. 20, NO. 6, JUNE 2009.
[9] Stanislaw H. zak, Viriya Upatising, and
Stefen Hui, “Solving Linear Programming
Problems with Neural Networks: A
Comparative Study”, IEEE TRANSACTIONS
ON NEURAL NETWORKS, VOL. 6, NO. I ,
JANUARY 1995.

 استخدام الشبكات العصبية الاصطناعية في حل
طيةنماذج البرمجة الخ

خمف د. عبدالكريم فميح حسن فتح الله فاضل
 قسم الهندسة الميكانيكية

جامعة البصرة –كمية الهندسة

 الخلاصة
ق التقميدية ائاستخدام طريقة بديمة لمطر هدف البحث هو

في حل النماذج الرياضية الخطية والتي عادة ماتستخدم
والمتمثمة بطريقة التبسيط وتقنيات الحد والفرع. الطريقة
المقترحة تمثل تطبيق نموذج شبكة عصبية اصطناعية

وجد ان . MatLabباستخدام الحقيبة البرامجية
 استخدام الشبكات العصبية الاصطناعية تعطي نتائج

مختمفة ، مقبولة عند استخدام نماذج برمجة خطية

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x1 Data set

Fig.(5): Comparison of x1 value

Analytical

ANN

Journal of Kufa for Mathematics and Computer

 Vol.2, no.1, may,2014,pp 113- 121

121

يضاف الى ذلك تعتبر الشبكات العصبية الاصطناعية
ق الاخرى في ائطريقة ذكية واكثر فعالية ،مقارنة بالطر

نمذجة دوال الهدف المعقدة لاعتمادها عمى عممية
ق الحل ائالتدريب حيث تعتبرهذه الطريقة اكثر طر

ملائمة عندما تكون كمية البيانات كبيرة) عدد
ود(. هذا العمل يعرض ويناقش نموذج المتغيرات والقي

شبكة عصبية اصطناعية لحل نماذج البرمجة الخطية.
 نتائج النموذج اعطت تقديرا" جيدا" بنسب خطأ قميمة.

كممات مرشدة: البرمجة الخطية ، الشبكات العصبية
 .الاصطناعية

