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Abstract                         
      In this research we present extended theoretical study for electron transport through a quantum dot embedded 

between two normal leads. We model this quantum dot as single impurity (with two energy levels) to study the electron 

tunneling process through it, the system under consideration is taken out of equilibrium by induced temperature 

gradient.  Its occupation numbers and tunneling current are formulated as a function of all important “chemisorption” 

functions that related to the tunneling process. Our treatment allows for the tunneling current through the quantum dot 

to be calculated depending on the spin-dependent occupation numbers.Our theoretical formulation is applied to study 

the thermoelectric transport through a quantum dot. The symmetrical and asymmetrical coupling between the quantum 

dot and leads are studied and investigated to explore the existence of electronic rectification. 
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 سبب تفاعل الاقتران اللا متناظرب كمقوم الكتروني النقطة الكمية
 شاكر ابراهيم عيسى                       جنان مجيد المخ                           موسى كاظم شامر 

 العراق/البصرة–جامعة البصرة  –كمية التربية لمعموم الصرفة  –قسم الفيزياء 
 الممخص

 يلقد تم نمذجة النقطة كمية كشائبة مفردة ) بمستوي .ة نظرية موسعة لنقل الكترون خلال نقطة كمية موصولة بقطبين غير مغناطيسينتم تقديم دراس      
ار النفق تم الإشغال العائدة لها وتي أعدادلنظام المفترض في حالة انعدام الاتزان بسبب انحدار درجات الحرارة . ا ، طاقة( لدراسة عممية نفق الإلكترون خلالها

معالجتنا تتيح لنا حساب تيار النفق خلال النقطة الكمية بالاعتماد  ق.صيغتهما رياضياً كدالة لكل دوال " الالتصاق الكيميائي" المهمة التي تتعمق بعممية النف
كمية.حيث تم دراسة وفحص الاقتران المتناظر واللا صيغنا الرياضية طبقت لدراسة النقل الكهروحراري خلال النقطة العداد الإشغال المعتمدة عمى البرم.أعمى 

 متناظر بين النقطة الكمية والاقطاب لاستكشاف وجود التقويم الالكتروني.
 نموذج اندرسون، النقطة الكمية، التأثيرات الكهروحرارية. :الكممات المفتاحية

1.Indroduction   
        It is obvious for researchers in the nanotechnology 

field the required accuracy for studying any subject 

deals with nanostructures and the importance of the 

connection of any theoretical treatment with the 

corresponding experiments.Recently, thermal transport 

properties of various nanoscale devices have gained 

considerable attention experimentally and theoretically 

[1]. Most of the theoretical treatments that deal 

with the thermal transport do not take into 
consideration the spin degree of freedom. These cases 

are experimentally viable due to advances in the 

fabrication of nanostructures.The electron transport 

mechanism throughout a quantum dot embedded 

between two leads will be formulated when the system 

is in or out equilibrium.     

2. Theoretical Treatment 
    The single “quantum dot” Anderson model [2] 

describes a single quantum dot modeled as two energy 

levels with a local interaction which leads to a 

hybridization with the left and right leads that enables 

tunneling process (see Fig.(1)).The local quantum dot 

energy level with spin up 

dotE

 is separated from the 

leads by Coulomb barriers through which electrons can 
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tunnel. The tunneling strength is determined by the 

hybridization matrix elements


k
V 

 with RL, . The 

spin down level is separated from the spin up level by 

the intra-quantum dot Coulomb energyU .                                                          

The system Hamiltonian can be divided into three parts 

[2], 

(2)                        couplingleadsQD HHHH 
                              

      

where, QDH
 is given by, 

(3)                       dotdotdotdotQD nUnnEH




 
This Hamiltonian describes the isolated quantum dot, 

the first term denotes the energy of electrons on the 

level 

dotE

measured with respect to the chemical 

potentials (Fermi energies at 
KT 0  ) of the leads. In 

the presence of temperature gradient that is applied 

between the leads (by imposing some temperature 

difference ( RL TTT 
) the leads chemical potential 

positions are shifted from each other by RL  
  

(note that if 0T  this leads to 0  and vice 

versa), where   indicates the spin of an electron. The 

second term accounts for the local Coulomb repulsion 

U  on the dot and it is only non-zero if the dot is 

occupied by both electrons, the occupation number 

denoted by where 

)(†  dd  is the creation (annihilation) operator of a 

localized electron in the level 
dotE . 

 

 
 

 

And,  leadsH  is the Hamiltonian that describes the lead, 

(4)                                  †

,







 


 kk

RL k

kleads ccEH  


  

where, )(† 



 kk cc  is the creation(annihilation) operator 

of the electron, while k


 indicates its wave vector, with 

spin  and energy 

kE . The coupling part  couplingH  is 

given by, 

(5)         )( ††  














dcVdcVH

kkkkcoupling
  

this describes the coupling interaction between the dot 

and the leads levels which is given by the hybridization 

matrix element, 

(6)                                       )( 
kdotk

HrV  


 

where, dot  is the wave function describing the dot and 

k
  the wave function of the lead   electron with wave 

vector k


. The lead work function   as a function of  

T  ,is given by[3], 

 

  (7)                       ...)/ 

0125.0/ 0833.01(
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So the difference between L  and R  is

RL   , the energy reference 0E  is fixed on

L .Notably, in the case where RL TT  ,   can be 

considered as a bias voltage due to cooling the right 

lead (i.e. lowering its temperature with respect to left 

one  0;0  T ).The energies of spin-up and 

spin-down states can take the following form [4],    

(8)                                        ,  doteffdotdot nUEE  

where,  


dotn  are the spin-up and spin-down occupation 

numbers of QD energy levels.  dotE  represents the 

quantum dot energy level in the absence of the leads.  

effU  is the effective Coulomb correlation on the 

quantum dot [5].The similarity between quantum dots 

and isolated atoms becomes particularly striking in the 

case of spherical quantum dots, i.e. when the confining 

potential has spherical symmetry. Then, the quantum 

dot eigen values are calculated by using the following 

formula [6], 

(9)  0,1,2,...l,  

 1,2,3,...n ,   )/(2/ 22



 

dotnlnl Rm  
 

Fig.(1): Single “quantum dot” Anderson Model in 

the equilibrium case, where  
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where, 
*m  is the effective mass of the electron at the 

conduction band minimum, which is 0067.0 m  for 

GaAs, where  0m is the free electron mass. The 

coefficients nl  are the zeros of spherical Bessel 

function labeled by integer n in order to increasing 

energy. The levels can be labeled with usual atomic 

notation. The quantum dot energy level is broadened by 

the electron tunneling to and from it due to the presence 

of the leads. This broadening is determined by 

calculating the coupling matrix elements 
k

V  (eq.(6)). 

We consider the wide band approximation where the 

quantum dot energy levels broadening 

 does not 

depend on the system energy. So, according to the wide 

band approximation 

  is given by [7], 

(10)  

  
2

1
1 2

16
)( 2

0

0
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dot

dot

dotF
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with dotR represents quantum dot radius, 
 dot =


dotE2  

(in a.u.) and FN  denotes normalization factor (for 

more details see[23], which is proportional to 

)( 00   uV ,where 0u  is the band bottom of the 

leads and   is the work function of the lead  . For 

certain spin, the level broadening is given by [9],  

(11)                                                    
RL 

U represents intra-QD Coulomb repulsion for isolated 

QD. In the presence of the two leads, the effective 

electron-electron interaction effU  must be taken into 

account which should be formulated in a manner that 

includes all the quantum dot and leads properties [10]. 
In order to point out the importance of Coulomb 

correlation effect on the electron quantum tunneling 

through the quantum dot, we use Schrieffer and Mattias 

[11] formula which is given by, 

(12)                                     ))0( 1/(  UUUeff  

and 

(13)     

)/(tan

)/(tan

))(()0(

1

1

1
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dot

dotdot

E

E

EE

 

Note that , )0( depends explicitly on the quantum dot 

energy levels positions and their broadening and 

implicitly on their occupation numbers. Calculations of 

effU  by using eq.(12) and 
  by using eq.(11) help us 

to characterize the weak and strong cases of couplings. 

Due to the Fermions behavior at low temperatures, our 

model calculation can be divided into two ranges of the 

temperatures, the low range and the ultra-low range of 

temperatures. 
 

2.1 The case of the low range of temperature 
    In general, the occupation numbers of the quantum 

dot depend on the local density of states on the quantum 

dot )(Edot

 (which is obtained from the imaginary part 

of the retarded Green function 

))(Im()/1()( EGE r

dot   ) and the Fermi 

distribution functions of the leads ),( TEf   . It is 

well known that the function )(Edot

  dependence on 

energy is related to the range of temperatures, while 

Fermi distribution function is valid for all temperatures 

[12-14]. The occupation number 

dotn  for the quantum 

dot levels coupled to the leads can be calculated from 

this formula [15,16], 

(14)           ),( )(
2

1

,
0

dETEfEn
RL u

dotdot 





 




  


 

)(Edot

  is the density of states on the quantum dot, 

(15)                   
)((

1
Im

1
)(

EEE
E

dot
dot

dot








  

with, 

(16)                                   )()()( EEiE
dot

 

and for wide band limit approximation we have, 

(17)            ))/()(/1()( 22    dotdot EEE  

and, 

                                        )1/(1),(
/)( 

  TkE BeTEf




By using   as an energy reference for the lead   we 

define, 

  E  and 
   dotdo E  

The integration in eq.(14) is solved analytically. Then,

dotn  is reduced to the following expression, 
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(18)                                 
2

1
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,

5

1
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i

RL i

idot ICn  
 

  

Where the functions 

,iC and 



,iI  are listed in the 

Table (1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

Where, the functions    
 are given by, 

3

3101 )()( 





   dotdot EAEAA  

(19)                     )(3 2

312 




   dotEAA  

)(3 33 




   dotEA  



 34 A  

Note that, the units of 
 i function is 

1)/(1 ieV  for 

41  i and iA  are the Taylor expansion coefficients 

for Fermi distribution function about 0 in the 

interval )(   TkTk BB  . So, in order to calculate 

the occupation numbers     
  and all the related 

functions (i.e. the levels broadening, Coulomb 

interaction and the quantum dot energy levels 

positions), eq.(8) and eq.(18) must be solved self 

consistently for all values of the required parameters. 

The thermoelectric current    flowing through the QD 

is given by the following formula [15], 

(20)                                                )),(

),()((

0

dETEf

TEfE
h

e
I

RRR

LLL

u

dot














 

 

by comparing the integral in eq.(14) with the integral in 

eq.(20) we can formulate eq.(20) as [8], 

(21)                                 ))(/( ,,


RdotLdot nneI  

 From eq.(21), it is obvious that the current is related to 

the occupation numbers of the quantum dot energy 

levels as well as their broadening. So, the total current 

is given by 

(22)                                                               


II

 2.2 The case of the ultra-low range of 

temperatures 

It has been shown in Ref.[17] that for the single 

impurity Anderson Hamiltonian the susceptibility and 

the electric resistivity at low temperature can be written 

in terms of two physical quantities 



~ and 



~ .This 

fact holds also for other physical quantities such as the 

density of states that localized on the impurity, 

(23)                                                  1)/(  with,

     ~

2

1
)~~(1
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)( 2
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22
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The local susceptibility explain as the two body 

scattering [18]. The above ik and ik represent the 

system energy states. As we know, the full expression 

for the local susceptibility can be expressed in various 

forms [18]. For small 
/effU  , it is most usefully 

expressed in the form of power series 

(24)                              
2

)(

0

2 n

n

n
B

dot

U
C

g










 











 

Where the coefficients satisfy the recurrence relation, 

(25)                          )5.0()12( 2

2

1   nnn CCnC 

 

With, 110  CC . Notably, the coefficients up to 4C

correspond to the fourth order perturbation[5], 

(26)                                       2/~)( 2    dotBdot g

 

Where,  ~dot is the local susceptibility of quantum dot. 

 ~dot can be written as sum of two parts 



~ and 



~  

which for small U  limit can be written as[19], 

(27)         051.0 
4

31~
42

2



































 








effeff UU

 

(28)                          
2

3
15~

2
2

























 










effeff UU

 

Table (1) shows  𝐶𝑖,𝛼
𝜎  and 𝐼𝑖,𝛼

𝜎  
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Note that, 



~ is represented by terms with even power 

and 



~  is represented by terms with odd power. 

Accordingly, the dimensionless values of the spin and 

charge susceptibilities [20] can be expressed 

respectively as, 

(29)                                                   ~~~  


s

 

(30)                                                   ~~~  


c

 

Similarly, the occupation numbers can be written as, 
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(31)     ),(

)(

2

1 ,

,
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Where, )(, 
LETdot , is the density of states of the 

quantum dot at low energy and low temperature, can be 

written as,          

(32)                         ))(()( 2

21, 



   kkLETdot
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)(1 2
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2
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(34)                                   /)5.0( 322

2
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By evaluating the integrals in eq.(31), 

dotn  is reduced to 

the following expression, 
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Where, the functions    
  are given by, 
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(36)                                  2 12023 
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  123

2

214 )( AkAkk    




  325 2 Ak  




 325 Ak  

The current through quantum dot at ultralow 

temperatures can also be calculated from eq.(21) and 

the occupation numbers must be calculated using 

eq.(35). 
 

3. Results and Conclusions 
       In this paper, we will apply our theoretical 

formulation to study the quantum electron tunneling 

due to temperature gradient in the asymmetrical 

coupling between the quantum dot and leads, i.e. 

0R while 
 R and 

 R are calculated according to 

eq.(10). The temperature LT   is firstly fixed at 100K 

while RT   is varied from 200K to 0K, i.e. cooling the  

right lead with respect to the left one (see Fig.(1). L  

and R  are calculated using eq.(6), so L is constant 

and equals to 0.0eV .This  means that we use the 

temperature difference RL TT   to control the difference 

in the chemical potentials. dotE  is calculated by using  

eq.(9) and it is equal to )1203.5( eV ( measured with 

respect to vacuum level), since its radius nmRdot 8.4  

and 0  is equal to eV1.5  for golden lead. The bottom 

of energy band eVuuu LR 1.15000  , this value 

corresponds to a flat band.  In order to get the 

occupation numbers 


dotn of the quantum dot energy 

levels 


dotE in the low temperature range, eqs.(8), 

(10),.(12) and (18) are solved self consistently. While, 

equations (8), (10), (12) and (35) are solved self 

consistently for the ultralow temperaturerange.As the 

charge transport is accomplished  through the quantum 

dot by cooling right lead with respect to the left one, all 

the functions calculated in our treatment will be 

presented as a function of   . The occupation numbers 

of the quantum dot energy levels and all the 

“chemisorption functions” as well as the tunneling 

current are presented in Fig.(2) and Fig.(3) for the cases 

of coupling eVU 16.0 and eVU 0016.0

respectively. From Fig.(2a), it is visible that 

dotn

 

increases as LT
 decreases while 


dotn

 increases as LT
 

increases (i.e. RT
decreases). Therefore, in the region of 

(  ) for ( LR TT 
), this difference in temperature 

implies a higher occupation possibility for electrons in 

the right lead to enter the 

dotE

level of the QD, i.e. 

resulting in a higher 

dotn

 and lesser 


dotn
 due to the 

strong Coulomb correlation. In contrast, in the region of 
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(  ) for ( RL TT 
), the difference implies a lesser 

occupation possibility for electrons in the left lead to 

enter the 

dotE

level of the QD due to the asymmetric 

coupling ( 0R , while 0
R ), i.e. resulting in a 

lower 

dotn

 and higher 


dotn
 for the same reason.The 

positions of the quantum dot levels with respect to 

)0(L  are presented in Fig.(2b). The physical 

features in Fig.(2a) are in agreement with that in 

Fig.(2b). As 

dotE

  lies below the energy reference 

0L  , it is nearly constant as compared with 


dotE
 

which lies above the energy reference. So


dotE
 

decreases with cooling. The spin up and spin down 

broadening functions are shown in Fig.(2c). It is clear 

that 
 

 , since the energy level of spin up 

coincides with occupied energy levels in the left and the 

right leads while the energy level of spin down 

coincides with empty energy levels in the left and right 

leads. Writing final conclusion about the broadening 

functions is not easy because the calculation of 


depends implicitly on 
 calculation and vice versa. 

Fig.(2d) represents the Coulomb correlation variation 

with   where 
effU

for all values of  . This 

determines the weak coupling regime, in which the 

energy level 

dotE

is nearly occupied and 


dotE
 is nearly 

empty. One can conclude  that in this regime effU

decreaseswithcooling. It is obvious from eq.(21) that 

the current can be  easily calculated, where its direction 

can be determined by its sign. As we cool the right lead 

with respect to the left one, then the tunneled electron 

will transport from the left lead to the right one. This 

tunneling is due to temperature gradient , accordingly 

one can call this current as thermoelectric tunneling 
current. The calculated current is presented in Fig.(2e) 

where   is increasing with cooling. The negative sign of 

the current indicates that the direction of tunneling is 

from the right to the left one. However, 0I , in the 

case of equilibrium where there is no temperature 

gradient. The components of the current 
I and 

I

give us good idea about the spin polarization due to 

cooling (see Fig.(2f)). 
 II 

for RL TT 
 while 

  II for   RL TT 
, while 0  II  at 

0  . The current 
I vanishes because the 

occupation numbers for this spin are nearly zero. 

Hence, the total current I  takes the same values of  
I

. From this figure, one can conclude that the variation of 

the right lead temperature RT  from heating to cooling 

changes the direction of the spin up contribution of the 

current. The direction of the spin down  contribution is 

also changed but in the opposite to that of the spin up 

one.                  Similarly,  we also choose U  to be 

equal to 0.0016eV  and our results are presented in a 

similar manner. Fig.(3a) and Fig.(3b) show the 

occupation numbers of the quantum dot energy levels 

and the position of the energy level with respect to 

)0(L   respectively, both have the same behavior 

with  . The type of solution is magnetic where 
  dotdot nn

 for all values of  . Fig.(3c) and Fig.(3d) 

represent the broadening functions and Coulomb 

correlation as a function of  , where  effU

for 

all values of  .The behavior of the thermoelectric 

current and its contributions as a function of the 

chemical potentials difference are represented in 

Figs.(3e) and (3f). It seems in Fig.(3e) that the charge 

current increases with the temperature difference 

induced bias voltage only in the positive direction (

0 ) and it is blocked in the opposite direction. 

Note that this strong asymmetric behavior is found for 

small U , i.e. eVU 0016.0 . This indicates the 

occurrence of certain rectification in charge current, it 

may considered as electronic rectification due to 

temperature gradient.The results motivate us to 

formulate, the thermal rectification which is also 

formulated and investigated, this will be our future 

paper.  
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