1	Analysis of Natural Convective Flow of Casson Fluid around an Inclined Rectangular
2	Cylinder
3	Olalekan Adebayo Olayemi ^{1,2} *, Tomisin Favour Ajide ¹ , Adebowale Martins Obalalu ³ , and
4	Muneer A. Ismael ^{4,5}
5	¹ Department of Aeronautics and Astronautics, Kwara State University, P.M.B. 1530, Malete,
6	Kwara State, Nigeria.
7	² School of Engineering, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
8	³ Department of Physics, Augustine University, Ilara-Epe, Lagos State, Nigeria.
9	⁴ Mechanical Engineering Department, Engineering College, University of Basrah, Basrah,
10	Iraq.
11	⁵ College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
12	*Corresponding author. Tel.: +447424001433.
13	Email address: olalekan.a.olayemi@cranfield.ac.uk, olalekan.olayemi@kwasu.edu.ng
14	
15	Abstract
16	The current investigation uses the finite element method to analyze the natural convective
17	flow of Casson fluid around a tilted hot rectangular cylinder placed in a square container. The
18	influence of Casson fluid parameter (η) , aspect ratio, (AR) , angle of tilt (γ) , and Rayleigh
19	number (Ra) on isotherms and fluid flow pattern is enunciated. The walls of the enclosure
20	and that of the cylinder are respectively fixed as T_c and T_h . Results from the findings reveal
21	that for the range of Casson fluid parameter $(0.1 \le \eta \le 1.0)$, aspect ratio $(0.1 \le AR \le 0.7)$,
22	and Rayleigh number $(10^3 \le Ra \le 10^6)$, investigated, the rate of heat transfer of the enclosure
23	wall increases with increasing η , AR and Ra , while for the heated rectangular obstacle, the
24	rate of heat transfer decreases with AR growth but improves with the growth of η and Ra .
25	At $Ra = 10^6$, improvement in γ results in heat transfer enhancement for both the enclosure
26	and cylinder walls. However, for Ra in the interval of $10^3 \le Ra \le 10^5$, the response of the
27	thermal profiles of both the rectangular cylinder and enclosure walls to cylinder orientation
28	depends on the values of Ra and γ considered.
29	Keywords: Casson fluid; Natural convection; rectangular cylinder; Aspect ratio; square enclosure.
30	Nomenclature