Analysis of Natural Convective Flow of Casson Fluid around an Inclined Rectangular Cylinder
Olalekan Adebayo Olayemi ${ }^{1,2}$, Tomisin Favour Ajide ${ }^{1}$, Adebowale Martins Obalalu ${ }^{3}$, and Muneer A. Ismael ${ }^{4,5}$
${ }^{1}$ Department of Aeronautics and Astronautics, Kwara State University, P.M.B. 1530, Malete, Kwara State, Nigeria.
${ }^{2}$ School of Engineering, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
${ }^{3}$ Department of Physics, Augustine University, Ilara-Epe, Lagos State, Nigeria.
${ }^{4}$ Mechanical Engineering Department, Engineering College, University of Basrah, Basrah, Iraq.
${ }^{5}$ College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
*Corresponding author. Tel.: +447424001433.
Email address: olalekan.a.olayemi@cranfield.ac.uk, olalekan.olayemi@kwasu.edu.ng

Abstract

The current investigation uses the finite element method to analyze the natural convective flow of Casson fluid around a tilted hot rectangular cylinder placed in a square container. The influence of Casson fluid parameter (η), aspect ratio, $(A R)$, angle of tilt (γ), and Rayleigh number ($R a$) on isotherms and fluid flow pattern is enunciated. The walls of the enclosure and that of the cylinder are respectively fixed as T_{c} and T_{h}. Results from the findings reveal that for the range of Casson fluid parameter $(0.1 \leq \eta \leq 1.0)$, aspect ratio $(0.1 \leq A R \leq 0.7)$, and Rayleigh number $\left(10^{3} \leq R a \leq 10^{6}\right)$, investigated, the rate of heat transfer of the enclosure wall increases with increasing $\eta, A R$ and $R a$, while for the heated rectangular obstacle, the rate of heat transfer decreases with $A R$ growth but improves with the growth of η and $R a$. At $R a=10^{6}$, improvement in γ results in heat transfer enhancement for both the enclosure and cylinder walls. However, for $R a$ in the interval of $10^{3} \leq R a \leq 10^{5}$, the response of the thermal profiles of both the rectangular cylinder and enclosure walls to cylinder orientation depends on the values of $R a$ and γ considered.

Keywords: Casson fluid; Natural convection; rectangular cylinder; Aspect ratio; square enclosure.

Nomenclature

