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1. Introduction 

Rotor unbalance is the main cause of rotor vibration and its 

serious consequences. When such problems met, it is resorted 

to balancing process, which includes attaching correction 

masses in predefined balancing planes to compensate eccentric 

mass distribution that generates large centrifugal forces and 

the high levels of vibration. Determining the magnitude, phase 

(angular position) and axial distribution of the correction 

masses along the shaft, is the objective of the balancing 

process. 

Mostly, if the rotational speed of the rotor approximates or 

exceeds its critical speed, the resulting vibrations due to 

unbalance become serious. This is a result of considerable 

deflections in the rotor when operating in the vicinity of its 

critical speed. 

When the rotor operates below 70 % of its critical speed, it 

is known as rigid rotor. This type when balanced at one speed 

will be balanced at any speed below 70 % of its critical speed. 

In contrary, flexible rotor (that operates above 70 % of its 

critical speed) will distort due to unbalance (centrifugal) 

forces, and when balanced at one speed, may not be balanced 

at another speed. 

Two main strategies still in use widely until now, are 

influence coefficients method and modal balancing method. 

The influence coefficients method assumes direct and linear 

proportion between the unbalance (cause) and the measured 

response (effect) of the rotor, and can be employed to balance 

rigid and flexible rotors. Modal Balancing method aims to 

balance flexible rotor using its modal properties. In this 

technique, every vibration mode was corrected by attaching a 

set of masses to the rotor so that no effect was caused on 

previously balanced modes. 

Both two techniques have its own advantages and 

disadvantages, but the common feature of the two is the large 

number of trial runs required to identify the correction masses 

(in the literature, several texts and papers give exhaustive 

description [1, 2]). Modal balancing method cannot be adopted 

in this work for the following reasons: 

1. Restricted optionality in selecting the axial locations of 

balancing planes, since the rotor under study is relatively 

short and considerable spaces on its length are occupied by 

coupling, supports and shaft collars on the discs. Hence 

available spaces for the discs will be limited. 

2. In a system with influential damping as in the rotor under 

study, the mode shapes do not appear clearly. 

On the other hand, efficiency of influence coefficients 

method depends highly on number of trial runs, which are cost 

and time consuming and even may expose the rotor parts to 

damage. Thus, it is required to minimize or eliminate the trial 

runs. In this work, the rotor taken as a balancing case study 

will be described (physically in detail in the following 

sections), and examined at 70 %, 83 %, 92 % and 140 % of the 

first critical rotational speed, and thus it is considered as 

flexible rotor. This wide and “critical speed crossing” range of 

operational speeds, makes the influence coefficients method 

not applicable in its traditional strategy [2]. 

The alternative is the balancing procedure proposed in this 

work, which is Model Based Balancing (MBB) method. The 

model in MBB is digital twin to the real rotor [3]. One of the 

most important features of the MBB is the reduction of 

 

Basrah Journal for Engineering Sciences, Vol. 21, No. 1, (2021), 20-26 

Original Article Journal homepage: www.bjes.edu.iq 

ISSN (Online): 23118385, ISSN (Print): 18146120  

Flexible rotor balancing without trial runs using experimentally 

tuned FE based rotor model 

Yahya Muhammed Ameen 1,*, Jaafar Khalaf Ali 2 

1,2,3Department of Mechanical Engineering, College of Engineering, University of Basrah, Basrah, Iraq 

E-mail addresses: yahyaameen@yahoo.com , jaafarkhalaf@yahoo.com 

Received: 1 July 2020; Accepted: 4 August 2020; Published: 17 January 2021 

Abstract 

A method based on experimentally calibrated rotor model is proposed in this work for unbalance identification of flexible rotors without trial 

runs. Influence coefficient balancing method especially when applied to flexible rotors is disadvantaged by its low efficiency and lengthy 

procedure, whilst the proposed method has the advantage of being efficient, applicable to multi-operating spin speeds and do not need trial 

runs. An accurate model for the rotor and its supports based on rotordynamics and finite elements analysis combined with experimental modal 

analysis, is produced to identify the unbalance distribution on the rotor. To create digital model of the rotor, frequency response functions 

(FRFs) are determined from excitation and response data, and then modal parameters (natural frequencies and mode shapes) are extracted and 
compared with experimental analogies. Unbalance response is measured traditionally on rotor supports, in this work the response measured 

from rotating disks instead. The obtained results show that the proposed approach provides an effective alternative in rotor balancing. 

Increasing the number of balancing disks on balancing quality is investigated as well. 

Keywords:   Flexible rotor, Balancing, Unbalance identification, Finite elements, Experimental modal analysis, Rotordynamics. 

© 2021 The Authors. Published by the University of Basrah. Open-access article. 

http://dx.doi.org/10.33971/bjes.21.1.4 

http://www.bjes.edu.iq/
mailto:yahyaameen@yahoo.com
http://dx.doi.org/10.33971/bjes.21.1.1


21Y. M. Ameen and J. K. Ali / Basrah Journal for Engineering Sciences, Vol. 21, No. 1, (2021), 20-26                              

required trial runs (i.e., costs and efforts) of the balancing 

procedures to identify the correction masses. Accurate 

mathematical simulation of the machine (especially rotor 

bearings and foundation assembly) is the cornerstone in MBB. 

Such approach solves inverse dynamical problems for rotating 

machinery [4], and by taking into account the uncertain 

parameters of the rotor that can affect the balancing result [13]. 

Various contributions have been presented based on 

mathematical model of the rotor system. Carvalho et al. [13] 

proposed an approach based on mono-objective optimization 

solution of mathematical model, taking unbalance contribution 

along the rotor as uncertain information. Considerable 

unbalance reduction was achieved, although mode shapes are 

not taken in account, and trial weights are required. Yun et al. 

[14] developed an online balancing method based on dynamic 

influence coefficients matrix and FE model, without trial runs. 

However, the method was applied on rigid rotor with single 

balancing plane. Siegl and Markert [15] overcame the 

limitations concerning speed dependency, mainly met in 

balancing methods, as they demonstrate experimentally a 

time-domain algorithm for model-based unbalance 

identification. However, in addition to the requirement of 

single run, their method is applicable on limited types of 

rotors. 

The desired accurate model is not easily created, and 

generally the following issues should be dealt with: 

1. Mutual effects between rotor shaft and its carried disks on 

the one hand, and rotor support (bearings, pedestals … etc.) 

on the other hand. 

2. Exact geometrical and mathematical simulation of the 

(especially industrial) rotor parts. 

3. Obtaining the actual and accurate values of mechanical 

properties (density, Young’s modulus, Poison’s ratio, 

stiffness, damping … etc.) for rotor parts. 

To facilitate this task, it is suggested in this work that the 

required model can be attained by the following briefly 

explained steps: 

1. Perform the Experimental Modal Analysis (EMA) on the 

rotor under balancing test, and extract its fundamental 

natural frequencies and mode shapes. 

2. Within reasonable accuracy limits, build the twin digital 

model. For this purpose, Finite Element Analysis (FEA) is 

the best tool. Again, as in previous step calculate the 

significant natural frequencies and mode shapes. 

3. Compare the experimentally and analytically resulting 

natural frequencies and mode shapes. In this stage 

differences are usual and expected, and can be minimized 

acceptably by changing (tuning) the values of the 

changeable and effective parameters in the mathematical 

model. 

Within the selected frequency range in step 1 above, it is 

expected that resulting digital model behaves dynamically 

similar to its real twin. Hence, trial runs can be done digitally 

to find the required influence coefficients, leading to find the 

unbalance distribution from measured response. 

2. Balancing Test Rig 

Machinery Fault Simulator shown in Figure 1 is used in 

this work to perform flexible rotor balancing and to verify the 

efficiency of the MBB and the proposed procedure. The rotor 

consists of 0.5” diameter solid structural steel shaft of 550 mm 

length, carrying 3 identical structural steel disks, as in 

schematic diagram in Figure 2. The rotor is attached by 

Aluminum flexible coupling to speed-controlled motor, and 

supported by two deep groove ball bearings. 

 
1. Disks, 2. Impact Hammer, 3. Data acquisition system, 4. Accelerometer, 5. Ball bearing. 

Fig. 1 Machinery Fault Simulator used as balancing test rig. 

 

Fig. 2 Schematic diagram of the rotor. 

3. Experimental Modal Analysis (EMA) 

Measuring both the external force applied to the structure 

and resulting response, leads to deduction of frequency 

response functions (FRF) and then modal parameters (natural 

frequencies, mode shapes and modal damping factors). This is 

the principle idea of experimental modal analysis or modal 

testing. EMA consider linear and time invariant systems. In 

this section we will present only the main principles of EMA 

and related excitation techniques. 

The equation of motion of viscously damped forced multi 

degree of freedom system is given by [5]: 

𝑴{�̈�} + 𝑪{�̇�} + 𝑲{𝑥} =  {𝑓(𝑡)}                                                 (1) 

Where x(t) describing the displacement due to the applied 

force 𝑓(𝑡),  M is the mass matrix,  C is the damping matrix, 

and K is the stiffness matrix. The Laplace transform of the 

above equation is: 

[𝑴𝑠2 + 𝑪𝑠 + 𝑲]{𝑿(𝑠)} =  {𝑭(𝑠)}                                            (2) 

The dynamic stiffness matrix is 𝒁(𝑠) = [𝑴𝑠2 + 𝑪𝑠 + 𝑲] 

Receptance matrix is 

𝜶(𝑠) =
{𝑿(𝑠)}

{𝑭(𝑠)}
= 𝒁(𝑠)−1 = [𝑴𝑠2 + 𝑪𝑠 + 𝑲]−1 
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{𝑿(𝑠)} = 𝜶(𝑠) {𝑭(𝑠)} = [
𝛼11(𝑠) 𝛼12(𝑠) ⋯
𝛼21(𝑠) 𝛼22(𝑠) ⋯

⋮ ⋮ ⋱

] {𝑭(𝑠)}     (3) 

Where  𝛼𝑖𝑗(𝑠)  relates the response at node i with the only force 

at node j. 

𝛼(𝑠) = [𝑴𝑠2 + 𝑪𝑠 + 𝑲]−1 =  
𝑎𝑑𝑗(𝑴𝑠2 + 𝑪𝑠 + 𝑲)

𝑑𝑒𝑡(𝑴𝑠2 + 𝑪𝑠 + 𝑲)
          (4) 

When the damping is small, the roots of the characteristic 

polynomial equation in the numerator are complex conjugate 

pole pairs, 𝜆𝑟 and 𝜆𝑟
∗  , r = 1, 2, …, N, with N the number of 

modes of the system. The transfer function can be rewritten in 

a pole-residue form or the so-called “modal” model (assuming 

all poles have multiplicity one): 

𝛼(𝑠) = ∑ (
𝑅𝑟

𝑠 −  𝜆𝑟
+  

𝑅𝑟
∗

𝑠 −  𝜆𝑟
∗

)

𝑁

𝑟 = 1

                                              (5) 

The residue matrices 𝑅𝑟 are given by: 

𝑅𝑟 = lim
𝑠 → 𝜆𝑟 

(𝛼(𝑠)(𝑠 −  𝜆𝑟))                                                         (6) 

With 

𝛼𝑖𝑗(𝑠) = ∑ (
𝑅𝑟 𝑖𝑗

𝑠 −  𝜆𝑟
+  

𝑅𝑟 𝑖𝑗
∗

𝑠 −  𝜆𝑟
∗

)

𝑁

𝑟 = 1

                                           (7) 

The elements of FRF are found by letting s = jω (when 

displacement is the response parameter, FRF is called a 

“Receptance FRF” and is usually written as 𝛼(𝜔)): 

𝛼𝑖𝑗(𝑗𝜔) = ∑ (
𝑅𝑟 𝑖𝑗

𝑗𝜔 −  𝜆𝑟
+  

𝑅𝑟 𝑖𝑗
∗

𝑗𝜔 −  𝜆𝑟
∗

)

𝑁

𝑟 = 1

                                  (8) 

The equivalent non-factorized (polynomial) form is given by: 

𝛼𝑖𝑗(𝑗𝜔) = ∑
𝐴𝑟 𝑖𝑗

𝜔𝑟
2 − 𝜔2 + 2𝑗𝜁𝜔 𝜔𝑟

𝑁

𝑟 = 1

 

               = ∑
𝜙𝑖𝑟  𝜙𝑗𝑟

𝜔𝑟
2 − 𝜔2 + 2𝑗𝜁𝜔 𝜔𝑟

𝑁

𝑟 = 1

                                         (9) 

𝐴𝑟 = {

𝜙1

𝜙2

⋮
𝜙𝑁

}

𝑚

⌊𝜙1 𝜙2 … 𝜙𝑁⌋𝑚                                       (10) 

Where 𝜙1, 𝜙2, ... 𝜙𝑁 are modal constants. These are scaled (or 

mass-normalized) modal constants. In experimental modal 

analysis, modal constants 𝐴𝑟 𝑖𝑗 are estimated from the 

measured FRF data. 

Here  𝜆𝑚 is the complex frequency (Eigen value) of the mth 

mode: 

𝜆𝑟 =  − 𝜁𝑟  𝜔𝑟 + 𝑗√1 −  𝜁𝑟
2  𝜔𝑟 =  𝜎𝑟 + 𝑗𝜔𝑑,𝑟                       (11) 

with 𝑓𝑑 = 𝜔𝑑 2𝜋⁄   the damped natural frequency, 

         𝑓𝑛 = 𝜔𝑛 2𝜋   ⁄ the (undamped) natural frequency 

Where,  𝜔𝑛 = |𝜆|,  and  𝜁 = 𝑐 2𝑚𝜔𝑛 = 𝜎 |𝜆|⁄⁄  the 

damping ratio (𝑓𝑑 = 𝑓𝑛√1 − 𝜁2 ). 

Commonly, there are two ways to apply excitation force on 

tested structure: 

3.1. Impact Hammer 

Used to excite the structure by impulse force. Ideal Impact 

means ideal impulse force, which is in turn motivate largest 

number of vibrational modes with equal energy. 

Force sensor is fixed to the end of the impact hammer to 

measure and record the force. Hard tip is fitted to the hammer 

used in this work to excite wider range of frequencies. Brüel 

and Kjaer type 8200 force transducer is used to collect impact 

force data, while Brüel and Kjaer type 4366 with mass of 26 g 

vibration transducer (piezoelectric accelerometer) is used to 

collect the dynamic response data (hence, it is so called 

“Instrumented Hammer”). The frequency response function 

was generated at a host notebook computer using SigTool 

software. Modal parameters are extracted from generated 

FRFs using MEscope software, utilizing its MDOF curve-

fitting tool. 

3.2. Shaker 

It is electrical device used as source of force to excite the 

structure at single point as impact hammer do. Prepared and 

amplified input signal (sinusoidal, sweep-sine, or random 

signal in a specified frequency band) fed to shaker. 

4. Influence Coefficients Balancing Method 

In this method influence coefficient relates linearly input 

to output. Where input is an unbalance force (U) acting in one 

of the balancing (compensation) planes k, and an output is a 

response at one degree of freedom, for example a relative 

displacement (x). 

     Fig. 3, shows 3D drawing of rotor with three compensation 

planes (disks), selected and fabricated in such a manner that 

compensation weights can be attached, and the unbalance 

response can be measured at any of them (although, vibrations 

are measured at bearing locations in most cases). 

 

Fig. 3 Example of 3-Disk rotor. 

Vibration in rotating structures, is a function of inherent 

parameters of the system (mass, damping, stiffness) and 

excitation parameters (e.g. unbalance), which are together 

influence this vibration [3]. To solve this problem, it is often 

referred to influence coefficients balancing, the well-known 

and recommendable strategy. 
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Influence coefficient (αik) can be determined 

experimentally by applying trial mass Uk in the balancing 

plane k and measuring the response (may be displacement, 

velocity or acceleration) xi at the degree of freedom i: 

𝑥𝑖𝑘 = 𝑋𝑖𝑘 − 𝑋𝑖 
𝑜                                                           (12) 

Where,  𝑋𝑖𝑘 is the response in plane i due to applying trial 

mass in plane k, and  𝑋𝑖 
𝑜

 is the initial (as found) response in 

plane i. Then 

𝛼𝑖𝑘(𝛺) =
𝑥𝑖𝑘(𝛺)

𝑈𝑘
= 𝛼𝑖𝑘 𝑅𝑒 + 𝑗 𝛼𝑖𝑘 𝐼𝑚                   (13) 

Equation (13), shows that the influence coefficient αik 

relates linearly the unbalance Uk (cause) at plane k, with the 

measured response xi (effect) at the plane i. Worth mentioning 

that, if it is allowed practically, the same plane can be used for 

applying balancing weights and response measuring. Influence 

coefficients values are functions of rotor rotational speed and 

dynamic properties of the rotor and its supporting structure as 

well. Since both unbalance and measured responses have 

magnitude and phase angle, they are represented as complex 

numbers, and thus influence coefficients are complex 

numbers. 

The dimensions of the matrix of influence coefficients 

depend on the number of response measurements and the 

number of balancing planes. In the example shown in Fig. 3, 

three balancing planes (L, M and R) and two response 

measurement planes (L and R). Therefore, the influence 

coefficients matrix contains 6 influence coefficients describe 

the relation between three unbalances and two measured 

displacements, as in equation (14) below: 

[
𝑥𝐿

𝑥𝑅
] = [

𝛼𝐿𝐿 𝛼𝐿𝑀 𝛼𝐿𝑅
𝛼𝑅𝐿 𝛼𝑅𝑀 𝛼𝑅𝑅

] [

𝑈𝐿

𝑈𝑀

𝑈𝑅

]                                  (14) 

As mentioned in the introduction, determining the 

influence coefficients experimentally can be very time 

consuming. However, in this work, the reliable Finite Element 

Analysis (FEA) software ANSYS workbench 15, together 

with FEA MATLAB code [6] are utilized to consider all the 

effective parameters to create reliable numerical model of the 

rotor. 

5. Results and Discussion 

Two case studies will be extracted and discussed in this work: 

1. Two measuring planes (L and R disks) and two balancing 

planes (L and R disks). 

2. Two measuring planes (L and R disks) and three balancing 

planes (L, M and R disks). 

Digital model of the rotor is common for both case studies, 

and should be available in advance to calculate influence 

coefficients matrix. The three suggested steps in the 

introduction are carried out as following: 

5.1. Experimental Modal Analysis (Modal Testing) 

Selecting suspending method and proper number and locations 

of impact points is principal step in modal testing [12]. 

Increasing the number of impact points is advantageous [7] 

specially to obtain accurate mode shapes. However, it is 

supposed that nine points are adequate because: 

1. It is aimed in this work to extract two fundamental mode 

shapes. Higher mode shapes require larger number of 

points to be well described. 

2. Against increasing the number of impact points, practical 

limitation arises due to small available length of the shaft. 

Total length of the shaft is 550 mm, but when subtracting 

the length occupied by disks, supports and coupling, 

remaining available length is less than 400 mm. 

These impact points, as shown in Fig. 4, are unevenly 

distributed to avoid impacting on the disks, supports and 

coupling. 

 

Fig. 4 Impact points. 

Overlaid FRFs resulting from impacting and measuring 

response (acceleration) horizontally and vertically are shown 

in Figs. 4(a) and 4(b) respectively. 

 

(a) 

 

(b) 

Fig. 5 FRFs resulting from (a) Horizontal impact and 

response (b) Vertical impact and response. 

Table 1 shows the fundamental natural frequencies and 

mode shapes resulting from modal testing. It is aimed in this 

work to examine MBB in rotational speed range of 1500 rpm 

(25 Hz) to 3000 rpm (50 Hz). Hence, values of natural 

frequencies shown in Table 1 support the decision of 

satisfaction by two fundamental modes. 
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Table 1 Fundamental natural frequencies and mode shapes from modal 

testing. 

 First Mode Second Mode Third Mode 

 Horizontal 

Vibration 

  

ωn3 = 220 Hz 

Vertical 

Vibration 

  

ωn3 = 228 Hz 

5.2. Finite Elements Based Model 

Building this model can be achieved by two ways: ANSYS 

Workbench software or MATLAB code. It is experienced by 

the researchers in this work that modal parameters (natural 

frequencies and mode shapes) when extracted from the two 

ways, differences in results are not significant. Table 2 shows 

ANSYS results of the elementary model of the rotor, in which 

materials properties and solution settings are as in the software 

defaults, and ball bearings stiffness in the two principal 

directions are assumed initially as recommended values in 

literature [8], with no damping. 

Table 2 Fundamental natural frequencies and mode shapes from ANSYS 

FEA software. 

 First Mode Second Mode Third Mode 

Horizontal 

Vibration 

  

ωn3 = 252 Hz 

Vertical 

Vibration 

  

ωn3 = 265 Hz 

5.3. Comparison of the Resulting Modal Parameters 

Although mode shapes identification is not required in the 

influence coefficients calculations, it might be used as an 

important criterion to qualify the suitability of the digital 

model of the rotor. Mode shapes extracted from modal testing 

Table 1 and FEA Table 2 show obvious similarity. 

Significant differences seen in natural frequencies obtained 

experimentally and theoretically, thus minimizing this error is 

needed. In this stage, dynamic properties of the rotor supports 

are the most changeable and effective parameters that affect 

dynamic behavior of the rotor, and expected to adjust natural 

frequencies as wanted. The following remarks should be 

noticed: 

1. Tables 1 and 2 show that theoretical values of natural 

frequencies are larger than analogous experimental. The 

task is to reduce theoretical values until acceptable 

difference is reached. Among many parameters, the most 

effective should be employed. The researcher should be 

able to expect the relation (direct or inverse) of these 

parameters with natural frequencies. 

2. In ANSYS software, stiffness and damping properties of 

the bearing and its support of the real rotor may be merged 

to find equivalent (overall) stiffness and damping and then 

tuned. In spite of isotropic dynamic properties of the deep 

groove ball bearings, the supporting structure has generally 

anisotropic dynamic properties, leading to anisotropic 

equivalent stiffness and damping. The rotor in this this 

work has relatively simple design structure, so it is easy to 

deduce that horizontal stiffness less than vertical. 

3. Changing any one of the effective parameters in the 

mathematical model will certainly change irregularly 

(increase or decrease) natural frequencies of all modes. 

Accordingly, engineering insight is crucial to create the 

digital model of the rotor. 

In Table 3, final results after taking in consideration above 

remarks. Mode shapes are not included in this table, since they 

are not needful in this stage, and the range of carried out tuning 

has no significant effect on them. 

Table 3 Natural frequencies [Hz]: Experimental and final (tuned) theoretical 

results. 

 
First Mode Second Mode Third Mode 

Horizontal Vertical Horizontal Vertical Horizontal Vertical 

Experimental 

(Modal Testing) 
36.5 39 115 132 220 228 

Theoretical 

(FEA) 
36 37 108 120 186 209 

Difference [%] 1 5 6 9 15 8 

As mentioned in the remark (2) above, the fact that 

horizontal stiffness of the two supports is less than vertical, 

leads to conclude that horizontal response (displacement) due 

to unbalance will be greater than vertical for the same point on 

the rotor shaft axis, i.e. forming horizontal elliptical orbit. 

Hence during tuning, priority was given to correct the natural 

frequencies of horizontal modes to be nearer to the 

experimental results. It is deemed that the results listed in 

Table 3 are acceptable to progress in MBB procedure. 

5.4. Case Studies 

Now, the required digital model is in hands, and ready to 

apply on the following two cases. The difference between the 

two cases is the number of balancing disks. Knowing that the 

first critical speed is 36 Hz, it is decided to examine the MBB 

at four rotational speeds: 25 Hz, 30 Hz, 33 Hz and 50 Hz, with 

about 70 %, 83 %, 92 % and 140 % of the first critical speed, 

respectively. 

Case I: Two measuring planes and two balancing planes: 

In this case left and right discs are considered as balancing 

and response measuring planes in the same time, while middle 

disc has no contribution. 

As found (recorded prior to balancing) horizontal 

displacement response measured from the two discs at the 

selected four rotor speeds using non-contact linear 

displacement sensor. 

Assuming the responses at left and right plane are due to 

unbalance masses at left and right disks and only, the following 

equation can be written: 

{
𝑋1𝐿

𝑋1𝑅
} = − [

𝛼𝐿𝐿 𝛼𝐿𝑅
𝛼𝑅𝐿 𝛼𝑅𝑅

] {
𝑊𝐿

𝑊𝑅
}                                                (15) 

Where the coefficients 𝛼𝐿𝐿, 𝛼𝐿𝑅, 𝛼𝑅𝐿 and 𝛼𝑅𝑅 are obtained 

from the receptance matrix of the digital model at the specified 

rotational speed. Numerical values of these coefficients at 25 

Hz are found to be as: 
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[
𝛼𝐿𝐿 𝛼𝐿𝑅

𝛼𝑅𝐿 𝛼𝑅𝑅
] = [

−1.439 − 0.02593𝑖 −2.248 + 0.0003500𝑖
 −2.254 + 0.0008570𝑖 −1.313 − 0.02028𝑖

] × 10−2 

(16) 

Unknowns (WL and WR) in equation (15) can be 

calculated analytically. However, MATLAB code written for 

FEA of rotors [6] is modified here to perform rotor modeling 

and calculating the correction weights. In this code, rotational 

speed and measured response (magnitude and phase) in the 

two planes are the input data, while magnitude and attachment 

angle of correction masses are the output. Table 4 lists the 

vibration amplitudes before balancing and after applying 

described proposed balancing procedure. 

Case II: Two measuring planes and three balancing planes: 

Middle disc (M) in this case will be utilized as balancing 

plane likely to left and right discs, and no longer is idle. 

Receptance coefficients matrix in this case will be (2 × 3): 

Table 4 Vibration amplitudes in case of two balancing planes and two measurement planes. 

Rotational Speed [Hz] 25 30 33 50 

Plane L R L R L R L R 

Initial vibration [mm] 0.1014 0.1109 0.2049 0.2239 0.4132 0.4719 0.2 0.2051 

Vibration after balancing 

[mm] 
0.0348 0.0495 0.0554 0.0784 0.0906 0.1498 0.0644 0.0448 

Correction mass [g] 
2.24 

@152.5° 

2.75 

@95.4° 

1.8 

@143.7° 

2.51 

@92.3° 

1.15 

@189° 

3.35 

@90.9° 

1.61 

@66.1° 

1.74 

@94.2° 

Vibration Reduction [%] 66 55 73 65 78 68 68 78 

Table 5 Vibration amplitudes in case of three balancing planes and two measurement planes. 

Rotational 

Speed [Hz] 
25 30 33 50 

Plane L M R L M R L M R L M R 

Initial 

vibration 

[mm] 

0.1014  0.1109 0.2049  0.2239 0.4132  0.4719 0.2  0.2051 

Vibration 

after 

balancing 

[mm] 

0.0330  0.0505 0.0844  0.0978 0.1745  0.1401 0.0842  0.0780 

Correction 

mass [g] 

1.37 

@179.6° 

1.55 

@121.0° 

1.77 

@78.8° 

1.02 

@175.1° 

1.37 

@113.6° 

1.58 

@78.2° 

1.32 

@232.4° 

1.18 

@110.8° 

2.52 

@83.8° 

0.72 

@46.5° 

1.13 

@80.4° 

0.85 

@109.4° 

Vibration 

Reduction 

[%] 

67  54 59  56 58  70 58  62 

 

{
𝑋1𝐿

𝑋1𝑅
} = − [

𝛼𝐿𝐿 𝛼𝐿𝑀 𝛼𝐿𝑅
𝛼𝑅𝐿 𝛼𝑅𝑀 𝛼𝑅𝑅

] {

𝑊𝐿

𝑊𝑀

𝑊𝑅

}                                (17) 

The six elements of matrix in equation (17) can be obtained 

from the receptance matrix of the model at the specified rotor 

speed considering three balancing planes and two measuring 

planes. Numerical values of these coefficients at 25 Hz are 

found to be as: 

[
𝛼𝐿𝐿 𝛼𝐿𝑀 𝛼𝐿𝑅

𝛼𝑅𝐿 𝛼𝑅𝑀 𝛼𝑅𝑅
] = 

[
−1.439 − 0.02593𝑖 −3.110 − 0.03023𝑖  −2.248 + 0.0003500𝑖

−2.254 + 0.0008570𝑖 −3.023 − 0.02306𝑖 −1.313 − 0.02028𝑖
] ×

10−2 

(18) 

Results of applying correction masses on three planes are 

listed in Table 5. 

 

 

6. Conclusions 

To perform flexible rotor balancing, Model-Based 

Balancing (MBB) method supported by Experimental Modal 

Analysis (EMA) and Finite Element Analysis (FEA) is used in 

this work, and proper correction masses are found. Thus, 

disadvantages of multiple trial runs to calculate the influence 

coefficients are overstepped. Results obtained are promising 

and show very good vibration reduction, making this method 

acceptable for practical applications. 

Effects of increasing the number of balancing planes 

(disks) from two to three are examined. Results show that no 

significant effects of this increase on balancing quality. 

Separation in FRFs peaks has been shown at high 

frequencies (higher modes). The main reason is the presence 

of noise, where results show that lower signal/noise results 

from very low or very high rotational speeds, leading to 

deterioration in vibration measurement and FRFs quality. It is 

remarkable that among balancing speeds (25 Hz, 30 Hz, 33 Hz, 

and 50 Hz), optimum results are found at the 33 Hz, although 
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this speed is the nearest (92 %) to first critical speed, which is 

a result of the higher vibration signal/noise ratio, and precise 

tuned mathematical model of the rotor. 

In rotor balancing, practical limitations may be 

encountered when measuring vibration response on supports 

(bearings planes), and the alternative is utilizing balancing 

planes instead. In the cases studied in this work, unbalance 

vibration responses are acquired from balancing planes. 

Nevertheless, the proposed method showed very good 

balancing quality. 

7. Recommendations 

1. Deep groove ball bearings are used in the rotor under study. 

It is useful to examine the proposed method on other types 

of bearings. 

2. Estimation of accurate influence coefficients depends on 

the modal parameters resulting from EMA, which is 

applied in this work on stationary rotor. However, when 

EMA is applied on the rotor when it is under rotation 

[10,11], best results may be obtained. 
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