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Abstract

Some results on the analytical integration of kernels in hyperbolic problems [1] (acoustics,
elastodynamics) for 3D Boundary Element Methods are presented. Adopting polynomial shape
functions of arbitrary degree (in space and time) on flat discretizations, integrations are performed
both in space and time for Lebesgue integrals working in a local coordinate system. For singular
integrals, both a limit to the boundary as well as the finite part of Hadamard [2, 3] approach have
been pursued.
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1 Introduction

Modeling hyperbolic problems by means of boundary integral equations (BIEs) and approximating
their solution through boundary element methods (BEM) is firmly established in the academic com-
munity as well as in industry. Several well known yet stimulating as well as modern applications
and on going research topics can be effectively described via BIEs: to cite but a few, the analysis of
ground motion due to moving surface loads induced by high-speed trains [4], the dynamic analysis
of the interaction between structures and their surrounding soils, modeled as visco-elastic or porous
media [5], the simulation of ultrasonic nondestructive evaluation [6] and of dynamic fracture mechanics
in anisotropic media [7].

The present note aims at providing a closed form for analytical integrations involved in 3D BIEs,
what seems to be of interest for computational and theoretical purposes. Educational advantages
of analytical integrations can also be envisaged, as in [8]. In this note, reference will be made to
linear elastodynamics as a prototype of a hyperbolic problem; the boundary integral formulation
[9] of Navier’s equations of motion stems from Graffi’s [10] (see also Wheeler and Sternberg’s proof
[11]) generalization of Betti’s theorem to elastodynamics. Under the hypothesis of vanishing initial
conditions and no body forces, the boundary integral representation (BIR) of displacements in the
interior of an open domain Q at time ¢ reads:

t t
u(x,t) = o Gyu(r,t —7)p(y, 7)drdl’y — o Gyp(r. l(y),t — T)u(y,7)drdly , xe (1)
Here, r = x—y stands for the vector that joins point y to x. Identity (1) is based on Green’s functions
(also called kernels) which represent components u; of the displacement vector u in a point x due to: i)
a unit force concentrated in space (point y) and time (instant 7) and acting on the unbounded elastic
space (s in direction j (such functions are gathered in matrix Gy, ); ii) a unit relative displacement
concentrated in time (instant 7) and space (at a point y), crossing a surface with normal 1(y), and

acting on the unbounded elastic space Qu (in direction j) (gathered in matrix Gp)).
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To obtain an additional integral equation, required for the variational formulation of elastodynam-
ics BIEs [12] as well as by nowadays standard numerical techniques [13], the traction operator can be
applied to identity® (1), thus obtaining the BIR of tractions on a surface of normal n(x) in the interior
of the domain, i.e. x € Q:

t t

p(x,t) = o Gpu(r,n(x),t —7)p(y, 7)drdly — o Gyp(r,n(x),1(y),t — 7)u(y,7)drdl, (2)
Such a BIR involves Green’s functions (collected in matrices G, and G,,) which describe components
(pi) of the traction vector p on a surface of normal n(x) due to: i) a unit force concentrated in space
(point y) and time (instant 7) and acting on the unbounded elastic space {2 in direction j; ii) a unit
relative displacement concentrated in space (at a point y), crossing a surface with normal 1(y) and
acting at instant 7 on the unbounded elastic space Qs (in direction j).

BIEs for the linear elastic problem can be derived from BIRs (1) (thus obtaining the so-called
“displacement equation”) and (2) (so that the “traction equation” comes out) by performing the
space boundary limit? Q 3 x — x € I'. In the limit process, after integration in time, singularities of
Green’s functions are triggered off: their singularity-orders show to be equivalent to the elastostatic
case®. Assuming smooth boundaries, after imposing the fulfillment of the displacement equation on
Dirichlet boundary I';, and of the traction equation on Neumann boundary I',, the following linear
boundary integral problem (omitting the arguments of Green’s functions for paucity of space) comes
out:

t t
Gy p(y,7)drdlly, — — Gyu(y,7)drdly =f"(x,t) , xeTly (3)
Ty 0 r, 0
t t
- — Gy p(y, 7)drdly+ = Gypu(y,7)drdl'y =7 (x,t) , xeT) (4)
Ty 0 r, 0

Vectors f? | i = u, p, that gather all data are the following:

1 t ¢
f“(x,t) = iﬁ(x,t) - Guup(y,7)drdly + — Gyu(y,r)drdl'y, xeT,
r, 0 Ty 0
1 ! t t
7 (x,t) = —§f)(x7t) + — G,up(y,7)drdl’y — Gpu(y,7)drdl'y, xeT)
Iy 0 Ty 0

Integral problem (3-4) can be written in the compact form:

Llyl=f (5)

with all terms defined by comparison. Unknown vector y is made of tractions (Neumann data) p on
the Dirichlet boundary T', and displacements (Dirichlet data) u on the Neumann boundary T'),. Let
h > 0 be a parameter and let [py,(y, 7), up(y, 7)]7 =4 yn € Yrp, be an approximation of the unknown
vector field y, denoting with Y., a family of finite dimensional subspaces of Y, such that

wyeve, inf lly—mll—0 as h—0 (6)
YhE€YrLp

Discretization (6) allows to transform integral problem (5) into a set of algebraic equations. Several
techniques have been developed to this aim: the collocation boundary element method (CBEM) [15],

1The above introduced kernels are infinitely smooth in their domain, which is the whole space R® with exception of
the origin (that is x #y)

2In the traction equation (4) the boundary limit must be taken at a smooth point x with a well defined normal vector
n(x). Strong and hypersingular kernels generate free terms in the limit process such that xj(x) = x(x) = 31 for
smooth boundaries, whereas special cares are required for the discrete problem [14].

3Kernel G, shows an integrable singularity (named “weak”); kernels G, and Gy, present a strong singularity
O(772); kernel G, is usually named hypersingular, because it shows a singularity (of O(r~*)) greater than the dimension
of the integral.
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the hypersingular collocation approach (HBEM) [16], the Galerkin [17] method (GBEM), the dual
BEM [13], the convolutive variational method [12], the variational formulation in extended sense [18].
All aforementioned method require the evaluation of “integrals” of the form:
t
Grs(x,y,t =7)xa(y,7) dlydr  r=u, s=up (7)
Is 0

denoting with xp,(y, ) scalar shape functions for modeling the components of approximation yp, of the
unknown vector fields along 92 x [0, T]. For CBEM and HBEM, point {x,¢} in integral (7) belongs
to a selected set of collocation points xj € 99, t] € [0,T7; for other techniques, point {x,¢} takes
different meanings.

2 Shape functions

The assumption of time-space variable separation is taken, namely:

Xn(Y,7) = On(y)wr(T) (®)

where wg(7) is assumed to be a polynomial in 7.

Figure 1: a) Local ¢(x) and global ¢,(x) shape functions. b) Local coordinate system L. The
extension to quadrilateral or mixed triangular-quadrilateral tassellation is straightforward.

Let I', be a triangulation of boundary I', T; C Iy, its generic triangle and a,, a generic node of

T'. Collect in set 7, := {Tj s.t. a,, € T;} all triangles of I';, sharing node a,, (see figure 1-a). Choose
over Tj a local (lagrangian) basis ¢ = {0}, 3, ...,gp?m >} and denote with ga?(] ) the unique element
of ¢ such that wy(‘i)(an) = 1. Define shape function ¢, (x) (see figure 1-a) as a piecewise continuous

function over I'j, whose value is zero outside 7,,, as follows:

On € CO(Fh) supp(¢,,b) =T, ¢n|Tj = @7(” (9)

A suitable choice of an orthogonal cartesian coordinate system allows an effective representation
for gp;(])(y). Let LA = {y1,92,y3} define a local coordinate system such that: i) a vertex of T} is the
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origin; ii) the plane y; = 0 contains Tj; iii) the plane y3 = 0 is orthogonal to the side of T} opposite
to the origin. In Lx, T} is defined by:

Tji={ycR¥st.y1=0;0<yo < fo; ays —y3 < 0; bya — y3 > 0}

where a and b denote the slopes of the two sides of T} that cross the origin (see figure 1-b). Selecting
arbitrarily one of these two sides, say y3 — ay2 = 0, denote with H; the height of T}, namely the
segment orthogonal to a side emanating from the vertex opposite to it - see figure 1-b. Denoting with
d =y —x, r =||d||, shape functions can be readily expressed in terms of H; in the form:

¢}(y) =dj T3 A} Tady (10)

— i =
wheredy = dy ;o .dz= dy )

i—1 i—j .
{Tk}z‘,j = -1 JJ;: ) k=23 4,j=1,2, ...
and matrix of constants A? depends on node a,,. For linear shape functions and with reference to the

node at the origin,

1 =z 1
Gw=1 % o7 o (1)

Description (9) of shape functions extends straightforwardly to quadrilateral panels Q;, and represen-
tation can be made effectively in a local coordinate system Lo = {y1,y2,y3} such that: i) barycenter

of Q; is the origin; ii) the plane y; = 0 contains Qj; iii) planes yo = 0 and y3 = 0 are orthogonal to
the sides of Q;. In L, Q; is defined by:

Qj = yERzgt.c.ylz(];ﬂzgyzga;fbgy;ggb

where a and b denote half the length of the two sides of Q;. By the binomial expansion rule, it is
straightforward to get:
¢ (y) = aj QJda d Qsay, (12)

where ay, aj are vector of constants and

{Qx}i, = Jifl " k=23 i,j=1,2,..

3 Main result

3.1 Analytical integration in time

Focusing on discretization (12) and exploiting a well known convolution property, integral (7) can be
recast in the form:
Wa a-}IL—Q;— K,.S(X, t) Qsay, r=1u,s=up

where:

t T ds=b—x3 do=a—xs
K,s(x,t) = dy Grs(x,y,7) (t = 7)" dr d3 dI'y = K™ (x,dp, d3;1) B (13)
Qj 0 d3=—b—x3 do=—a—x2

Integration in time, because of the nature of Green’s functions, is given in terms of the following
outcome of distributions theory:

t k sup=

(=) sl —fdr= (a0 (= f) R (- ) (1)
0

j=inf=
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where: i) H() is the Heaviside distribution, §() = H() is the Dirac distribution; i) 8 > 0 holds

2 or -, with ¢y (cr) the dilatational (shear) wave speed; iii) k € Z can be negative, in this case

indicating a primitive of order |k| of H(); iv) 2 C Z is the set of numbers between 0 and k — 1
including both of them: for instance, k =2 = == {0,1}, k=1=E2= {0}, k =0= E = {-1,0},
k=-1=Z2={-2,-1,0}; v) function sgn : Z — —1,0,1 is defined as:

-1 ifj <0
sgn(j)= 0 if;=0
1 ifj>0

3.2 Analytical integration in space

In view of Green’s functions contributions, terms of the following kind must be dealt with in order to
evaluate K,s(x, t):

r2m73+1dd3 k,m € Ng
—a—z92 —b—x3
The identity:
2k 2k k
x _ E_ & k k=i 2 | o 2\j—1( 2\k—]
a? + 22 =(-D a + 22 + j (=D)" (e +27) 7 (a”)" (15)

j=1
which comes out from the binomial expansion rule, permits to obtain the following recursive relation-
ship, that seems to be useful for analytical integrations:
3 -1 2h+kpy)

kiq
dj % d3” k

_ 2 Tj J=1  a@-in) ds
p2mil (=a%) TamTl T j (=¥ n ( r2m—1 k;meNo  (16)

j=1
where a? = d% + d% is the squared projection of the distance on the plane ds = 0. Here and in the rest
of the paper k =k + 2 stands for the integer division, whereas kjg = k — 2k is its remainder. Making
use of formula (16) and reference to [19] for details, K"*(x, da, d3; t) can be reduced to the sum of a
set of basic integrals and its final expression, reads:

d- . 1 1
K™ = L5 log(da+7) +L5° log(ds+7r)+ A" arctanh R 5 3() +R™r+ P48 —+H™ - (17)
T T T

where: 1) Igs(x, dy, d3) is the Lebesgue integral of function T% over @Q;, discussed in details in [20]; ii)
Ly, Ly* A 1™ R™ P | S" ,H"® are polynomial matrices of the same order of K"* whose expression
can be found in [19] for constant and linear shape functions in time and space.

4 Concluding Remarks

Analytical integrations have been performed for both the singular and the regular part of K™ (x, da, ds; t):
for paucity of space, discussion on singularity issues has been here omitted and the reader is referred to
[19] for details. The proposed outcomes are exhaustive for the collocation approach as well as for the
post-process reconstruction of primal and dual fields (temperature and flux, displacement and stress).
It seems to be of interest for the dual, the Galerkin, and the variational technique as well, because
it firmly distinguishes the weakly singular terms relevant to the outer integral and the singular terms
in the outer integration process. Besides accuracy and computational efficiency, the availability of
closed form (17) entails the possibility of analytical manipulations - see e.g. [21] - which are hardly
possible with alternative approaches. Obtained results may have influence on extremely modern and
stimulating applications, e.g. [22] but need to be extended in order to comply with very promising
techniques for time marching schemes [23] to which hypothesis (8) does not apply.
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