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The world witnessed big changes in 2019 when a new virus called coronavirus affected the lives of hundreds
of millions of individuals and led to huge disruptions in healthcare systems. Early prediction of this virus
was a top priority to limit its damage and save countless lives. Many advanced artificial intelligence
technologies like deep learning have used chest X-ray images for this task. In this paper, a new CNN
architecture is introduced to classify chest X-ray images. The new model is applied on a 256 x 256 x 3
input image and consists of six convolutional blocks. In addition, we improve the performance of our model
by adding regularization techniques, including batch normalization and dropout. We tested our model using
an imbalanced COVID-19 dataset of 5000 COVID and Non-COVID images. Four metrics were used to test
the new model: sensitivity, specificity, precision, and F1 score. In experiments, we achieved a sensitivity
rate of 97%, a specificity rate of 99.32%, a precision rate of 99.90%, and F1 score of 97.73% despite being
provided with fewer training images. In conclusion, we proposed a light deep learning model capable of
achieving high prediction accuracy that outperformed the best deep learning methods in terms of specificity
and achieved high sensitivity result.

Povzetek: Uporabljena je nova metoda z arhitekturo CNN za zaznavanje koronavirusa iz rentgentskih slik

pljuc.

1 Introduction

In late 2019, a deadly variant of coronavirus (CoV) fam-
ily was discovered in Wuhan, China named SARS-CoV-
2. This new coronavirus member (COVID-19) caused a
global pandemic and was responsible for millions of infec-
tions and deaths among people [2]. World Health Organi-
zation (WHO) announced this virus as a global pandemic
in March, 2020 [3]. As of March 16, 2023, there were
760,360,956 confirmed COVID-19 cases and 6,873,477
deaths around the world ! and numbers keep rising ev-
ery day. As a result, new measures for people interaction
have been imposed globally and lockdown has also been
enforced to limit the effect of this virus [4]. It is also wor-
thy to mention that the new COVID-19 vaccines rolled out
in 2021 helped significantly to curb the numbers of the new
infections and deaths.

The reason for the widespread of the virus among peo-
ple is because it is highly transmissible respiratory infection
that causes breathing difficulty which could lead to lung
failure and causes death. Due to this, people are forced to
keep a distance between each other as well as avoid direct
contact [5]. So, a good solution to prevent the spread of the

Thttps://covid19.who.int/

virus is to isolate people. The main symptoms of COVID-
19 include fever, headache, and cough. In addition, other
symptoms could also arise to some individuals. Early de-
tection of this virus can help separate patients from normal
individuals and prevent the spread of this contagious dis-
ease [6].

A successful technique to diagnose COVID-19 is by em-
ploying medical image processing methods on chest X-ray
images. The advantage of using chest X-ray images include
the availability of these images in many diagnostic centers,
portability, and they are easily accessible [7]. So, methods
that rely on chest X-ray images are feasible to detect abnor-
malities in lung and diagnose COVID-19. Deep learning
techniques for image classification and detection showed
huge potential in biomedical imaging analysis [8]. In ad-
dition, the use of deep learning methods made it possible
to analyze large COVID-19 datasets with thousands of im-
ages without relying heavily on radiologists to achieve this
tedious task and without consuming much time [9].

Researchers have thoroughly studied and analyzed
COVID-19 infection from chest X-ray images using differ-
ent CNN techniques. Many approaches have been proposed
to tackle this problem. A new CNN introduced by Abbast
et al. [10] named DeTraC to predict COVID-19 cases. A
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Table 1: Summary of related work.

Z.A. Oraibi et al.

Technique Year Dataset Performance
Pre-trained CNN models [1] 2020 COVID-Xray-5k Specificity = 97.0% , Sensitivity = 96.7%
DeTraC [10] 2021 Collection of images | Accuracy = 93.1% , Sensitivity = 100%
PDCOVIDNet [11] 2020 2905 chest X-ray im- | Accuracy = 96.58%

ages
38-layers CNN [12] 2021 Independent dataset | Accuracy = 99.5%
Optimized CNN [13] 2021 6432 chest X-ray im- | Accuracy = 96.0%

ages
Pre-trained CNN models [14] 2021 Collection of CT | Accuracy =99.4%

scan imagges
Transfer learning framework | 2020 622 image samples Accuracy = 97.95% , Specificity = 98.85%
[14]
Transfer learning with Xception | 2020 1102 chest X-ray im- | Sensitivity = 99.27% , Specificity =
[16] ages 99.34%
Ensemble of pre-trained models | 2021 2326 X-ray images Sensitivity = 90.5% , Specificity = 90.0%
[18]

high accuracy of 93.1% was achieved using their approach.
However, this method requires two training stages. In [11],
Chowdhury et al. employed chest X-ray images and pro-
posed a PDCOVIDNet architecture which relies on parallel
dilated CNN. Authors were able to capture the important
features to produce an accuracy 0f 96.58%. Reshi etal. [12]
proposed a CNN model with 38 layers which include 6
convolutional layers to classify COVID-19 images. Their
model is applied to an input image size of 150 x 150x 3. The
drawback is this model works on a relatively small batch
size. They achieved a high accuracy of 99.5%. In [13],
Pathan et al. proposed an optimized CNN framework to
classify COVID-19 images by employing Grey Wolf Opti-
mizer (GWO) to optimize the parameters of the model. A
classification accuracy of 98.8% was obtained.

Deep transfer learning models have also been proposed
to classify COVID-19 images. Ahuja et al. [14] used four
pre-trained models, ResNet18, ResNet50, ResNet101, and
SqueezeNet, and achieved 99.4% testing accuracy. El-
Rashidy et al. [15] introduced an end-to-end CNN frame-
work that includes monitoring the patient in real time us-
ing cloud and transfer learning. Their model achieved a
sensitivity rate of 98.85%. A transfer learning model pro-
posed by Wang et al. [16] has shown 96.75% classifica-
tion accuracy using Xception model. Furthermore, authors
improved their accuracy by fusing deep feature with SVM
classifier. However, this method requires a two stage train-
ing which consumes much more time. In [17], Khan et al.
proposed to use multiple CNN architectures: ResNetl121,
ResNet50, VGG16, and VGG19, with transfer learning
for the prediction of COVID images. The overall accu-
racy generated by their work was 99.3%. A deep learn-
ing classifier that uses an ensemble of pre-trained CNNs
was used by Keidar et al. [18]. These models include
ReNet34, ReNet50, ReNet152, and Vggl6. This ensemble
approach was applied on a dataset of 2326 COVID images

and achieved a high accuracy of 90.3%. Table 1 summa-
rizes the aforementioned techniques.

From the literature, many of the methods used to predict
COVID-19 cases used chest X-ray images. This shows the
importance of employing chest X-ray images as an analysis
tool for radiologists. There is still a problem to overcome
which is the imbalanced number of images provided for
COVID and Non-COVID cases. In our work, we overcome
this issue by using data augmentation and a new proposed
efficient deep learning architecture to enhance the classifi-
cation accuracy of COVID-19 images.

In this paper, a new CNN architecture trained from
scratch is proposed to classify COVID-19 images. This
new architecture employs six convolutional blocks with
each block includes one convolutional layer, one ReLU
layer, and one max-pooling layer. To further improve the
performance of our architecture and reduce overfitting, we
also added dropout and batch normalization. All input im-
ages must be resized to 256 x 256 x 3. The proposed
model was evaluated on a challenging COVID-19 dataset
with imbalanced number of samples for both COVID and
Non-COVID classes. It is good to mention that in early
2020 there were few datasets available for COVID-19 clas-
sification from chest X-ray images. Since then, many
datasets were introduced but most of them are still a collec-
tion of other datasets. One dataset which was ensembled
by [19] and made available for COVID-19 prediction pur-
poses is considered a challenging one due to having imbal-
anced number of images for both COVID and Non-COVID
classes. The total number of images available in this dataset
is small in relative to other datasets. Authors in [1] who
collected the dataset used it to relabel all images and com-
bine the newly labeled images with another dataset to cre-
ate a novel set of images with around 5000 images called
COVID-Xray-5k which we are using in the current work.

The remainder sections of this paper are as follows: Sec-
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Figure 1: Pipeline of COVID-19 classification. The proposed architecture is fed with the training images to generate the
weights. then, weights are employed to predict the testing images.
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Figure 2: Blocks of the proposed deep learning architecture.
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tion 2 describes the new architecture. Section 3 describes in
details the dataset used in our work. Section 4 introduces
the results of the new approach. Section 5 discusses the
results and finally, we present conclusions and future chal-
lenges in section 6.

2 Methodology

Our deep learning architecture that will be used to analyze
COVID-19 images is presented in this section. Figure 1
illustrates the steps of the classification task. First, the
dataset of COVID-19 images is divided into two subsets,
training and testing. In the training stage, COVID images
are further divided into training and validation subsets in
order to evaluate the training stage. Data augmentation is
also applied on the original dataset images to balance the
samples of both COVID and Non-COVID classes. After
the proposed model is trained, the weights are used in the
testing stage where each image from the testing subset is
classified to either COVID or Non-COVID. The layers and
specifications of the proposed architecture are described in
detail in the following subsections.

2.1 The proposed architecture

The pattern recognition technique used in our paper to ex-
ploit the patterns of the COVID-19 images is based on deep
convolutional neural network. The reason to choose deep
learning method for this image analysis task is because it
proved to be so powerful in classifying images and learning
features [20, 21, 22]. As a result, we built a deep learning
network and trained it to predict COVID-19 patients from
chest X-ray images. The proposed CNN architecture is pre-
sented in Figure 2.

Our end-to-end CNN model is based on creating convo-
lutional blocks to exploit the detailed COVID-19 image pat-
terns. Architectures proposed before including the work of
Khan et al. [23] employed four convolutional blocks with
ten convolutional layers. Authors claim that their model
improves accuracy by exploiting edge-based operations to
better examine the textural and structural variations of an
image along with the boundary-related information. In ad-
dition, authors also used varying number of convolutioanl
layers in each block.

The new CNN architecture employs six convolutional
blocks as shown in Figure 2. Each block comprises of
one convolutional layer followed by a ReLU as an acti-
vation function and max-pooling. By using six convolu-
tional blocks, COVID image features are extracted effi-
ciently. Fully connected layer is added at the end to per-
form the classification task. In addition, our model prevents
overfitting while training because batch normalization and
dropout layers are added to it. The design of our architec-
ture is more powerful in terms of using six convolutional
blocks instead of four as in [23]. The benefit of designing a
deep CNN is to allow the model to efficiently learn com-
plex features from the input COVID image. Hence, the
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model generates more convolutioanl maps. On the other
hand, Reshi et al. [12] proposed a deep learning model with
six convolutional layers, however, their CNN works on a
small input image size of 150 x 150 x 3 compared to our
model that works on an input image size of 256 x 256 x 3.

D
fm,n = Z Z fera,nerKa,b (1)
b=1

a=1

Equation 1 computes the convolutional operation with M
and N are the dimensions of the input feature map f. K is
a kernel of size (L x D).

mazx
m,n

= maxa:l,..,wz7b:1,..,wzfm+a,n+b (2)

Equation 2 computes the max-pooling operations with a
window size of wz.

2.2 Details of the proposed model

The first convolutional block consists of a single convolu-
tional layer that takes the image that has 32 kernels of size
3 x 3 with padding one and stride one. After the convolu-
tion operation is done on the resized image of 256 x 256 x 3
dimension, a ReLU activation function is applied. Then, a
max-pooling is applied with a stride of 2 and a 2 x 2 filter is
also used. After that, the second convolutional block also
consists of a single convolutional layer that takes the input
image shape from the previous layer with 128 x 128 x 32
dimensions and apply the convolution process with 64 fil-
ters this time. ReLU and max-pooling with a stride of 2
and a filter size of 2 x 2 is also utilized bringing the output
shape of the image after the second convolutional layer to
be 64 x 64 x 64. The process continues for blocks 3, 4,
5, and 6 with each one consists of one convolutional layer,
one ReLU, and one max-pooling as previously discussed.
The sixth block has a max-pooling with a filter of 4 x 4 and
final image size is 8 x 8 x 1024 as shown in Figure 2. Fi-
nally, a flatten layer and a linear layer was used to perform
the classification task.

3 Materials

3.1 Dataset

The new CNN model described in the previous section was
evaluated on a challenging dataset called COVID-Xray-
5k [1]. This dataset as mentioned earlier was collected by
Minaee et al. for COVID-19 researches. Images of the
dataset are a collection of Computed Tomography (CT) and
X-ray images. In order to get the full dataset, authors de-
rived COVID-19 samples from another set of images called
Covid-Chest-Dataset [19]. Covid-Chest-Dataset is updated
frequently and consists of additional information including
patients’ age and sex. Hense, radiology specialists in [1]
preserved anterior-posterior samples for the detection of
COVID-19 infections. Finally, Radiologists have approved
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Figure 3: Sample images from COVID-Xray-5k dataset. The four samples in row 1 are COVID-19 class images. The
other four samples in row 2 are Non-COVID class images. Images from both classes have been collected and validated

by radiologists from two datasets.

only 184 images of COVID-19 after being thoroughly ex-
amined.

In regard to Non-COVID image samples, Minaee et al.
used a set of images form another dataset called Chex-Pert
dataset [24]. This dataset has huge number of X-ray sam-
ples collected from tens of thousands of patients. Only
2,000 Non-COVID images were chosen for the training
purpose of machine learning algorithms and another 3,000
images for the purpose of testing as shown in Table 2.
Finally, 5000 images are provided in total for the Non-
COVID class. Sample images of both classes are shown
in Figure 3.

Table 2: Training and testing samples of COVID-Xray-5k
dataset. Fewer number of training images are provided.

Image Subsets | COVID | Non-COVID
Training Subset &4 2000
Testing Subset 100 3000

Images of this dataset vary in resolution. Some of them
have low resolution of 400 x 400 pixels. While others have
high resolution of 1900 x 1400 pixels.

3.2 Data augmentation

Due to the insufficient data available in training for the
COVID class, deep learning models can easily overfit caus-
ing an increase in the loss function during the training
stage. To prevent overfitting while training the deep learn-
ing model and to provide better prediction accuracy during
testing, data augmentation is used by increasing the num-
ber of original data [25]. In general, we are trying to prevent

our model from biasing towards Non-COVID class during
training due to the huge gap between the number of images
of the two classes. Augmentation has become an important
tool in deep learning techniques to solve the issues related
with insufficient amount of data and to provide different
views of the same image to enhance model training.

In our work, both classes of the dataset were augmented
by performing random rotation (0 - 45 degrees), shifting
image width and height by 20% each, shearing the image
by 20%, and zooming by 20%. In addition, image flipping
horizontally was also applied. In total, we increased the im-
ages in the COVID and Non-COVID classes to be 2134 and
3480, respectively as shown in Table 3 In the implementa-
tion, black boundaries resulted from applying these oper-
ations were filled with a reflection of the original image
pixels. The strategies used for image augmentation were
helpful to add hundreds of samples to the original training
set, making our model effective to be applied on the dataset.

Table 3: Total number of COVID and Non-COVID training
images after augmentation.

Class Original | Augmented
COVID-19 84 2134
Non-COVID 2000 3480
4 Results

This section demonstrates the results of applying our pro-
posed deep learning architecture to classify COVID-19 im-
ages. In addition, a comparison with the state-of-the-art
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Figure 4: Training results after applying the proposed model without using regularization techniques. The graph on the
left represents the training accuracy after 15 epochs. Training loss curve vs validation loss curve are represented by the

graph on the right.

approaches on the same dataset is also provided. Perfor-
mance evaluation was done using four metrics: sensitivity,
specificity, precision, and F1 score. Each of these metrics
is calculated using the corresponding equation below:

o STN
Sensitivity = —=——=—"———— 3)
Y FP+ > TN
e TP
Speci ficity = E:TEFE:FN 4
25°TP
FL Seore = o~ p T FP+ FN ®)
. STP
P ="
recision STP+S FP (6)

The newly introduced CNN model is implemented us-
ing PyTorch software. In order to train our model, we used
Adam optimizer and SGD optimizer to determine the best
one among them. A batch size of 128 was also employed
to properly train our model and to speedup the training
process. The number of epochs used during training was
15. Furthermore, two learning rates were used: 0.001 and
0.0001. Cross-entropy loss function was used in the imple-
mentation as in Equation. 7 to evaluate the performance of
the classification task. The implementation of the proposed
CNN model and the experiments are all done on the Google
Colaboratory platform with NVIDIA T4 Tensor Core GPU.

n
Losscg = — Z t; log(p;) (7
i=1

where t; is the truth label and p; is the softmax probability
for the 74y, class.

In order to check the robustness of our new model, ex-
periments were divided into two sets. The first set of ex-
periments deal with evaluating our model without any reg-
ularization techniques. Regularization techniques involve

using batch normalization in each convolutioanl block and
dropout. The second set of experiments deal with evaluat-
ing the model after adding regularization techniques.

4.1 Performance evaluation without
regularization

We begin evaluating our model by using the pure proposed
architecture blocks without any regularization techniques
(image normalization and dropout) to check the behaviour
of convolutioanl layers and feature maps to see if the perfor-
mance is superior or if overfit prevails. In the experiments,
weused 15 epochs to train the network since the model may
overfit if the number of epochs used while training is in-
creased. The graph on left in Figure 4 demonstrates the
training accuracy during the training stage after 15 epochs.
The accuracy as we can see keeps going up and down be-
cause the validation loss is greater than training loss. Since
training and validation losses diverge hugely as in the graph
on right in Figure 4, overfit is happening and regularization
techniques are needed to fix this issue.

Table 4 shows the sensitivity, specificity, F1 score, and
precision rates on the test data. As we can see, the proposed
model without regularization is performing good in terms
of sensitivity scoring 95% when Adam optimizer is used
and the learning rate is 0.001. However, the model per-
forms poorly in terms of specificity achieving 88.16% when
SGD optimizer is used with a learning rate of 0.001. Hence,
regularization is needed to reduce the overfit and to further
improve the classification accuracy. F1 score and precision
rates are very high scoring 93.62% and 99.81% respectively
using SGD optimizer with learning rate of 0.001.

Figure 5 presents the confusion matrix using SGD opti-
mizer with 0.001 learning rate. As we can see, only five
samples are mis-classified as Non-COVID while 355 sam-
ples are mis-classified as COVID. There is a potential for
improvement especially with Non-COVID class since hun-
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Table 4: Model performance with Adam and SGD optimizers. Results are reported without using regularization techniques.

Optimizer | Learning Rate | Sensitivity | Specificity | F1 score | Precision
Adam 0.001 95.0% 86.31% 93.42% 99.71%
Adam 0.0001 96.0% 84.1% 94.13% 98.95%

SGD 0.001 95.0% 88.16% 93.62% 99.81%
SGD 0.0001 96.0% 84.53% 94.21% 98.88%

dreds of samples are mistakenly classified.

coviID-19

Non-COVYID

Figure 5: Confusion matrix for results without regulariza-
tion. The optimizer used is SGD with learning rate of 0.001.

COYID-19

Mon-COVID

Figure 6: Confusion matrix for results with regularization.
The optimizer applied during training is SGD with learning
rate of 0.001.

4.2 Performance evaluation with
regularization

Regularization techniques, including batch normalization
and dropout, are very important to prevent model fluctua-
tion and overfitting. The experiments conducted previously
showed the potential of our six blocks architecture in pro-
ducing good prediction results. However, since the model

was not trained effectively due to the lack of batch normal-
ization and dropout, it is possible to enhance model training
and improve classification results. In the implementation,
we added batch normalization in each convolutional block.
In addition, dropout was used to the fully connected layer
with a rate of 0.1 which means 10% of the inputs will be
excluded during each update cycle.

In order to reduce overfitting and allow the training accu-
racy to converge faster with no fluctuation, we used batch
normalization and dropout to the new architecture. The
graph on left of Figure 7 shows the training accuracy vs
validation accuracy while the graph on right shows that the
training and validation losses converge close to 0 after ap-
plying the regularization techniques. Table 5 demonstrates
the results of the experiments using different optimizers and
different learning rates. The number of epochs used in these
experiments has also been set to 15. We can observe that
results have improved for both classes especially for the
Non-COVID class. Adam optimizer with 0.001 learning
rate achieved a 95.0% sensitivity and 99.32% specificity
outperforming all results set previously without using reg-
ularization techniques. However, SGD optimizer set the
best result for sensitivity, 97.0% and the specificity rate of
95.67% is slightly less than ADAM optimizer with a learn-
ing rate of 0.001. In addition, F1 score and precision were
very high achieving 97.73% and 99.90% respectively. Fig-
ure 6 demonstrates the confusion matrix resulted from ap-
plying our model using SGD optimizer with 0.001 learn-
ing rate. Only three COVID samples were mis-classified
as COVID and only 130 Non-COVID samples were mis-
classified as COVID.

It is worthy to mention that SGD can be locally unsta-
ble in some cases but, it can outperform Adam optimizer in
terms of generalization performance. Adam optimizer pro-
duced superior specificity results compared to SGD which
produced the best sensitivity result. In general, we can ob-
serve that adding regularization techniques to our proposed
deep learning model helped in reducing overfitting and im-
proving the classification performance. Both sensitivity
and specificity metrics improved while using the same hy-
per parameters in training.
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Figure 7: The graph on the left is the training accuracy vs validation accuracy after applying the regularization technique
to our model, while the graph on the the right is the training loss vs the validation loss.

Table 5: Model performance after applying our proposed deep learning architecture with batch normalization and dropout.

Optimizer | Learning Rate | Sensitivity | Specificity | F1 score | Precision
Adam 0.001 95.0% 99.32% 98.05% 99.29%
Adam 0.0001 95.0% 99.13% 98.35% 99.31%
SGD 0.001 97.0% 95.67% 97.73% 99.90%
SGD 0.0001 97.0% 87.34% 95.41% 97.27%

4.3 Comparison with state-of-the-art CNN
approaches

In the experiments, we applied our proposed model on a
standard dataset which was published by Minaee et al. [1].
In their work, authors applied several pre-trained deep
learning models with fine tuning and different threshold-
ing values for each model. Results of four standard deep
learning models with our proposed model are reported in
Table 6.We can observe that ResNet18 and ResNet50 pro-
duced good sensitivity and specificity rates. On the other
hand, SqueezNet produced the best sensitivity rate of 98.0%
with a specificity rate of only 92.9%. DenseNet-121 pro-
duced similar sensitivity rate to SqueezeNet (98.0%) but,
the specificity rate was only 75.1% which is the lowest rate
among the four pre-trained models.

Results of our proposed model using Adam optimizer
and learning rate of 0.001 are the best in terms of speci-
ficity (99.3%) and in terms of sensitivity, we scored 95.0%.
Using SGD optimizer, we managed to improve the sensitiv-
ity to become 97.0% with specificity reported to be 95.7%.
These results reveal that our model outperformed all pre-
trained models in terms of specificity and was only 1%
lower than the best sensitivity result that is 98.0%. All our
best results were generated after applying batch normaliza-
tion and dropout to the model. This shows the robustness
of regularization techniques in reducing overfitting and im-

proving overall classification results.

5 Discussion

The prediction technique applied in this paper relies on a
new deep learning architecture that uses few convolutional
layers and produce high accuracy results. The new model
was designed to accept images with 256 x 256 x 3 in size in
order to preserve the original shape of the human lung dur-
ing the convolution process. The intuition behind using few
layers per block is because the task involves predicting only
two classes. As a result, the proposed model was designed
to overcome overfitting during training by using one layer
per convolutional block which proved to be sufficient to
produce high training and validation accuracy. In addition,
CNN parameters were selected to train the model properly
and to reduce overfitting. We showed that 15 epochs with a
learning rate of 0.001 produced the lowest training and val-
idation loss and produced high specificity and sensitivity
predictions. Furthermore, we showed that Adam optimizer
outperformed SGD optimizer because it generalizes better
than the latter. Results are reported for the two optimizers
in section 4. The state-of-the-art approaches summarized in
Table 1 relied mostly on transfer learning of existing CNN
architectures like ResNet and VGG. Nevertheless, the work
of Rishi et al. [12] trained a CNN architecture from scratch
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Table 6: Evaluating the proposed model with different deep learning architectures.

Model

ResNet18 [26]

ResNet50 [26]

SqueezeNet [27]

Densenet-121 [28]

Proposed [Adam, 0.001]

Proposed [SGD, 0.001]

Sensitivity | Specificity
98.0% 90.7%
98.0% 89.6%
98.0% 92.9%
98.0% 75.1%
95.0% 99.32%
97.0% 95.67%

but the batch size was only 150 x 150 x 3. In our approach,
the model handles a bigger batch size of 256 x 256 x 3. On
the other hand, Ozturk et al. [29] presented a deep learn-
ing model with 19 layers which combines both DarkNet
and You Only Look Once (YOLO) and produced a robust
97.0% sensitivity rate and 96.7% specificity rate applied on
a dataset which was collected from two different sources for
the purpose of COVID-19 detection.

One limitation we faced during the experiments is that
the dataset used in this paper consists of imbalanced number
of images for both COVID and Non-COVID classes which
makes the problem of accurate classification even harder.
To solve this issue, in section 3.2 we used an augmentation
method to enlarge the dataset and preserve the shape of the
lung in order to use the new images for the training stage.
Furthermore, results were obtained before and after adding
regularization to our architecture. The classification perfor-
mance of our model was evaluated using both specificity
and sensitivity. Results reported in section 4 proved that
using a light deep learning architecture for COVID predic-
tion task is sufficient to get a high classification accuracy.
Therefore, we recommend to train new CNN architectures
from scratch with a big image size and to use regularization
techniques as a method to improve the training process of
CNN and to allow more convergence of training and val-
idation loss. In addition, we showed through experiments
that light deep learning models trained from scratched could
produce high classification accuracy in comparison to deep
transfer learning models. Furthermore, Although SGD op-
timizer outperformed ADAM optimizer slightly in terms
of sensitivity, Adam optimizer performance was in general
better than SGD. This is because unlike SGD, ADAM re-
quires fewer parameters for tuning and can handle sparse
gradients very well.

6 Conclusion

This paper introduces a new CNN architecture to predict
the class of the given X-ray images as either COVID or
Non-COVID. The proposed model uses six convolutional
blocks. Every block comprises of a single convolutional
layer, ReLU layer, and max-pooling layer. Additionally,
regularization techniques were included in the model to re-
duce overfitting and improve the classification rates. These

techniques involve batch normalization which was added in
each covolutional block and dropout. Experimental results
performed on a challenging COVID-19 imbalanced dataset
of 5000 image samples proved that our model achieved the
best specificity rate compared to state-of-the-art pre-trained
models performed on the same dataset. In addition, our
model produced comparable results in terms of sensitivity
falling 1% off the best result scored on the same dataset.
Furthermore, F1 score and precision results are very robust
using the new CNN architecture.

The Future work will focus on improving the model by
adding more convolutional layers per block and perform
a thorough evaluation using more epochs. Moreover, we
plan to use the model on other publicly available COVID-
19 datasets to validate its robustness. Optimal hyper pa-
rameters will be applied to generate better training results.
Since the healthcare sector physicians in dire need for an
automatic detection of COVID-19, the more accurate our
model can achieve this task the highly likely it is employed
in the sector.
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