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Abstract 

In this work, chitosan / graphene nanocomposite granules with weight percentages of 0.5%, 1%, 2% and 

5% were prepared using a solution method. At first, graphene was oxidized with sulphuric and nitric acid 

then triethylenetetramine was grafted on graphene surface. Functionalized graphene was characterized by 

Fourier-transform infrared spectroscopy (FT-IR), Therapeutic Goods Administration (TGA), X-ray 

energy diffraction spectroscopy (EDX) and Scanning electron microscope (SEM). Results showed 

functionalization of graphene was successfully accomplished. The thermogravimetric analysis curves 

showed the pristine, oxidized and functionalized graphenes are stable up to 400, 250, and 300, 

respectively. The pristine graphenes are more stable than oxidized graphenes and the oxidized graphenes 

are more stable than functionalized graphenes. The observed stabilized temperature is known to be 

strongly influenced by the step of the functionalization.  The morphology of nanocomposite was 

monitored by Scanning electron microscope (SEM). The SEM images showed that the porosity was 

reduced due to presence of nano graphenes. results showed that the nanocomposite samples have higher 

potential for ion metals adsorption than that of neat chitosan. The adsorption of nano samples for 

cadmium was increased around 20% in comparison to neat chitosan. Atomic adsorption spectrometry 

showed that the optimal adsorption rate of cadmium ion occurs in a solution of 50 ppm with a pH =7 and 

a contact time of 2 hours and an adsorbent of 25 mg. 

Keywords: Adsorption, Heavy metal ions, Graphene nanocomposites, Chitosan, Polymer 

 1. Introduction 

Water is a necessity required to sustain life. However, it is under serious threat because of the 

huge magnitude of pollution caused by industrial, agricultural, and domestic activities. Water 

bodies contaminated by heavy metals are grave problems because of their toxic nature and 

bioaccumulation [1-3]. Metal contamination may be due to domestic or industrial waste 

products, agricultural or municipal discharge, geologic weathering, and direct atmospheric 
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precipitation. These pollutants are often toxic. Long-term exposure to these pollutants can have 

acute and chronic effects on humans and animals [4-7]. Heavy metals, dyes, phenols, detergents, 

insecticides, and pesticides are some common pollutants. Owing to the ability of metals to 

remain in the environment for a long amount of time, they play a significant role in 

ecotoxicology. Bioaccumulation and biomagnification are common phenomena for heavy metals 

in the food chain. They are non-biodegradable in nature. Heavy metals at high concentrations 

exert significant environmental and ill effects on human health [8-11]. 

Chitin is an abundant natural polysaccharide and primarily isolated from crustacean biomass. It 

is a linear cationic heteropolymer containing N-acetyl-d-glucosamine units, some of which are 

linked to d-glucosamine units by β-(1–4) glycosidic bonds [12-15]. It exists as a matrix of 

proteins, minerals (calcium carbonate and phosphate), and lipids (unsaturated fatty acids [16-17]. 

Chitin is generally obtained from marine resources because of its commercial uses and is 

economical and abundant. Chitosan exhibits low solubility in neutral pH because of its inter- and 

intramolecular hydrogen bonds, its low antioxidant properties due to the lack of H atom donors, 

limited reactivity due to its high hydrophilicity, rigidity, and brittleness [18-21]. These properties 

have been studied and can be improved through modification through chemical, mechanical, or 

enzymatic methods [22-23]. Heavy metal ion removal from wastewater is always a difficult task 

for environmentalists. Chitosan is used efficiently for heavy metal removal because of its large 

surface area and high adsorption capacity, suitable pore size and volume, existence of large 

number of functional groups, mechanical stability, compatibility, easy accessibility, flexible 

structure of the polymer chain, high chemical reactivity, ease of regeneration, cost effectiveness, 

environmental friendliness, simple processing [24-26]. 

Jo
urn

al 
Pre-

pro
of



4 
 

Isolated chitin is converted into chitosan by various enzymatic and chemical methods [27-29]. 

Various kinds of alkalis or acids are used in chitin deacetylation. Glycosidic bonds are 

susceptible to acids; hence, alkalis are considered appropriate options [30-32]. Chitin 

deacetylation can be achieved heterogeneously or homogeneously. Deacetylated chitin in a range 

of 85 %–99 % and can be used as an insoluble filtrate. It is processed using hot and concentrated 

NaOH solution. At 25 ◦C, chitin is dispersed in concentrated NaOH solution for 3 h and then 

suspended in crushed ice. The end product is soluble chitosan with a DA of approximately 48 

%–55 % [33-35]. 

Chitin and chitosan and their derivatives due to their low cost and biodegradability as well as 

having a high amount of nitrogen and carboxylic carrier functional groups have attracted wide 

attention as an effective adsorption to remove various pollutants from water. These pollutants 

include metal cations and anions, radioactive materials, various pigments, phenols, as well as 

various anions and other pollutants [35-38].  Chitin and chitosan have a very high potential to 

remove such contaminants from water.  However, there is still a need to find practical tools such 

as commercially developed surface adsorption [2,148-153]. For each adsorption process, having 

a large cross-sectional area, high pore volume and also having suitable functional groups are 

among the key and basic needs. To increase the adsorption rate of polymers, nanoparticles are 

used due to having the mentioned properties. Many nanoparticles, including Nano clays and 

carbon nanotubes, are currently being developed to remove contaminants from water. The 

nanoparticle that has recently attracted the attention of many scientists is called graphene. 

Graphene is a flat sheet with a thickness of 1 (one atom) composed of carbon atoms that are 

located in a crystal lattice of honeycombs. Graphene is the parent element of other carbon 

allotropes, including graphite, carbon nanotubes, and fullerene [39-41].  Among the unique 
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properties of graphene, we can mention its high mechanical, thermal and chemical flexibility. 

Graphene also has a very high specific cross-section, which makes it a potential candidate as 

high-performance adsorption. However, graphene in its original form does not have much ability 

to adsorption due to the lack of suitable functional groups.  Because it has 2Sp atoms, it can only 

absorb pollutants with van der Waals forces [42-45]. The adsorption capacities of the above-

mentioned chitosan -based adsorbents are summarized in Table 1.  

          Table1. The adsorption capacity of chitosan and its derivatives for other metal ions. 

Adsorbent Adsorbate Adsorption Capacity       Reference 

Glutaraldehyde crosslinked CS Pd (II) 180.0 mg/g [168] 

Magnetic CS  nanoparticles Co (II) 27.5 mg/g               [168] 

Magnetic crosslinked CS nanoparticles 

modified with ethylenediamine 

Pt (IV) 171.0 mg/g               [169] 

Magnetic crosslinked CS  nanoparticles 

modified with ethylenediamine 

Pd (II) 138.0 mg/g [169] 

MWCNT-PDA–CS–GO Gd (III) 150.9 mg/g               [ 170] 

CS-CE Li (I) 297.0 mg/g [171] 

 

As well known that the abundant existence of toxic/heavy metal such as cadmium (Cd), 

chromium (Cr), Mercury (Hg) and lead (Pb) in environmental wastewater become serious 

problems and risks for human life. In general, they are issued during production processes of 

metal cleaning, plating dyes, leather industry. The privation of access to safe drinkable water has 

been widely reported with a lot of critical issues on human health problems. The presence of 
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these metals, even at extremely low concentrations, lead to occurrence of carcinogen in human as 

identified by the US National Toxicology Program. Thus, it is necessary to search some suitable 

direction for solving above problems. Several conventional technologies for removal of heavy 

metals are widely reported such as filtration membranes, ion-exchange, coagulation and co-

precipitation processes. Unfortunately, these technologies cannot be well carried out under actual 

field trials since they present some disadvantages, for instance, the uses of expensive equipment 

and chemicals are required for wastewater treatment process [46]. The examples of CS derived 

adsorbents for Cd(II) have been summarized in Table 2. 

Table 2. The adsorption capacity of CS and its derivatives for Cd (II). 

Adsorbent Adsorbate Adsorption Capacity Reference 

ECH Cd (II) 72.3 mg/g [172] 

CSAP Cd (II) 84.0 mg/g [173] 

PMACCMs Cd (II) 39.2 mg/g [174] 

Crosslinked Cd (II) 178.6 mg/g [175] 

SMCS beads Cd (II) 125.0 mg/g [176] 

Fe3O4 loaded Cd (II) 97.8 mg/g [177] 

CTS/SA/Ca2+ Cd (II) 110.7 mg/g [178] 

 

 In this study, chitosan / graphene-based nanocomposites were prepared with solution method 

and their ability to adsorb cadmium metal ions was investigated. The purpose of this article, 

investigate the adsorption of chitin and chitosan in the removal of heavy metal ions and also the 

obtained nanocomposite grains were obtained to obtain the optimal amount of adsorbent, pH, 

contact time and ion solution concentration was examined. Functionalized graphene was 

Jo
urn

al 
Pre-

pro
of



7 
 

characterized by Several characterization techniques (FT-IR, TGA, EDX and SEM) were also 

used.   

2. Materials and Experimental 

2.1. Materials 

All chemicals’ materials (chitosan (75-75%), triethylene tetramine (97%), polyethylene glycol 

(30%), ethyl acetate (99%), sulfuric acid (99.9), nitric acid (65%), Formaldehyde (37%), 

Dimethylformamide (99%), Benzophenone (99%) were supplied from German company Merck 

and used without any future purification. All solution prepared by using distilled water[179]. 

2.2. Preparation of Graphene oxide 

The purpose of graphene oxide is to place oxygenated functional groups such as carboxyl, 

carbonyl and hydroxyl groups on the surface of nanographene. To achieve this important and 

graphene oxide, a mixture of sulfuric acid and nitric acid was used. Initially, 0.3 g of graphene 

was placed in a vacuum oven for 24 hr at 80 ° C.  The nanographene was then placed in 70 ml of 

M8 solution of 98% sulfuric acid and 65% nitric acid for oxidation and ultrasound for 37 kHz 

and w60 for oxidation [154-160]. The mixture was then removed from the ultrasonic bath and 

given 30 hours to reach room temperature.  The mixture was then washed using a centrifuge to 

bring the pH of the mixture to about 4.  Vacuum filtration was then used for washing due to 

reduced efficiency with the centrifuge[182-190]. The sample was washed with large amounts of 

double distilled water with a 0.45 μm polycarbonate filter to reach a pH of approximately 7. The 

sample was then placed in a vacuum at 80 ° C for 24 h to be completely dried. The above 

explanations are summarized in Equation 1[65-67]. 

 

Jo
urn

al 
Pre-

pro
of



8 
 

 (1) 

Graphene has been synthesized from graphite by two fundamental processes, mechanical 

exfoliation and oxidation of graphite. However, the synthesis process has been categorized 

mainly into top-down and bottom-up approaches (Fig. 1) 

 

Fig1. Synthesis approach for graphene nanoparticles hybrids and their structures [180]. 

 

 

 

𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒

𝐻2𝑆𝑂4 𝐻𝑁𝑂3 

𝑆𝑜𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛
          𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 − 𝐶𝑂𝑂𝐻 

Jo
urn

al 
Pre-

pro
of



9 
 

2.3. Preparation of Nano graphene acylation 

The acylation operation is used to deposit nitrogen functional groups on the surface of graphene 

after oxide because nitrogenous groups do not have the ability to react covalently with 

oxygenated functional groups.  For this reason, acylation takes place so that chlorine reacts with 

oxygenated functional groups.  After correction with acid and placement of oxygenated 

functional groups including carboxylic, hydroxyl and carbonyl on the surface of graphene, the 

acylation reaction was performed [161-164]. Thus, for 0.2 gr of oxidized graphene, 45 cc of 

thionyl chloride and 5 cc of dry dimethylformamide were used for the acylation reaction (ratio of 

dry thionyl chloride to dry dimethylformamide was 1:20).  The time required for the acylation 

reaction was 120 min.  The reflux reaction was performed at 60 0C and nitrogen atmosphere. The 

black precipitate was dried immediately after the reaction time with a sufficient amount of 

tetrahydrofuran and washed with a Teflon filter of 0.45 μ and placed in a vacuum at 8 ° C for 8 

hr to dry completely. The process of the acylation process and the deposition of chlorine groups 

on the surface of oxidized graphene are shown in Equation 2[68-72]: 

(2)    

2.4. Preparation of nanographene 

Triethylene tetramine was used to functionalize nanographene with nitrogen-containing groups.  

The reason for using this amine is its complete compatibility with water in all percentages and 

also having 4 nitrogenous functional groups in its chemical structure, which increases the 

adsorption of heavy metal ions. The functionalization was performed with adding 0.2 gr of this 

chlorinated graphene to 30 ml of triethylene tetramine and 3 ml of dry tetrahydrofuran after 

     𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 − 𝐶𝑂𝑂𝐻
𝑆𝑂𝐶𝑙2 𝐷𝑀𝐹 
         𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 − 𝐶𝑂𝐶𝑙        (2-3) Jo

urn
al 

Pre-
pro

of



10 
 

acylation and drying of chlorinated graphene. The mixture is then subjected to 95 ° C for 24 

hours to complete the functionalization operation. After 24 mixtures, the oil is taken out of the 

bath and given 30 minutes to reach room temperature. The mixture is then washed with a 0.45 

μm Teflon filter with a mixture of water and ethanol one with one to remove excess unreacted 

amines from the system. It was then vacuumed for 40 ° C to dry completely.  The reaction 

process of chlorine groups with triethylene tetramine is summarized in Equation 3[73-76]: 

𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 − 𝐶𝑂𝐶𝑙
𝑇𝐸𝑇𝐴
    𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 − 𝐶6𝐻18𝑁4          (3) 

 

2.5. Preparation of Chitosan beads 

First, 1 g of chitosan was poured into 50 ml of a 1% with volume solution of acetic acid and 

given 4 times for the chitosan to dissolve completely in the solution.  Then 1 g of polyethylene 

glycol with a molecular mass of 200 gr / mol, which is in the form of resin, was added to it.  

Then, 2 ml of 37% with volume of aqueous formaldehyde solution was added to them and stirred 

for 2 minutes.  The solution was then crosslinked and its viscosity was very high and poured into 

a 50 ml syringe. In parallel, 200 ml of 1 M sodium hydroxide solution was prepared and 1 ml of 

ethyl acetate was added and stirred vigorously for 20 were placed to mix thoroughly.  Then, after 

preparing both samples, the cross-linked chitosan solution was poured dropwise into the sodium 

hydroxide solution to form chitosan granules.  The sodium hydroxide solution was rested to 

harden. After that, the beads were washed 5 times with double distilled water so that no excess 

material was placed inside the beads [77-80]. 

 

2.6. Preparation of Chitosan grain nanocomposite 
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To prepare chitosan grain nanocomposites with wt0.5%, wt 1%, wt2%, and wt 5%, the following 

procedure was performed [81-83]: 

 A calculated amount of functionalized nano-phase was added to gr1 of the chitosan solution. 

The solution was then subjected to intense magnetic agitation for 3 days to disperse the nano-

phase well into the polymer matrix. Then, as in the production of pure grain, polyethylene glycol 

and formaldehyde were added to make the grain nanocomposite cross-linked.  The solution 

nanocomposite was then poured into a 50 ml syringe and, as before, dropwise was added to the 

caustic soda solution with ethyl acetate to form a granular nanocomposite. 

2.7. Drying the beads 

A dry cooling device was used to dry the grains. The grains were separated from the distilled 

water twice with filter paper and placed in a watch glass.  The samples were then placed in a dry 

cooler for 48 hours to extract the water in the grains under vacuum and the samples were 

completely dry.  After 48 beads were removed from the machine and placed in a sealed container 

with a dampener to be used in subsequent experiments [84-88]. 

2.8. Method of making cadmium ion solution 

A mother solution with a concentration of 1000 was used to make cadmium ion solution with 

different concentrations.  To make the mother solution, the calculated amount of cadmium nitrate 

salt was dissolved in 1L of 0.5 M nitric acid solution [89-90]. 

2.9. Drying method of dimethyl formamide 

Since the use of dry solvents is critical to the correction reaction, drying of dimethylformamide 

was on the agenda.  The amount of 0.5-1 g of hydride, which is a solvent dehumidifier, is 
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weighed and ground; it was then poured into a 500 ml balloon and 400 ml of dimethylformamide 

was added. On the other hand, some cotton wool was placed in an increase-decrease interface 

and some calcium chloride was poured on it and it was covered with cotton again (as a 

protector). Calcium chloride absorbs moisture that is present in the air. This increasing-

decreasing interface, called the drying tube, is placed on the balloon and then the mixture is 

stirred overnight with the help of a magnetic stirrer to mix calcium hydride well with the solvent 

and absorb the moisture in the solvent.  This process is performed at room temperature and   as a 

result of the reaction, hydrogen gas is produced which is removed from the system through the 

interface [91-95].  The reaction is as follows [96-98]: 

𝐶𝑎𝐻2 + 𝐻2𝑂 → 𝐶𝑎(𝑂𝐻)2 + 𝐻2           (4) 

After 24 h, the stirring was stopped and the balloon containing the solution was placed in an oil 

bath which was being heated. The distillation assembly was mounted on a balloon using a simple 

refrigerant and the temperature was raised to 130 ° C (dimethylformamide boiling temperature is 

153 ° C). The system is connected to a vacuum to apply a vacuum to create suction and thus 

accelerate the movement of steam to the second balloon. Also creating a vacuum reduces the 

pressure and as a result the boiling point of dimethylformamide is lowered and the reaction is 

easier to achieve. On the other hand, the second balloon is placed inside the ice container to 

make the temperature difference easier for the condensed droplets to move into the balloon. The 

rotation of the magnetic agent also prevents the solvent from suddenly jumping into the balloon 

[99-101]. 

2.10. Drying method of tetrahydrofuran 
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Some sodium was added to 1 liter of tetrahydrofuran and poured into a balloon. Place the 

collector on the balloon and then the condenser on the collector while the collector valve is open.  

The balloon is heating and the THF is boiling [107-115]. The boiling point of tetrahydrofuran is 

54.C. The resulting steam enters the collector from inside the balloon and then condenses. 

Condensation occurs in the condenser and returns to the balloon. The benzophenone reagent was 

added several times, indicating that the THF had dried each time it turned dark blue or blue.  At 

this time, the collector valve is closed and THF vapors enter the condenser from the side pipe of 

the collector, condense and collect inside the collector [116-125].  Before collecting the dry THF 

in the container, about 300 gr of Molecular was placed in the oven at room temperature to 

activate. The activated molecular sieve was then placed in 250 ml jars and nitrogen gas was 

taken on it to evacuate the air inside the jar. The reason for using molecular sieve is that if THF 

gets dehydrated due to the impossibility of creating 100% isolation, these molecular sieves 

absorb moisture and prevent THF from getting wet. Then, with opening the collector outlet, the 

dried THF, which is ready for consumption, was poured into containers [126-130].   

3. Results and Discussion 

In this paper, first the results and discussions related to graphene functionalization reactions are 

presented and then chitosan beads and chitosan graphene nanocomposites are examined and their 

application in the adsorption of cadmium ions from aqueous solutions is investigated. 

3.1. Determining the characteristics of functionalized graphene 

3.1.1. Infrared Fourier Transform Spectroscopy (FTIR) 

Observing the adsorption or transit peaks in the FTIR spectrum from the perspective of the 

presence or absence of operating groups helps to identify the substance. Of course, it should be 
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noted that accurate identification of the molecule or explicit detection of all peaks in a spectrum 

is not possible, and this analysis is used as a starting point in the identification process [136-138]. 

Figure 2 shows the FTIR spectrum of pure graphene, oxidized graphene, and graphene 

functionalized with triethylene tetramine (graphene containing nitrogen groups). As can be seen 

in Figure 1, the spectrum of pure graphene does not show an index peak and has many fine and 

crowded peaks due to the adsorption of moisture from the environment as well as impurities in 

graphene during production. In the acid-modified graphene spectrum, two index peaks are 

observed at 3424 and 1710, which are related to the vibration and tension of the OH groups and 

the C = O groups, respectively, due to the formation of hydroxyl and carboxyl groups in 

graphene, indicating that the oxide Has been able to create oxygenated functional groups on the 

graphene plate [136-138]. After the acylation reaction and the placement of chlorine groups on 

the graphene plates, amine functional groups are immediately added to it and replace the chlorine 

groups formed on the graphene surface. As shown in Figure 2, two new peaks are observed in 

graphene functionalized with amine groups. The first peak is observed in 1572, which is related 

to the traction of N-H groups on the plate. There is also another peak in 800 which is related to 

the stretching of NH2 functional groups off the screen [118]. Observing the peaks mentioned in 

Figure 2 proves the success of the oxide reaction and the functionalization of graphene with 

amine functional groups. 
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Figure 2. Infrared spectrum Fourier transform of samples. 

 

3.1.2. Thermal gravimetric analysis (TGA) 

Another method of evaluation to check and ensure the presence of functional groups on the 

graphene surface is thermal gravimetric analysis (TGA). The demographics of crude graphene, 

oxidized graphene, and triethylenetetramine-functionalized graphene are shown in Figure 3.  As 

shown in Figure 3, weight loss occurs in both areas for all specimens.  temperature range 

between 50 to 100 ℃, which is due to physically absorbed moisture in the samples, this amount 

is the same for all samples. In the case of raw graphene, weight loss is observed in the 

temperature range between 150-800, which is related to graphene impurities during production. 

Next, with examining raw graphene and oxidized graphene, it is obvious that oxidized graphene 
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from about 150-800 has a more severe weight loss than raw graphene. The reason for this is the 

formation of oxygenated hydroxyl and carboxyl functional groups on the surface of graphene, 

which are continuously degraded with increasing the temperature to 800 and separated from the 

oxidized graphene surface, resulting in a heavier weight of oxidized graphene compared to raw 

graphene. Also, comparing functionalized graphene with crude graphene and oxidized graphene, 

it is obvious that triethylene-tetramine-activated graphene has a high degradation in the 

temperature range of 100-150, due to the degradation of triethylene tetramine taken on the 

surface of graphene.   

Carbon-based adsorbents such as graphene and its derivatives, carbon nanotubes, activated 

carbon, and biochar are often used to remove heavy metals from aqueous solutions. One of the 

important aspects of effective carbon adsorbents for heavy metals is their tunable surface 

functional groups. To promote the applications of functionalized carbon adsorbents in heavy 

metal removal, a systematic documentation of their syntheses and interactions with metals in 

aqueous solution is crucial. This work provides a comprehensive review of recent research on 

various carbon adsorbents in terms of their surface functional groups and the associated removal 

behaviors and performances to heavy metals in aqueous solutions. The governing removal 

mechanisms of carbon adsorbents to aqueous heavy metals are first outlined with a special focus 

on the roles of surface functional groups. It then summarizes and categorizes various synthesis 

methods that are commonly used to introduce heteroatoms, primarily oxygen, nitrogen, and 

sulfur, onto carbon surfaces for enhanced surface functionalities and sorptive properties to heavy 

metals in aqueous solutions. After that, the effects of various functional groups on adsorption 

behaviors of heavy metals onto the functionalized carbon adsorbents are elucidated. The surface 

chemistry of carbons is determined, to a large extent, by the number and the nature of surface 
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functional groups on carbon surface [49], [130]. Several studies have provided evidences of the 

enhanced heavy metal adsorption capacity with modifications of carbon adsorbents with 

functional groups [53], [56], [131], [132], [133]. The driving mechanism of the modifications 

lies with the introduction of various functional groups into carbon materials through doping 

heteroatoms onto carbon. Carbonaceous materials including activated carbon (AC), biochar, 

carbon nanotubes (CNTs), and graphene oxide (GO) have been widely studied for adsorption of 

various environmental contaminants [20], [21], [22], [23], [24], [25], [26], [27], [28]. Their 

performance for the removal of heavy metals from aqueous solution has been widely reported 

[29], [30], [31], [32], [33], [34], [35], and most studies in the literature focus on sorption 

characteristics of a specific carbon material. AC is the most widely used carbon adsorbent for 

water and wastewater treatment. A wide range of AC adsorbents can be prepared to suit for 

various environmental applications including the removal of heavy metals from aqueous 

solutions [22], [36]. Due to the high cost associated with production of coal-based AC, biochar 

has recently emerged as a low-cost alternative of AC with comparable or superior performance 

for heavy metal adsorption [19], [37], [38], [39]. A variety of woody biomass including 

agricultural wastes or byproducts such as peanut hull and dairy manure can be used to develop 

biochar [40], [41], [42]. Its multifunctionalities including carbon sequestration, soil fertility 

improvement, and environmental remediation are also well recognized [25,43]. 
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Figure3. Demographics of pure, oxidized and functionalized graphene nanoparticles. 

 

 

3.1.3. Morphology of nanoparticles using scanning electron microscope (SEM) 

The SEM micrograph of the oxidized graphene and functionalized graphene is shown in Figure 

4.  As can be seen from Figure 4, raw graphene sheets have clustered together due to the absence 

of functional groups. with oxidizing graphene due to the formation of oxygenated groups on the 

surface, the graphene plates are completely separated from each other and become a single plate.  

Also, the sharp edges of oxidized graphene indicate the formation of oxygen groups on the 

surface of graphene. In the case of amine-functionalized graphene, however, the functionalized 

graphene plates are slightly rounded due to the reduction of oxygenated functional groups on the 

oxidized graphene surface and edge, and the deposition of nitrogen-functionalized functional 

groups on the graphene surface. Also, with examining scanning electron microscopy and 
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comparing the size of the plates in all three cases, it is observed that oxidation and 

functionalization of nanoparticles do not have much effect on the size of graphene plates.  

Another way to study and identify graphene oxide and functionalize it with amino groups is to 

use EDX elemental analysis (scanning electron microscope). In this analysis, the percentage of 

carbon, hydrogen, nitrogen and sulfur elements is determined. The test results are presented in 

Table 3.  As can be seen, the amount of oxygen groups after correction with acid has increased 

significantly and from 5.7% to 14.22%. The presence of oxygen in unmodified graphene is 

related to the impurities present and the physically absorbed moisture of the environment.  

However, the increase in oxygen content in the modified graphene is related to the formation of 

oxygen-containing groups.  In the case of functionalized graphene, while the amount of oxygen 

groups decreased from 14.22% in oxidized graphene to 7.05% in functionalized graphene due to 

graphene reduction, a large amount of nitrogen of about 32.67% sat on the graphene surface.  

This high amount of nitrogen is due to the type of amine consumed with triethylene tetramine, 

which has 4 amine groups and as a result contains a large percentage of functionalized 

nanographene.  Figure 5 shows the distribution of oxygen and nitrogen elements as well as the 

amount of these elements in percentage. 
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Figure 3. Scanning electron microscopy of (a) graphene nanoparticles and (b) oxidized graphene 

nanoparticles and (c) graphene nanoparticles functionalized with triethylene tetramine 

Table 3. Elemental analysis data for samples. 

Sample name Carbon Oxygen Nitrogen Other elements 

Raw graphene 88 5.7 0 6.3 

Oxidized graphene 80.78 14.22 0 5 

Activated graphene 60.09 7.05 32.67 0.19 

 

 

Figure 5. EDX images Scanning electron microscopy of a layer of graphene functionalized with 

triethylene tetramine (a distribution of oxygenated (green) and nitrogen-functional (red) 
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functional groups (b) distribution of oxygenated functional groups (c distribution of nitrogen-

functionalized groups) d Graph showing the percentage of carbon, oxygen and nitrogen groups 

3.1.4. Investigation of porosity of nanocomposites 

Since adsorption porosity has an important effect on the adsorption of heavy metal ions, 

scanning electron microscopy was used to study the grain porosity of nanocomposites and their 

porosity.  As can be seen from scanning electron microscopy in figures 6 – 7 with different 

magnifications, the porosity of chitosan grains decreases with increasing percentage of 

functionalized graphene. This decrease in porosity increases with increasing weight percentage 

of nanoparticles because functionalized graphene nanoparticles are placed inside the pores of 

chitosan grains. Also, the porosity of chitosan grains is uniformly reduced, which indicates the 

complete dispersion of graphene nanoparticles within the polymer matrix. 
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Figure 6. Scanning electron microscopy of chitosan grain with 70x magnification (a without 

functionalized graphene nanoparticles (b containing 1% with weight of functionalized graphene) 

c containing 2% with weight of functionalized graphene and (d containing 5% with weight of 

functionalized graphene has been hanged. 
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Figure 7. Scanning electron microscope of chitosan grain with 200x magnification (a without 

functionalized graphene nanoparticles) b) with 1% with weight of functionalized graphene (c 

with 2% weight of functionalized graphene and d) with 5% weight of functionalized graphene. 

3.1.5. Investigation of the effect of swelling and water adsorption of chitosan 

nanocomposites 

The porosity of chitosan grains as an adsorbent phase plays an important role in water uptake and 

thus uptake of heavy metal ions. The following method was used to evaluate the swelling and 

water adsorption of chitosan nanocomposites and compare it with pure chitosan granules. 

0.1 g of the adsorbents was weighed dry with different percentages of functionalized graphene 

and then twice distilled into water at a pH of 6 and given 24 hours to complete the adsorption 

process with the adsorbents.  The samples were then taken out of the water and weighed 

again after the excess water was removed with them.  Then, through the Equation 5, the 

uptake and swelling of chitosan seeds were obtained: 
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Percentage of swelling=(W_s-W)/W×100                (5) 

Where it is equal to the weight of swollen grains in water in gr and W is equal to the weight 

of dry grains in gr. 

The amount of swelling obtained from pure samples and nanocomposites with different 

percentages of functionalized graphene is presented in Table 4. 

Table 4. Percentage of swelling of various adsorbents in double distilled water with pH 6 

Adsorbent  Inflation rate 

Pure chitosan seeds                                         49  

                        0.5%    Nanocomposite chitosan                                          37 

                           1% chitosan nanocomposite 32 

                        2% Nanocomposite chitosan                                           28 

                       5%   Nanocomposite chitosan                                            21 

 

Kyzas et al[165] It is well known that chitosan-based materials serve as efficient adsorbents for 

dyes. This type of materials undergoes swelling with finite rate, when they are immersed in 

water, until to reach an equilibrium (steady state) volume. A problem that has been overlooked in 

the literature is the interaction between the two phenomena of swelling and adsorption. The 

characteristic times of two phenomena are comparable, so the swelling state of the adsorbent 

particle affects adsorption kinetics. In the present work, the interaction between these two 

phenomena is studied for several combinations of chitosan-based adsorbents and dyes, using 

experimental and theoretical tools. Several experiments for different polymeric adsorbents 

(chitosan derivatives) and dyes (reactive and basic) were performed. It is clearly shown that the 

adsorption kinetics are sensitive to the time of the adsorbent immersion in water. A unified 
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swelling-adsorption model is developed. This model is shown to be able to describe/reproduce 

the experimental data and allow their proper interpretation in terms of physicochemical 

processes. The interaction between adsorption dynamics and swelling dynamics in case of 

polymeric adsorbents based on chitosan and dyes as adsorbates is studied in the present work. An 

experimental campaign that includes three adsorbents and two dyes is performed. The adsorbent 

particles are immersed in water for several time periods before typical adsorption kinetic 

experiments to take place. It was found that the time of immersion (called pre-swelling time) has 

very large influence on the adsorption. 

Liangzhi Qiao et al[166] Dye contamination of water supplies has a serious threat to human 

health, prompting the development of highly effective and eco-friendly adsorbents. In this work, 

polyelectrolyte microspheres derived from positively charged chitosan and negatively charged 

cellulose were constructed in alkali/urea solvent by a simple water/oil emulsification. The 

obtained chitosan/cellulose microspheres (CCM) were further used for the removal of reactive 

black 5. By using alkali/urea solution as the solvent, a homogeneous chitosan/cellulose solution 

was achieved, which avoided the easy occurrence of agglomeration between oppositely charged 

polymers. More importantly, CCM showed significantly improved mechanical strength and anti-

swelling properties compared with pure chitosan microspheres (CM). Adsorption experiments 

demonstrated that CCM can effectively remove reactive black 5 with high adsorption capacity of 

214.36 mg/g, fast adsorption kinetic that reached 76% of the equilibrium adsorption amount 

within only 20 min, and good reusability that maintained 75% efficiency even after five times of 

adsorption/desorption cycle, indicating a great potential for the application of dye removal. 
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3.1.6. Adsorption of cadmium ion from aqueous solutions with nanocomposite of 

functionalized chitosan graphene hydrogels 

In order to investigate the adsorption of cadmium ion from aqueous solutions, experiments were 

performed in 4 different groups in a row to obtain the optimal adsorption rate and compare it 

with the adsorption rate with raw grain.  These 4 groups are as follows: 

✓ Obtaining the optimal adsorber. 

✓ Determining the optimal pH. 

✓ Obtaining the optimal call time. 

✓ Obtaining the optimal concentration of cadmium ion. 

3.1.6.1. Obtaining the optimal amount of adsorbent cadmium ions 

In order to obtain the optimal amount of adsorbent, 15mg, 20mg, 25mg and 30mg of adsorbent 

were added to 10ml of cadmium ion solution with a concentration of 50ppm, respectively, and 

the pH of the solution was reduced to 5 with 0.1 M NaOH solution.  The samples were then 

placed on a vibrating stirrer at 200rpm. After one hour, the samples were separated from the 

ionic solution with means of a filter and atomic adsorption test was taken from the ionic 

solutions.  The amount of cadmium ion in each of the solutions was obtained using an atomic 

adsorption spectrometer and then the amount of divalent cadmium ion adsorption in terms of mg 

based on 1gr of the adsorbent was obtained using Equation 6: 

𝐴𝑑𝑠𝑜𝑟𝑝𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑞𝑒) =
(𝐶0 − 𝐶𝑒)𝑉

𝑀
                                      (6) 

In this equation, it is equal to the concentration of the initial ionic solution in terms of ppm 

before the adsorption process and is equal to the concentration of the ionic solution in terms of 
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ppm after the adsorption process. Also, V is equal to the volume of ionic solution of each sample 

in ml and W is equal to the amount of adsorbent used in terms of gr in each sample.  It is also 

equal to the adsorption of cadmium ions in mg in terms of 1 g of adsorbent (chitosan and 

chitosan nanocomposite). 

As can be seen from Figure 8, the rate of uptake of cadmium ion with pure chitosan grains is 

between 4-5 mg of cadmium ion per gram of adsorbent due to the different amount of adsorbent.  

However, with adding different percentages of functionalized graphene to chitosan seeds, the 

amount of adsorption increases significantly. The reason for the increase in adsorption is that 

graphene nanoparticles functionalized with triethylene tetramine have a large number of active 

amine sites on their surface. with increasing these nanoparticles to chitosan beads, cadmium 

metal ions are more adsorbed to these active sites.  So, the adsorption rate increases. It is also 

noteworthy from the figure that with increasing the amount of adsorbent up to 25mg, the amount 

of adsorption increases with a large slope and then the slope of increasing the amount of 

adsorption decreases. Therefore, the optimal amount of adsorbent is equal to 25 mg and other 

tests will be performed with the same amount of adsorbent. Another noteworthy point is that 

with increasing the percentage of functionalized graphene to chitosan grains, the amount of 

adsorption increases; but the adsorption rate is not very significant. The reason for this is that 

with increasing the percentage of functionalized nanographene to chitosan beads, the porosity 

and water adsorption of these beads decreases. Therefore, the penetration of cadmium metal ions 

into chitosan beads is reduced. For this reason, even with a significant increase in the active sites 

of amines, the adsorption of cadmium metal ions increases significantly. Reduction of chitosan 

grain porosity can be demonstrated with scanning electron microscopy photographs as well as 

water uptake test and investigation of increased swelling behavior of chitosan grains in water. 
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Preeti Pal, Anjali Pal [139] the present study explores a new SDS-modified chitosan-based 

material for Cd2+ removal from aqueous media. The modified beads are designated as SMCS 

beads. During modification of chitosan (CS) beads, the SDS concentration is selected as CMC 

which leads to the formation of a surfactant bilayer on the chitosan beads. Cd2+ ions can be ad 

solubilized on the surfactant bilayer by electrostatic attraction. This causes much enhanced 

adsorption of Cd2+ compared to normal CS beads. Batch experiments have been carried out to 

optimize the process parameters such as pH, adsorbent dose, and SDS concentration (during 

modification of beads). The kinetics of the Cd2+ removal on SMCS beads indicates that, the 

adsorption follows pseudo-second order model. The equilibrium data fitted well to the Langmuir 

isotherm. The maximum adsorption capacity was found to be 125 mg/g. Time taken to attain 

equilibrium was 10 h which was expected due to the slow kinetics usually observed orcs beads. 

The ability of chitosan to adsolubilizes the heavy metals make it an economically cheap and 

environmentally friendly adsorbent. 

Alyasi etal [140] Industrial effluents and stormwater runoff pose a significant threat to the 

environment and public health. Consequently, the water quality guidelines set strict limitations 

on the heavy metal content due to their toxicity. Among heavy metals, cadmium is one of the 

most hazardous, and its maximum permissible concentration is 10 μg/L. Therefore, the 

improvement of wastewater treatment technology is a prominent and ongoing task. The present 

study deals with the adsorption of cadmium onto chitosan beads and nanochitosan, a natural 

polysaccharide polymer derived from seafood shell waste. The chitosan beads and the 

nanochitosan were derived from the same source chitosan in order to compare their capacities 

and their kinetic performances on an equal basis. Both cadmium adsorption capacities are 

extremely high with 1.65 mmol Cd/g chitosan beads and 1.90 mmol Cd/g on nanochitosan—with 
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nanochitsosan showing a 15% higher uptake. Several kinetic models were compared and the 

kinetics of both chitosan beads and nanochitosan followed both the pseudo-second-order and the 

Elovich models very closely but the uptake of cadmium on nanochitosan was faster. 

 

. Figure 8.  Changes in the adsorption rate of cadmium ion in the presence of different percentages of 

functionalized nanoparticles and obtaining the optimal amount of adsorbent at pH =5 and duration 1h and 

concentration 50ppm. 

3.1.6.2. Obtaining the optimal pH in the adsorption of cadmium ions 

Considering that the optimal amount of adsorbent for adsorption of cadmium metal ion was 

equal to 25 mg, therefore 25 mg of adsorbents with different percentages of functionalized 

graphene was added to 10 ml of cadmium ion solution with a concentration of 50 ppm.  To raise 

the pH of the ionic solution (since cadmium salt is dissolved in 0.5 M nitric acid and its pH is 

about 2.5) 0.1 M NaOH solution was added to the ionic solution with titration and the pH of the 

solution using a pH device M was determined. The samples were then placed on a vibrating 
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stirrer at 200 rpm for one hour to complete the adsorption reaction. The amount of cadmium ion 

remaining in the ionic solution was then determined by atomic adsorption spectrometry and the 

adsorption rate of each of the adsorbents at different pHs was obtained using the equation. As 

shown in Figure 9, at pH= 3, where the pH is completely acidic, the adsorption of cadmium ions 

in all samples is approximately equal, and this adsorption is equal to the minimum adsorption at 

all pHs. The mechanism of cadmium ion adsorption is such that the active sites of amines in 

adsorbents have a negative charge. Adsorption of positively charged divalent cadmium ions 

occurs through electrostatic interaction and chelating process with negatively charged active sites 

in the adsorption phase. Chelation is the process with which a chemical compound combines 

with a metal ion to hold it in place.  Materials with such properties are used to adsorb heavy 

metal ions.  It should be noted that chelating refers to a ligand that gives more complex electrons 

to the central metal of the complex. Therefore, as the number of negatively charged active sites 

increases, the amount of cadmium ion uptake increases. At acidic pHs the number in solution is 

extremely high. Thus, a competition is made to react with the active sites of amines between and.  

Due to the high rate, these active sites establish an electrostatic interaction, and the negative 

amine active sites are reduced. As a result, their ability to form complexes with cadmium metal 

ions is lost. Therefore, the adsorption of cadmium ions is reduced. As the pH rises, the amount in 

solution decreases. As a result, the active sites of the amine react more strongly with the metal 

cadmium ions.  So, the adsorption of cadmium ions increases. This increase in adsorption rate 

continues until pH= 7, and as shown in the figure, then the adsorption rate decreases slightly. 

The reason for decreasing the amount of adsorption with increasing is that with increasing the 

pH, the amount in solution increases. The ion solution in the positively charged cadmium ion 

establishes an electrostatic interaction, as a result of which the ability to establish an electrostatic 
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interaction and the cadmium ion chelation process with the negatively charged amine active sites 

is lost.  Therefore, cadmium precipitates as salt. Therefore, the adsorption of cadmium ions 

decreases.  Due to the fact that the highest amount of adsorption occurred in all samples at pH 

=7, in other experiments the pH of solutions is considered equal to. 

 

Figure9. Graph of changes in the adsorption rate of cadmium ion with adsorbents with different 

percentages of graphene functionalized at different pHs with an adsorbent of 25 mg and a 

duration of 1 h and a concentration of 50 ppm 

3.1.6.3. Obtaining the optimal contact time to adsorbent cadmium ions 

 25mg of adsorbents with different percentages of functionalized graphene was added to 10 ml of 

cadmium ion solution with a concentration of 50 ppm and a pH = 7.  The samples were then 

placed on a vibrating stirrer at 200 rpm.  In order to obtain the optimal contact time, the 

experiments were performed in time intervals of 30min, 60min, 120min and 240 min.  As shown 

in Figure 10, the adsorption rate of cadmium ions generally increases with increasing contact 

time between the adsorbent phase and the cadmium metal ions.  But this increase increases after 
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120min to 240min with a much smaller slope. Because according to the results obtained after 

120 min, almost all active amine sites have been able to interact electrostatically with cadmium 

metal ions and only a few of them are still active and for a longer time to Need to perform the 

adsorption process. Therefore, due to the fact that the adsorption rate is almost complete after 

120 min, the optimal contact time of 120 min was considered in other experiments. 

 

 

Figure 10. Changes in the amount of cadmium ion adsorption with adsorbents with different 

percentages of functionalized graphene at different times at pH = 7 and the amount of adsorbent 

25mg and concentration 50ppm. 

3.1.6.4. Obtaining the concentration of cadmium ion for optimal adsorption of cadmium 

ion 

25 mg of the adsorbent phase with different percentages of functionalized graphene was placed 

in 10 ml of cadmium ion solution with a pH =7.  Cadmium ion concentrations in each sample 
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were considered equal to 20ppm, 30ppm, 50ppm and 100ppm, respectively.  The samples were 

then placed on a vibrating stirrer at a speed of 200 rpm and given 120 minutes to complete the 

adsorption process. As shown in Figure 11, the adsorption rate increases with increasing 

cadmium ion concentration. This is because with increasing the concentration of cadmium ions, 

the active sites of amines, which are not able to contact cadmium ions well, are exposed to more 

metal ions with increasing the concentration of cadmium ions, and as a result, the adsorbent 

capacity is significantly higher. 

 

Figure 11. Changes in the rate of adsorption of cadmium ions with adsorbents with different 

percentages of graphene functionalized at different concentrations of cadmium ions and 

durations of 2 h at pH = 7 and the amount of adsorbent 25mg. 
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5. Future prospective and sustainability of magnetic graphene materials 

The water chemistry makes the remediation process quite complicated, as contaminants may 

form new toxic compounds and cause environmental hazards because of anonymous interactions, 

fate and mobility in the aqueous solution [140-145]. Fig. 12 illustrates the application of 

magnetic graphene functionalized composites for different contaminants either using ion 

exchange, reduction, oxidation, precipitation, hydrolysis, etc. which commonly highlights the 

adsorption method as a significant procedure for wastewater treatment [181]. Magnetic 

graphene-based chemically functionalized composites are projected to remediate heavy metals. 

However, the research on remediation of combined contaminants using magnetic graphene-based 

composites or nanomaterials is still under progress. Though novel magnetic graphene-based 

functionalized composites have significant potential to remediate contaminants with enhanced 

adsorption capacity and for environmental application, e.g., fate, mobility, ecotoxicity, and risk 

assessment of contaminants. Adsorption capacity and toxicity of contaminants strongly depend 

upon aqueous solution chemistry as well as physicochemical characteristics, such as particles 

sizes, functional groups, potential surface charges and specific surface area. 
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Fig. 12. Highlighting the application of different wastewater treatment methods, including 

adsorption for heavy metals removal using different magnetic graphene functionalized 

composites [181]. 
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6. Conclusions 

In this study, chitosan / graphene-based nanocomposites were prepared with solution method and 

their ability to adsorb cadmium metal ions was investigated. The following results can be 

obtained from this study: 

 • Oxygenated functional groups on graphene surface were induced by acid test and identified 

with FTIR, EDX and TGA tests and their accuracy was confirmed. 

 Triethylene tetramine was grafted on the surface of oxidized graphene and this grafting was 

confirmed with FTIR, EDX, TGA tests. 

 Chitosan granules and chitosan / graphene functionalized nanocomposites were prepared and the 

swelling and adsorption of cadmium metal ions with these adsorbents were investigated. 

 SEM micrographs showed the effect of functionalized graphene on chitosan grains and the 

porosity of these grains with reducing the porosity of the samples. 

 • The obtained nanocomposite grains were obtained to obtain the optimal amount of adsorbent, 

the optimal amount of pH, the optimal amount of contact time and the optimal amount of ion 

solution concentration with these adsorbents in cadmium ion adsorption and the results of 

significant improvement in cadmium ion adsorption.   
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