This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Bi-directional Adaptive Probabilistic Method with
a Triangular Segmented Interpolation for Robot
Path Planning in Complex Dynamic-Environments

SUHAIB AL-ANSARRY', SALAH AL-DARRAIJI', ASMAA SHAREEF',DHAFER G. HONI'2, and
FRANCESCA FALLUCCHI?

! Department of Computer Science, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
2University of Warith Al-Anbiyaa, Karbalaa, Iraq
3 Department of Engineering Science, Guglielmo Marconi University, 00193 Roma, Italy

Corresponding author: Salah Al-Darraji (e-mail: aldarraji @uobasrah.edu.iq).

ABSTRACT Path planning is a fundamental aspect of mobile robots and autonomous systems. Methods
of path planning are used in robotics to create a path for a robot or autonomous system to follow from
a starting position to a goal one while avoiding obstacles and satisfying any additional conditions. There
are many different methods to plan the path, including probabilistic methods, heuristics-based approaches,
and optimization-based methods. In this paper, we propose a new path planning method called Dynamic
Adaptive RRT-connect with a Triangular Segmented Interpolation. Our method improves the traditional RRT
algorithms by using an Adaptive-RRT approach, where a random node is chosen as a new node to increase
tree exploration. Then, we use a Bi-directional scheme to further enhance the convergence time and cost.
Additionally, our method employs Triangular Segmented Interpolation (TSI) method to improve path length
and smoothness. Finally, we operate this method within a dynamic environment depending on the Dynamic
Window Approach (DWA). Experiments on a variety of environments have shown that our proposed method
achieves better than the RRT and RRT-connect algorithms individually in terms of computation time (reduced
by 90-80%), cost (reduced by 82-63%), and path length (shorten by 17-12%) besides the ability to avoid
dynamic obstacles efficiently.

INDEX TERMS Autonomous System, Dynamic Obstacles, Interpolation, Probabilistic Methods, Robot Path
Planning.

I. INTRODUCTION

NMANNED Aerial Vehicles (UAVs) are increasingly

being used in a variety of tasks due to their small size,
low cost, ease of use, and ability to operate in hazardous
environments. UAV path planning involves finding a safe,
collision-free path from a starting position to a goal posi-
tion while considering any potential threats and performance
constraints of the UAV, and minimizing the flying time as
much as possible [1]. However, traditional algorithms for
UAV path planning may not always be suitable for complex
environments and may not be able to meet the specific needs
of the mission.

Traditional classical methods such as mathematical in-
duction, dynamic induction, and optimal control methods
may not be suitable for describing system dynamics and
uncertain environments in UAV path planning due to their
computational intensity and tendency to get stuck in local

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

optima [2]. For example, the A* algorithm [3] relies heavily
on the cost function, which must properly weigh various
constraints. If the cost function is not designed properly, the
algorithm’s search space can grow exponentially. While ge-
netic algorithms are efficient and globally robust optimization
algorithms, they tend to converge slowly after reaching an
optimal solution and may not be suitable for real-time trajec-
tory planning, or the multi-threaded versions of probabilistic
methods [4] which are needed for super equipment.

Random sampling algorithms, such as the probabilistic
roadmap (PRM) algorithm [5], PRM* [6], and the Rapidly
Exploring Random Tree (RRT) algorithm, are effective in
solving UAV trajectory planning problems. The PRM algo-
rithm generates a roadmap by setting random points in space
and linking them and then uses heuristic knowledge to guide
the search for the best or second-best flight path from the
initial state to the target state. The RRT algorithm which is

1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

first introduced by Steven M. LaValle in 1998 [7], relies on
a randomly-selected strategy and collision-checking method
to obtain a path in the mission environment and uses a tree
structure to describe the path, which makes the search more
efficient. However, the RRT algorithm may get stuck in a
local minimum area when the distribution of threat sources
in the mission environment is unclear, which is fixed by the
method called RRT-connect [8], and the search may become
less efficient as it increases the number of search failures.
RRT* and RRT*-connect [9] [10] improved variants of tradi-
tional RRT and RRT-connect respectively, which introduced
an optimized path against increased computational time and
cost.

In [11] combines the artificial attractive field (AAF) ap-
proach with the (RRT) algorithm, resulting in an improved
AAF-RRT method with better search efficiency and colli-
sion avoidance ability for global and local planning. Another
method [12] called improved bidirectional RRT* introduces
to addresses the problems of a high degree of randomness, low
search efficiency, and many inflection points in traditional
bidirectional RRT*. The improvements include constraining
the expansion direction of the random tree by an improved
artificial potential field method, biasing the random tree sam-
pling towards the target point, and optimizing the planned
path by extracting key points. An adaptation of the standard
RRT algorithm for real-time path planning in congested envi-
ronments has been proposed in [13], which involves adjusting
the step size based on the distance from the root node, result-
ing in more precise short-term plans and faster generation of
coarse long-term plans. In the adaptive RRT with dynamic
step (DRRT) [14], the author addresses the issues of the RRT
algorithm such as falling into local optimum areas and longer
planning time. Additionally, the issue of dimensionality of
high degree-of-freedom articulated robots handles also in an
adaptive manner [15] through body selection which chooses
necessary robot bodies and joints based on the complexity
of path planning. Zhang et al. [16] use the traditional RRT
algorithms with a fixed step length and bias probability which
can lead to excessive nodes and poor performance, while
in [17], they consider the relationship between environment
complexity and the step size and bias probability in the RRT
algorithm and adjusts the two parameters accordingly.

On the other hand, Zeng et al. [18] combine RRT and
DWA algorithms to explore a sparse, relatively small-size
point cloud local map, similarly in [19] authors present an
innovative approach that minimizes planning time and solves
sharp path problems. Moreover, Jia et al. [20] present a
framework for dynamic path planning that avoids collisions
with dynamic obstacles in a partially unknown environment.
In addition, Dai et al. [21] propose a novel algorithm that
uses a greedy approach to determine whether a new node can
directly reach the target point, and Kang et al. [22] present
a bidirectional interpolation method for post-processing in
sampling-based robot path planning algorithms. Examples of
methods that deal with the concept of dynamic path planning
and path smoothness can be found in articles [23], [24]. These

2

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

contributions have the potential to make autonomous robots
more efficient and practical in real-world scenarios.

In this paper, we improve the performance of the RRT
algorithm by introducing a directional adaptive variation. The
Adaptive-RRT algorithm (A-RRT) is an improved version of
the RRT algorithm that uses the random node directly as a new
node to increase the speed of tree exploration. It has proven to
be faster and more efficient in finding the solution compared
to the original RRT algorithm. Then, we apply the concept of
bi-directional search to propose the (A-RRT connect) which
is improved the planning efficiency based on the combina-
tion of the adaptive two trees during the sampling process
leading to decreasing the convergence time and the cost of
generating nodes. Next, Triangular Segmented Interpolation
(TSI) is proposed as a new manner that helps in producing
a short and smooth path. Finally, we employ the Dynamic
Window Approach (DWA) [25] to enable the robot to safely
reach its target point and avoid temporary obstacles (dynamic
obstacles) in the global path.

Il. METHODOLOGY

Dynamic path planning is a challenging problem in robotics
and autonomous systems, as it requires the ability to find an
optimal path in real-time while considering changes in the
environment. In this work, we present an improved method
for dynamic path planning called (Dynamic A-RRT-connect
TSI) algorithm. The proposed algorithm is a combination of
the A-RRT-connect with TSI, besides the Dynamic Window
Approach. The algorithm operates in a bi-directional manner,
starting from both the start position and the goal position,
to find a collision-free path in a dynamic environment. The
proposed method (Dynamic A-RRT-connect TSI) algorithm
can be broken down into the following steps:

1) Initialize the algorithm by setting the start and goal
positions for the robot, as well as any other algorithm
parameters such as the step size, number of iterations,
and goal distance threshold.

2) Begin growing the tree from the start position. The tree
is initially empty, so the first node added is the start
position.

3) Sample a random point in the environment. If the point
is in free space, proceed to the next step. If the point is
in a collision, discard it and sample another point.

4) Using the Adaptive-RRT approach, select the closest
node in the tree to the random point as the parent node,
and then extend the tree towards the random point.

5) Simultaneously grow another tree from the goal posi-
tion, which will allow the algorithm to quickly converge
on the path between the start and goal positions.

6) Check if the distance between the new node and the
goal is below a predefined threshold. If it is, a path to
the goal has been found and the algorithm terminates. If
not, add the new node to the tree and continue growing
the trees.

7) Once the two trees meet, the algorithm terminates and
the path between the start and goal positions is returned.

VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

8) Use the Triangular Segmented Interpolation (TSI)
method to enhance the resulting path.

9) Employ the Dynamic Window Approach (DWA) to
calculate the attractive and repulsive forces acting on
the new node. These forces will be used to guide the
robot toward the goal while avoiding obstacles in real-
time.

10) When an obstacle appears suddenly, step-8 is repeated
to avoid the dynamic obstacle and find the next valid
point on the resulting path to guide the robot around
the obstacle safely.

A. ADAPTIVE-RRT (A-RRT)

Rapidly-Exploring Random Tree (RRT) is a popular path
planning algorithm used in robotics and control systems. The
algorithm starts with an empty tree and adds the start node to
it. The algorithm then enters a loop that runs for a maximum
number of iterations. In each iteration, as shown in Fig. 1, a
random node is sampled from the environment and the nearest
node in the tree to the random node is found. The tree is then
extended towards the random node by creating a new node,
with the step size (¢) determining the size of the extension.
If the new node is in free space, it is added to the tree, and
the distance between the new node and the goal is checked.
If the distance between the new node and the goal is below
a predefined threshold, a path to the goal has been found,
and the algorithm returns the path. If the maximum number
of iterations is reached and no path is found, the algorithm
returns ‘““No path found.”

The RRT algorithm uses the following mathematical for-

mulas:

1) Distance calculation: The distance between two nodes
in the tree is calculated using a metric, such as Eu-
clidean distance. The equation for Euclidean distance
between points (x1,y1) and (x2, y2) is:

d=+/(x2 —x1)2 + (y2 — y1)? (1

2) Nearest node calculation: The nearest node in the tree
to the random node is found using the distance calcu-
lation. Given a set of nodes in the tree and a random
node, the nearest node can be found using the following
formula:

nearestNode = min(d (treeli], randNode)) (2)

Tstart

Ttarget

FIGURE 1. The RRT Construct [26].

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

for all i in [1, n], where n is the number of nodes in the
tree.

3) New node calculation: The new node is calculated by
extending the tree towards the random node by step
size.

The first level of the proposed work is the Adaptive-RRT
(A-RRT), which is similar to the traditional RRT algorithm,
with a modified step of sampling a random child node for each
new node added to the tree, which leads to improve the tree
expansion, besides reducing the cost and convergence time
efficiently.

The proposed algorithm works iteratively to generate ran-
dom nodes within the search space and connect them to a tree.
The tree grows by connecting newly generated nodes to their
nearest nodes within the tree while ensuring that they avoid
obstacles. The algorithm continues to generate random nodes
and connect them to the tree until either the goal is reached
or the maximum number of iterations is exceeded. During
each iteration of the algorithm, a random node is generated
within the search space. If this node falls within an obstacle,
the node is omitted, and a new random node is generated. If
the node is valid, the nearest node in the tree to the random
node is found. Next, the line between the nearest node and the
random node does is checked to ensure it does not intersect
with any obstacle. If the line intersects with an obstacle, the
algorithm calculates the midpoint between the nearest node
and the random node and moves the random node towards
the midpoint to avoid the obstacle. A new node is created
from the updated random node, and it is added to the tree
with the nearest node as its parent node if it is a valid node,
otherwise, the process of finding another midpoint continues
until finding an obstacle-free line or the length of the line
is too small. The algorithm continues to iterate, generating
random nodes and connecting them to the tree while avoiding
obstacles, until either the goal is reached, or the maximum
number of iterations is exceeded. If the goal is reachable,
the goal node is added to the tree, and the function returns
the tree. If the maximum number of iterations is reached
without finding a feasible path, the function returns None,
indicating that no path was found. Algorithm 1 explains the
whole process. Fig. 2 show the rapid tree exploration with low
node expansion, besides the resulting path in blue color.

B. ADAPTIVE-RRT-CONNECT (A-RRT CONNECT)
The scheme of bi-directional search is a popular used for
finding a feasible path between two points in a configuration
space. Unlike traditional path planning algorithms that start
from the start node and expand the search space toward the
goal node, the bi-directional algorithm, as shown in Fig. 3,
uses two search trees, one starting from the start node and the
other starting from the goal node, to search for a feasible path.
The two trees then grow toward each other until they meet in
the middle.

The bi-directional algorithm has several advantages over
traditional search algorithms. Firstly, it reduces the search

3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

space, as the search is performed from both ends of the
problem, leading to a faster search. Secondly, the algorithm
reduces the probability of getting stuck in dead-end spaces,
which often happens in traditional algorithms. Lastly, it in-
creases the probability of finding an optimal path by allowing
the algorithm to search for a path from both the start and
goal nodes, rather than searching for a path only from the
start node. One challenge with the bi-directional path plan-
ning scheme is that it requires finding a connection between
the two search trees once they meet in the middle. This is
typically done by connecting the nodes that are closest to each
other, creating a path between the start and goal nodes. De-
spite this challenge, the bi-directional path planning scheme
is widely used in robotics, computer vision, and other related
fields. It is particularly useful in high-dimensional configura-
tion spaces, where traditional algorithms may struggle to find
feasible paths. Additionally, it is a powerful tool for finding
optimal paths in complex search spaces, making it an essential
part of many modern path planning algorithms.

In the second level of the proposed method, the proposed
algorithm starts by initializing two trees, one for the start
configuration and the other for the goal configuration. It
then iterates for a maximum number of iterations provided
as input or a feasible path is found. In each iteration, the
algorithm samples a random configuration within the search
space, checks if it is in an obstacle, and continues to the next
iteration if it is. Then, finds the nearest node in both the start
and goal trees to the random configuration, using a distance
metric such as Euclidean distance. It then attempts to connect
the nearest nodes in the two trees by checking if a straight line
between them does not intersect any obstacles in the search
space. If a connection is feasible, a new node is created and
added to the start tree, and the same is done for the goal tree. If
anewly added node in the start tree is close enough to the goal
configuration (i.e., within the goal distance threshold), the
algorithm attempts to connect it to the goal tree. If successful,
the algorithm returns a path connecting the start and goal
configurations. If the connection is not feasible, the algorithm
creates a new configuration by taking the midpoint between
the nearest node and the random configuration and moving
towards the random configuration by a factor of 0.5. The

FIGURE 2. The Adaptive-RRT Tree (a) MAP-1 (b) MAP-2.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

Algorithm 1: Adaptive-RRT (A-RRT)

Input : start, goal, search_space, obstacles,
max_iterations, goal_distance_threshold,
line_length_threshold

Output: tree = [T]

T=1InitializeTree (start)

for i = 1 to max_iterations do
random_node= SampleRandomNode

(search_space)
if not IsNodeInObstacle (random_node,

obstacles) then
nearest_node = (random_node, T)

line = LineSegment (nearest_node,
random_node)

while IsLineIntersectObstacle (line,
obstacles) and Length (line) >

line_length_threshold do
random_node =

CalculateMidpoint(nearest_node,
random_node)
line = LineSegment (nearest_node,
random_node)
end while
if Length (line) > line_length_threshold

then
AddNodeToTree (T, nearest_node,

random_node)
if IsGoalReachable (random_node,
goal, obstacles,

goal_distance_threshold) then
AddGoalNodeToTree

(random_node, goal)
Return T
end if

end if
end if

end for

T2-target Ti-start

near new
e near
new .

ti-rand

FIGURE 3. The RRT-connect Construct.

VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

FIGURE 4. The A-RRT connect Tree (a) MAP-1 (b) MAP-2.

algorithm then repeats the process of finding the nearest node
and attempting to connect to the trees. If the algorithm reaches
the maximum number of iterations without finding a path, it
returns None, indicating that no path was found. Fig. 4 shows
the tree expansion and resulting path in a blue color of the
proposed A-RRT connect clearly. Algorithm 2 explains the
proposed method (A-RRT connect).

C. A-RRT CONNECT BASED ON TRIANGULAR
SEGMENTED-INTERPOLATION (A-RRT CONNECT TSI)
Triangular Midpoint Interpolation (TMI) is a method used
to enhance path length and smoothness in geometric shapes.
It is particularly useful when working with polygons, which
are typically made up of straight lines and sharp angles. The
basic idea behind triangular midpoint interpolation, as shown
in Fig. 5, is to add a new vertex at the midpoint of each existing
line segment in the polygon. This creates a new set of triangles
that can be used to interpolate new points along the polygon’s
path. By adding these new vertices, the overall path length is
increased and the polygon becomes smoother.

The algorithm for triangular midpoint interpolation can be
broken down into several steps:

1) Create a list of all line segments in the polygon.

2) For each line segment, find its midpoint and add a new
vertex at that location.

3) Create a new set of triangles using the existing vertices
and the newly added vertices.

4) For each new triangle, calculate the centroid (the aver-

qs.tart

FIGURE 5. Single-Phase Triangular Midpoint Interpolation Method [22].

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

Algorithm 2: A-RRT Connect

Input : start, goal, search_space, obstacles,
max_iterations, goal_distance_threshold,
line_length_threshold

Output: tree = [T]

start_tree = InitializeTree (start)
goal_tree = InitializeTree (goal)

for i = 1 to max_iterations do
random_nodel = SampleRandomNode

(search_space)

random_node2= SampleRandomNode
(search_space)

if not IsNodeInObstacle (random_node,

obstacles) then
nearest_nodel = (random_nodel, T)

nearest_node2 = (random_node2, T)

linel = LineSeq (nearest_nodel,
random_nodel)

line2 = LineSeqg (nearest_node2,
random_node2)

while IsLineIntersectObstacle
(linel, obstacles) and Length (linel) >

line_length_threshold do
random_nodel =

CalculateMidpoint(nearest_nodel,
random_nodel)
linel = LineSeg (nearest_nodel,
random_nodel)
end while
if Length (linel)>=line_length_threshold
then
AddNodeToTree (start_tree,
nearest_nodel, random_nodel)
if IsGoalReachable (random_nodel,
goal, obstacles,

goal_distance_threshold) then
AddGoalNodeToTree

(random_nodel, goal)
Return T
end if

end if
end if

end for

age position of its vertices) and add that point to the list
of new vertices.

5) Repeat steps 3-4 until the desired level of smoothness
is achieved.

Once the new vertices have been added and the new trian-
gles have been created, the path can be interpolated using a
variety of techniques. One common approach is to use linear
interpolation between adjacent vertices, which produces a
smooth path that follows the polygon’s original shape. In this

5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

work, as shown in Fig. 6, we modify the method of TMI
to Triangular Segment-endpoint Interpolation (TSI) which is
helped to enhance the path length besides the time and cost.
In algorithm 3, we start with a set of points that represent the
vertices of the path want to plan. Then divide the path into
segments by connecting every two consecutive vertices. This
will create a set of line segments that form the path, for each
set of three consecutive vertices, do the following:

« Divide the first line segment into smaller segments using
segment endpoint interpolation.

« Divide the second line segment into smaller segments
using segment endpoint interpolation.

o Connect the new vertices with straight lines, creating a
new set of line segments that form the smoothed path.

Next, for each pair of adjacent segments in the first and
second lines, do the following:

« Create a set of parallel lines for the pair of segments.

« For each pair of parallel lines, find the valid connection
between the endpoints that do not intersect with any
obstacles.

o Connect the endpoints of the segments with the valid
connection, forming a path that avoids obstacles.

Finally, connect the endpoints of all the connected seg-
ments to form a complete path that avoids obstacles and
solves the issue of a sharp path. Algorithm 3 describes a
method for planning a path between a set of vertices while
avoiding obstacles.

D. DYNAMIC A-RRT-CONNECT TSI (DA-RRT-CONNECT TSI)
In the proposed work, Dynamic Window Approach (DWA) is
used as a local planner to find the path between two points
while avoiding the dynamic obstacles as the robot moves in
real-time depending on the Lidar scan, which makes it well-
suited for applications where dynamic obstacles are expected
to appear frequently and unpredictably. The DWA Planner
algorithm generates a set of possible trajectories based on the
dynamic window concept, which defines a range of achiev-
able velocities and angular velocities for the robot. The algo-
rithm evaluates each trajectory by calculating a cost function
that considers several factors such as distance to the destina-
tion, proximity to obstacles, and smoothness of the trajectory.
After evaluating all possible trajectories, the DWA Planner
algorithm selects the optimal path for the robot to follow with
the lowest cost. Overall, the DWA Planner algorithm provides
an effective and efficient approach to path planning for mobile
robots and autonomous vehicles, enabling them to navigate
through complex and dynamic environments.

In this research, we modify the planner as shown in Fig. 7
to start the path-finding process from the current stop position
and update the list of obstacles in the environment using the
UpdateObstacles algorithm before each iteration. This will
allow the algorithm to adapt to changes in the environment
and find a path around dynamic obstacles.

The function of dynamic obstacle avoidance is imple-
mented in the following part of the algorithm:

6

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

Algorithm 3: Triangular Segment Interpolated (TSI)

Input : initial_path, seg_size
Output: smoothed_path

path = Get SegPath (initial_path)
changed = True
while changed do
changed = False
smoothed_path =[]
i=0
pl = path[i]
smoothed_path.append(p1)
while i < Len (path)-2 do
p2 = path[i+1]
p3 = path[i+2]
newline = LineSeq (pl, p3)
if not IntersectObs (newline) then
pl=p3
i=i+2
smoothed_path.append(p3)
changed = True
else
linel = LineSeq (pl,p2)
line2 = LineSeqg (p2,p3)
segmentsl = Int (Len (linel) / seg_size)
segments2 = Int (Len (line2) / seg_size)
if segments1==0 OF segments2==0 then
smoothed_path.append(p2)
pl =p2
i=i+1
else
newpl = pl + seg_size
newp3 = p3 — seg_size
newline = LineSeqg (newpl, newp3)
while IntersectObs (newline) and
Dist (newpl,p2) > seg_size and
Dist (newp3,p2) > seg_size do
newpl = pl + seg_size
newp3 = p3 — seg_size
newline=LineSeg
(newpl,newp3)
end while
if Dist (newpl,p2) > seg_size and
Dist (newp3,p2) > seg_size then
smoothed_path.append(newpl)
smoothed_path.append(newp3)
pl =newp3
i=i+1
changed = True
else
smoothed_path.append(p2)
pl=p2
i=i+1
end if
end if
end if

end while

end while VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

T1-start
®

T2-start

T1-start I

T2-start

T1-start

/J-l

T2-start

(©

FIGURE 6. The Mechanism of TSI (a) Initial Path (b) Single-Phase Path
() Multi-Phase Path.

UpdateObstacles(obstacles)
{

obstacles)

The UpdateObstacles function updates the list of obstacles
in the environment, which is used by the CalculateOccu-
piedSpaces function to check the obstacle area for each new
node. This function is used to steer the new nodes away from
obstacles, allowing the algorithm to adapt to changes in the
environment and find a path around obstacles. To re-plan the
path from the current position to the next valid position, we
modify the planner as follows:

1) Store the current position of the robot in a variable
currentPosition.

2) After updating the list of obstacles, find the nearest
node in the trees to the currentPosition using the Find-
NearestNode function.

3) Start the path-finding process from the nearest node
in the trees (global path), instead of the start and goal
nodes, by updating the start and goal variables.

4) Repeat the path-finding process until a valid path is
found, or until a maximum number of iterations is
reached.

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

DWALocalPlanner = CalculateOccupiedSpaces(newNode,

Goal

(a)

(b)

(©)

FIGURE 7. Dynamic Path Planning (a) Optimal Global Path (b-c) Local
planning within Dynamic Map.

The algorithm of (A-RRT-connect TSI) is used as a global
planner to generate an optimized path between the start and
goal points, then handled the dynamic obstacles using a local
planner of DWA to re-plan the path from the current stop po-
sition to the next valid position by finding the nearest node on
the global path from the current position, then extend the sub-
new path locally. Dynamic A-RRT-connect TSI introduces a
high-level overview of how one could use the DWA planner
to re-plan the path in response to dynamic obstacles. Here is a
more detailed explanation of the steps basing on the proposed
method through the flowchart in Fig. 8.

The proposed algorithm has several advantages compared
to other path planning methods. It is able to handle dynamic
environments with moving obstacles, and it can generate
smooth, collision-free paths even in cluttered environments.

IIl. EXPERIMENTS AND RESULTS

The experiments were conducted on an Intel Core i7 laptop
with 8GB of RAM and an NVIDIA GeForce GTX graphics
card, running Ubuntu 20.04. The static experiments were
conducted using three different complexity maps, each with
varying levels of obstacles and challenges for the path plan-
ning algorithm. The maps for the static experiments were

7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

)
!

Imitialize Environment
Parameters

I

Explore Environment
Using (A-RRT) Algorithm

'

Use the Scheme of
Bi-directional Search

Is the Two
Trees Met?

Generate Global Path
Using (A-RRT connect)

v

Divide the Optimized Path
to a series of Segment points

v

Optimize the Resulted Global
Path Using (TSI)

»| Move the Robot Along
the Optimized Path

Are there
Obstacles in the
Range of Scan?

Use DWA Planner to
Search Locally Next Valid
Point While Avoiding
Dynamic Obstacles

v

Move Robot One
Segment Forward

Does Robot
Reach the
Goal?

(=)

FIGURE 8. Flowchart of the Proposed Method steps.

loaded into the Rviz environment within the Robotic Oper-
ating System (ROS) framework, and the path planning algo-
rithm was run for each map. The results were recorded and
analyzed to determine the performance of the algorithm in
static environments. For the dynamic experiment, the Gazebo
simulation was used to introduce changes in the environment,
such as moving obstacles, while the algorithm was running.
The algorithm’s ability to find a path while considering these
dynamic changes was evaluated and compared to the results
from the static experiments. The robot used in the experiment
was equipped with sensors for obstacle detection and map-

ping.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

A. EXPERIMENT-1 (STATIC ENVIRONMENTS)

The comparisons of this experiment have been imple-
mented within a non-holonomic indoor environment of size
(1500*1500 cm) that has local minima regions and a crowd
of static obstacles for (1000 runs). The experiment among
different methods was conducted based on the (time, cost,
path length, and standard deviation) with a bias of (0.25). The
start and goal points are acted by red circles, and the trees by
blue and green lines. Finally, the orange line represents the
initial path, while the red line is the optimum one.

« First comparison, as displayed in Fig. 9, shows the tree
exploration of (RRT and A-RRT), and how the nodes
spread extensively in the first map compared to the
spread of the A-RRT method for the same map, which re-

VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

TABLE 1. Experimental Results Comparison between (RRT and A-RRT)

Static Map | Method | Time (sec.) | Time Std. Dev. | Cost (node)
RRT 0.424 0.368 841

MAP-1 R T 0082 0.041 148
A-RRT 3.790 1.874 4534

MAP-2 A RRTT 0662 0389 2645

TABLE 2. Experimental Results Comparison between (RRT-Connect and
A-RRT-connect)

Static Map Method Time (sec.) | Time Std. Dev. | Cost (node)
MAP-1 RRT-Connect 0.210 0.211 410
A-RRT-Connect 0.042 0.041 148
MAP-2 RRT-Connect 1.233 0.509 3172
A-RRT-Connect 0.580 0.472 823

duces the cost consumed in the process of searching the
goal. The same approaches were followed in the second
map, where RRT showed a wider spread compared to the
first map, due to the high map complexity as well as the
presence of local minimum regions where the goal point
is there. The results listed in Table 1 illustrated that the
A-RRT convergence time that is needed to find the goal
has been improved in both environments.

« In the second comparison, as illustrated in Table 2, we
tested (RRT-connect and A-RRT-connect) techniques in
the same aforementioned environments. Fig. 10 illus-
trates the directional tree exploration of each method and
highlights how extensively the nodes are distributed in
both maps when compared to the spread of the proposed
method for the same map. This reduced the cost incurred
during the search for the goal. The same strategies were
also applied in the second map, where the RRT-connect
displayed a more spread than in the first map, due to
the local minimum regions. Consequently, the proposed
method’s convergence time to reach the goal was en-
hanced in both environments.

o Third comparison, as illustrated in Table 3, focuses on
the path length obtained through the previously de-
scribed search operations. The cost of generating the
initial path (orange line) in both RRT and RRT-connect
is substantial when compared to the cost of generating
the optimized path (red line) using the proposed A-RRT
connect. Furthermore, the time required to create the
final optimized path is comparable to that of RRT and
RRT-connect. Fig. 11 displays the path length of each
method and demonstrates how the optimized path (red
path) is shorter and smoother than other paths.

B. EXPERIMENT-2 (DYNAMIC ENVIRONMENT)

This experiment, as illustrated in Table 4, has been tested on
a dynamic map of size (500%500 cm), and the results of (100
runs) have been evaluated depending on the t-test measure.
The time and cost values had a narrow range between the
highest and lowest values. Furthermore, the value of the
standard deviation was small, and the average of the absolute
value from the median was convincing also.

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

TABLE 3. Experimental Results Comparison of (RRT, RRT-Connect, and
A-RRT-connect TSI)

Static Map Method Path Length (cm) | Std. Dev.
RRT 1698 34530
MAP-1 RRT-Connect 159 369.02
A-RRT-Connect TST 1398 73534
RRT 77 7131
MAP-2 RRT-Connect 7360 3172
A-RRT-Connect TSI 2257 257.39

TABLE 4. T-test Comparison based on Robot Velocity (13 cm/sec) and
Decision Time

DA-RRT-connect TSI | Time (sec.) | Cost (node) | Path Length (cm)

Mean 59.153 164 691
Median 56.153 112 652
Standard Deviation 12.251 151 66
Highest Value 70.076 951 833
Lowest Value 54.307 93 628
Average Absolute 23397 47 272

Deviation from Median

In this part of the experiment, we replicated the situation
of local planning in a dynamic environment depicted in Fig.
12. The paths generated, particularly in real-time, demon-
strate the adaptable nature of this method in the presence
of unforeseen obstacles across different scenarios. The sim-
ulation was implemented utilizing the ROS framework and
TURTLEBOT3 model (burger). In the Gazebo view, static
obstacles are shown as grey blocks, dynamic obstacles as grey
cylinders, and the Lidar range is displayed as blue. In the Rviz
view, the global path is depicted as a red line, while the local
path is represented by a green one. The start and goal positions
are indicated by red and green circles, respectively.

IV. CONCLUSION

In this paper, we proposed a new dynamic hybrid path plan-
ning method that combines the bi-directional Adaptive RRT
algorithm with the Triangular Segmented Interpolation (TSI)
and the Dynamic Window Approach (DWA). We enhanced
the performance of the method by extending it to work adap-
tively in both directions, from the initial state to the goal point
and likewise from the final state to the start point. Then, our
method leverages the fast tree exploration of the Adaptive-
RRT connect algorithm and the obstacle-avoiding capabilities
of the DWA algorithm to find a collision-free path to the
goal promptly. The results of our simulations show that the
proposed method is able to find a safe and efficient path
promptly, even in dynamic environments with varying levels
of noise and obstacles. The method is especially useful in
scenarios where the environment is changing constantly and
re-planning is needed. Experiments conducted in a variety
of environments show that our proposed method consistently
outperforms computation time, cost, and path optimality.

In future work, there are several directions in which the
proposed method can be further improved. One possibility is
to incorporate additional information about the environment,
such as the curvature of the obstacles or the terrain, to guide

9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

I E E E A content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) (b) © (d)

FIGURE 11. Path length for Each Method in (a-c) MAP-1 (d-f) MAP-2.

10 VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

oo

> |

l |

() (k) 0]
FIGURE 12. Screen Snapshots of Path Planning Simulation in a Dynamic Map (a,b,c,g.h,i) Rviz View (d,e.f.j.k,I) Gazebo View.

VOLUME 11, 2023 11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

IEEE Access

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the tree expansion and path smoothing. Another possibility
is to use machine learning techniques, such as reinforcement
learning or imitation learning, to adapt the parameters of the
method to the specific environment and improve its perfor-

mance.
REFERENCES
[1] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45,

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

no. 3, pp. 52-57, 2002.

T. T.Mac, C. Copot, D. T. Tran, and R. De Keyser, ““Heuristic approaches in
robot path planning: A survey,” Robotics and Autonomous Systems, vol. 86,
pp. 13-28, 2016.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

S. Al-Ansarry and S. Al-Darraji, “Mt hybrid rrt-a* regression-based: An
enhanced path planning method for an autonomous mobile robots,” Jour-
nal of Basrah Researches ((Sciences)), vol. 47, no. 1, 2021.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, *“‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,”
IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp. 566—
580, 1996.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846-894, 2011.

S. M. LaValle et al., ““Rapidly-exploring random trees: A new tool for path
planning,” 1998.

J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, 2000, pp.
995-1001.

S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for
optimal motion planning,” Robotics Science and Systems VI, vol. 104,
no. 2, 2010.

S. Klemm, J. Oberldnder, A. Hermann, A. Roennau, T. Schamm, J. M.
Zollner, and R. Dillmann, “Rrt-connect: Faster, asymptotically optimal
motion planning,” in 2015 IEEE international conference on robotics and
biomimetics (ROBIO). 1EEE, 2015, pp. 1670-1677.

L. Hong, C. Song, P. Yang, and W. Cui, ‘““Two-layer path planner for auvs
based on the improved aaf-rrt algorithm,” Journal of Marine Science and
Application, vol. 21, no. 1, pp. 102-115, 2022.

P. Xin, X. Wang, X. Liu, Y. Wang, Z. Zhai, and X. Ma, “Improved
bidirectional rrt* algorithm for robot path planning,” Sensors, vol. 23,
no. 2, p. 1041, 2023.

M. McCourt, C. T. Ton, S. S. Mehta, and J. W. Curtis, “‘Adaptive step-length
rrt algorithm for improved coverage,” in AIAA Guidance, Navigation, and
Control Conference, 2016, p. 0638.

N. Lin and Y.-1. Zhang, “An adaptive rrt based on dynamic step for uavs
route planning,” in 2014 IEEE 5th International Conference on Software
Engineering and Service Science. 1EEE, 2014, pp. 1111-1114.

D.-H. Kim, Y.-S. Choi, T. Park, J. Y. Lee, and C.-S. Han, “Efficient path
planning for high-dof articulated robots with adaptive dimensionality,” in
2015 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 2355-2360.

S. Zhang, P. Jiexin, S. Yanna, and L. Sun, “Smooth path planning for
mobile robot based on adaptive rapidly-exploring random tree,” in 2018
IEEE International Conference on Information and Automation (ICIA).
IEEE, 2018, pp. 591-596.

S. Zhang, J. Pu, Y. Si, and L. Sun, “Path planning for mobile robot using
improved adaptive rapidly-exploring random tree,” in 2019 International
Conference on Control, Automation and Information Sciences (ICCAIS).
1EEE, 2019, pp. 1-6.

T. Zeng and B. Si, ““Mobile robot exploration based on rapidly-exploring
random trees and dynamic window approach,” in 2019 5th International
Conference on Control, Automation and Robotics (ICCAR). 1EEE, 2019,
pp. 51-57.

J.-G. Kang, Y.-S. Choi, and J.-W. Jung, “A method of enhancing rapidly-
exploring random tree robot path planning using midpoint interpolation,”
Applied Sciences, vol. 11, no. 18, p. 8483, 2021.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

[20] T. Jia, S. Han, P. Wang, W. Zhang, and Y. Chang, “Dynamic obstacle
avoidance path planning for uav,” in 2020 3rd International Conference
on Unmanned Systems (ICUS). 1EEE, 2020, pp. 814-818.

[21] J.Dai, D. Li, J. Zhao, and Y. Li, “Autonomous navigation of robots based
on the improved informed-rrt algorithm and dwa,” Journal of Robotics,
vol. 2022, 2022.

[22] T.-W. Kang, J.-G. Kang, and J.-W. Jung, “A bidirectional interpolation
method for post-processing in sampling-based robot path planning,” Sen-
sors, vol. 21, no. 21, p. 7425, 2021.

[23] A. Shareef and S. Al-Darraji, “Dynamic multi-threaded path planning
based on grasshopper optimization algorithm,” in 2022 Iraqi International
Conference on Communication and Information Technologies (IICCIT).
IEEE, 2022, pp. 159-164.

[24] ——, “Grasshopper optimization algorithm based path planning for au-
tonomous mobile robot,” Bulletin of Electrical Engineering and Informat-
ics, vol. 11, no. 6, pp. 3551-3561, 2022.

[25] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,no. 1,
pp. 23-33, 1997.

[26] S. Al-Ansarry and S. Al-Darraji, “Hybrid rrt-a*: An improved path plan-
ning method for an autonomous mobile robots.” Iraqi Journal for Electri-
cal & Electronic Engineering, vol. 17, no. 1, 2021.

SUHAIB AL-ANSARRY received the bachelor de-
gree in Computer Science, Master’s degree in Ar-
tificial Intelligence from the University of Basrah,
in 2007 and 2021 respectively. He is currently a
Lecturer with the University of Basrah-Iraq. His
research interests include Robotic Navigation, Mo-
tion Control, and Path Planning.

SALAH AL-DARRAIJI is an Assistant Professor at
the Department of Computer Science, College of
Education for Pure Sciences, University of Basrah.
He studied Computer Science at the University of
Basrah (Iraq). He got a Master degree in Computer
Science from the same university. He was awarded
scholarship by the MoHESR (Iraq) - DAAD (Ger-
many) cooperation program to complete his PhD
in the Robotic Research Lab at the University of
Kaiserslautern. During his PhD, the focus of his
research is on the nonverbal communication with humanoid robot. He com-
pleted his PhD in the year 2016.

His research interests includes artificial intelligence, machine learning,
deep learning, computer vision, robotics, and humanoid robots. He can be
contacted via aldarraji @uobasrah.edu.iq.

ASMAA SHAREEF received her BSc in com-
puter science from the University of Bas-
rah, Iraq, in 2006. She received her MSc
degree from the same department in Arti-
ficial Intelligence and robotics. She is cur-
rently a Lecturer with the University of Basrah-
Iraq.

Her research interests include machine learn-
ing, deep learning, Artificial intelligence, and
Robotics. She can be contacted at the emails:
asmaa.shareef @uobasrah.edu.iq and asmaa.sharef @ gmail.com.

VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290897

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

DHAFER G. HONI received the Bachelor’s in
2013 and Master’s degree in 2016 from University
of Thi-Qar , iraq. His research interest in Artificial
intelligence, Machine Learning, Deep Learning,
Neural Networks , Computer Vision & Medical
image processing. He published many articles that
indexd in Scientific Citation Index (SCI)and Sco-
pus. Now He work as a rapporteur in Computer
Sciences Department College of education for pure
science- basrah University., iraq.

FRANCESCA FALLUCCHI is a researcher of Uni-
versity of Rome GUGLIELMO MARCONI. From
01/07/2017 to 31/12/2017 she is an information
scientist in the Digital Information and Research
Infrastructures (DIRI) at the Georg Eckert Institute
where she works in the project “WorldViews”.

In 2015, she was an employee at the company
4IT Solution S.R.L. and she took care of the re-
alization of systems for the management of big
data from structured and unstructured open data.
From 2012 to 2014 she was an employer-coordinated freelance worker at
AgID (Agenzia per I’italia digitale) where she has carried out research and
development activities in Open Data with semantic techniques. Her main
contribution is the development of methods for the knowledge discovery
from structured and unstructured PA data. In particular, she has supported
the development of the PA search engine and she has contributed to build
and to populate the PA knowledge base and to discovery e-services in the
public sector. She has got the PhD in Computer Science and Engineering at
the University of Rome Tor Vergata, with the thesis “Exploiting Transitivity
in Probabilistic Models for Ontology Learning”. She participated in the
following research projects: italia.gov.it, D4Science and Diligent. She was
author of many publications in conferences and journals in the Semantic Web,
NLP, machine learning, Digital Humanities and related research fields.

VOLUME 11, 2023 13

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

