# Applications of $q$-difference equation and homogeneous $q$-shift operator ${ }_{r} \Phi_{s}\left(D_{x y}\right)$ in $q$-polynomials 

Samaher A. Abdul-Ghani, Husam L. Saad *<br>Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq

## ARTICLE INFO

## MSC:

05A30
33D45
Keywords:
Generating function
Mehler's formula
Rogers formula
A transformational identity


#### Abstract

In this paper, the generalized homogeneous $q$-shift operator is constructed. The $q$-difference equation is then utilized to construct numerous polynomial $q$-identities, such as the generating function and its extension, Rogers' formula and its extension, and Mehler's formula and its extension for the generalized $q$-hypergeometric polynomials. Also demonstrated is a transformational identity involving generating functions for the generalized $q$-hypergeometric polynomials.


## 1. Introduction

Basic (or $q$-) polynomials, $q$-series, and $q$-hypergeometric polynomials are fundamental to many branches of mathematical and physical disciplines. The most applications are included in statistics, mechanical engineering, combinatorial analysis, the theory of heat conduction, cosmology, non-linear electric circuit theory, quantum mechanics, Lie theory, and finite vector spaces (see ${ }^{1-4}$ ). Precisely, we concern with the technique of $q$-difference equations as one of the fundamental concepts of $q$-calculus. It is basically related to use a function $f$ that should satisfy the $q$-difference equation. However, this may difficult to be proved in some aspects as this happened in some studies (see ${ }^{2,3,5,6}$ ). In this study, we will generalize homogeneous $q$-shift operator which could help to prove satisfying the $q$-difference equations by the $f$ function we have. We will concern with using the notations and definitions of $q$-series concepts in ${ }^{7}$ which is practically assumed that $0<q<1$.

The $q$-shifted factorial is defined for $a \in \mathbb{C}$ as:

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

The multiple $q$-shifted factorials is given $\mathrm{by}^{7}$ :

$$
\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{m}=\left(a_{1} ; q\right)_{m}\left(a_{2} ; q\right)_{m} \cdots\left(a_{r} ; q\right)_{m}
$$

where $m \in \mathbb{Z}$ or $\infty$.
The basic hypergeometric series ${ }_{r} \phi_{S}$ is presented as follows ${ }^{7}$ :

$$
{ }_{r} \phi_{s}\left(\begin{array}{l}
\alpha_{1}, \ldots, \alpha_{r} \\
\beta_{1}, \ldots, \beta_{s}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}, \ldots, \alpha_{r} ; q\right)_{n}}{\left(q, \beta_{1}, \ldots, \beta_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} x^{n},
$$

where $q \neq 0$ when $r>s+1$. Note that

$$
{ }_{r+1} \phi_{r}\left(\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{r+1} \\
\beta_{1}, \ldots, \beta_{r}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}, \ldots, \alpha_{r+1} ; q\right)_{n}}{\left(q, \beta_{1}, \ldots, \beta_{r} ; q\right)_{n}} x^{n}
$$

The $q$-binomial coefficient is defined as ${ }^{7}$ :

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} \quad \text { for } \quad 0 \leqslant k \leqslant n
$$

where $n, k \in \mathbb{N}$.

[^0]https://doi.org/10.1016/j.padiff.2023.100536
Received 1 May 2023; Received in revised form 26 June 2023; Accepted 3 July 2023


[^0]:    * Corresponding author.

    E-mail addresses: samaheradnanmath@gmail.com (S.A. Abdul-Ghani), hus6274@hotmail.com (H.L. Saad).

