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MSC: In this paper, the generalized homogeneous g-shift operator is constructed. The g-difference equation is
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1. Introduction

Basic (or g-) polynomials, g-series, and g¢-hypergeometric polynomials are fundamental to many branches of mathematical and physical
disciplines. The most applications are included in statistics, mechanical engineering, combinatorial analysis, the theory of heat conduction,
cosmology, non-linear electric circuit theory, quantum mechanics, Lie theory, and finite vector spaces (see'~*). Precisely, we concern with the
technique of g¢-difference equations as one of the fundamental concepts of g-calculus. It is basically related to use a function f that should satisfy
the ¢-difference equation. However, this may difficult to be proved in some aspects as this happened in some studies (see®*>°). In this study, we
will generalize homogeneous ¢-shift operator which could help to prove satisfying the g-difference equations by the f function we have. We will
concern with using the notations and definitions of g-series concepts in’” which is practically assumed that 0 < ¢ < 1.

The g-shifted factorial is defined for a € C as:
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The multiple g-shifted factorials is given by’:
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where m € Z or co.
The basic hypergeometric series ,¢, is presented as follows’:
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where g # 0 when r > s + 1. Note that
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The g-binomial coefficient is defined as’:
n (4: ),
=————— for 0<k<n,
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where n,k € N.
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