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Abstract 

   In this study, cubic B-spline method is used with a new approximation of the second derivative to find a numerical solution 
for boundary value problems of the second order. An error analysis was performed for the method and the accuracy of the 
method was tested via four numerical examples and the results were compared with the exact solution and cubic B-spline 
method.  
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1. Introduction 

    Splines, especially B-splines, play an important role in the areas of mathematics and engineering today [2],[17]. Splines are 

popular in computer graphics because of their finesse, flexibility and accuracy. Historically, Isaac Jacob Schoenberg  

discovered splines in 1946 [ 6-10], his work motivated other scientists such as Carl de Boor. In the early seventies de Boor [3], 

[4], [5] discovered a recursive definition for splines. Birkhoff  and de Boor (1964) [1] investigated  the error bound and 

convergence of of spline interpolation. Manguia and Bhatta (2015) [18] used cubic B-spline(CBS) functions for solution of 

second order boundary value problems(BVPs). Reza and Akram [23], applied of cubic B-splines collocation method for solving 

nonlinear inverse parabolic partial differential equations. Suardi et. al. [26] used the cubic B-spline solution of two-point 

boundary value problem using HSKSOR iteration and they presented solutions of two-point boundary value problems by using 

quarter-sweep SOR iteration with cubic B-Spline scheme[27] . 

In this study, approximate solutions was found to problems of second order linear arrangement using B-cubes with a new 

approximation of the second derivative. Lang and X. Xu[16], introduced a new cubic B-spline method for approximating the 

solution of a class of nonlinear second-order boundary value problem with two dependent variables. His work was a motivation 

to other mathematicians such Tassaddiq and others [28] to used his method for solve non-linear differential equations arising in 

visco-elastic flows and hydrodynamic stability problems. 

The presented scheme is based on new approximations for the second order derivatives. The approximation for second order 

derivative is calculated using appropriate linear combinations to approximate the typical B-spline y x  at neighbouring 

values. In the past two decades, several numerical techniques have been used to explore the numerical solution of linear BVP 

but as far as we know, this new approximation has not been used for this purpose before for solving BVPs. This work is 

presented as follows. Section 2 is explanation about the cubic B-splines schemes. We presented the new approximation for  

y x  in Section 3.In Section 4, we descripted of the numerical method for new cubic B-spline. The error analysis of the 

method is described in Section 5. Section 6 tests numerical experiments to demonstrate the feasibility of the proposed method, 

and this article ends with a conclusion in Section 7. 



            Journal of Iraqi Al-Khwarizmi Society (JIKhS)   Volume:4  Issue: Special   July 2020   pages: 39-56   

Fifth      International Scientific Conference of Iraqi Al-Khwarizmi Society In Karbala  13-14 April 2020 

40 

 

 

2. Derivation of the Cubic B-spline Schemes 

Let n  be a positive integer and 0 1 na x x x bL  be a uniform partition of 

, ,, i ox x ih ia b and 
b a

h
n

. The typical third degree B-spline basis functions are defined: [11-14], 

[24-26] 
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,Y x
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which satisfies the prescribed interpolating conditions 
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ic s  are finite constants yet to be determined.  

For simplicity, we express the CBS approximations, ( ), ( )Y x Y x  and ( )Y x by  ,j jY t   and  jT ,  respectively. The 

cubic B-spline basis function (1) together with (2) and by using Table (1)  gives the following relations,                                                                                                      
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      4 (5)1 ,
180j j jyt y x h x L                                                                         (6)  

     2 (4) 4 (6)1 1
12 360j j j jy yT y x h x h x L  .                                                      (7)

, we haveand (7)From (6)

2( ) ( ).j jT y x O h and 
4( ) ( )j jt y x O h  

This gives enough motivation to craft a better approximation to, the   ( ).y x
 

Table 1: Coefficients of cubic B-spline and its derivative at nodes ix .  
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3. The New Approximation for  y x

In order to formulate a new approximation to y x , we  use (7), to establish the following  expression for  1 ,jT  in 

knots,  , 1,2,3, , 1,jx j nL    [15-16] 

2 (4) 4 (6)
1 1 1 1

1 1 ,
12 360j j j jT y x h y x h y x L  

(3) 2 (4) 3 (5)5 1 .
12 12j j j jy yy x h x h x h y x L  

 Similarly, 

(3) 2 (4) 3 (5)
1

5 1 ,
12 12j j j j jyT y x h y x h y x h x L  
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be a new approximation to jy x   such that, jT let 

                1 2 1 3 1 .j j j jT B T B T B T%
                                                                    

 (8)  

Choosing three parameters 1 2,B B and 3B  so that the error order of  jT% is as high as possible , we obtain 

1 2 3 1,B B B  

     2 3 0,B B  

1 2 35 5 0.B B B  

Hence   1 6

5B , and 2 3

1 .
12

B B  

The expression (8) takes the following form, 

 1 2 1 3 1 2 1 1 22

1 8 18 8 .
12j j j j j j j j jT B T B T B T c c c c c

h
%                       (9)                                  

Now we approximate y x at the knot 0x  using four neighboring values, such that. 

           0 0 0 1 1 2 2 3 3 ,T B T BT B T B T%                                                                (10) 

where. 
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The expression (9) yields the following four equations, 
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0 1 2 35 23 53 0,B B B B  

1 2 314 51 0.B B B
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Using these values in (10), we have
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h

%                                     (11)
 

the same style, rounding is presented at node nx    by  working inWhen

(12)
           4 3 2 1 12

1 6 14 28 33 14 ,
12 n n n n n nT c c c c c cn h
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4. Description of the Numerical Method.  

   In this section, consider the boundary value problems, 

                      
( ) ( ) ( ) ( ) ( ) ( ) ( )p x y x q x y x r x y x f x

                        (13) 
 

  with boundary conditions                                                                                                                           

            
( ) , ( ) .y a y b   

Where ( ) 0, ( ), ( )p x q x r x  and ( )f x  are continuous real-valued functions on the interval [ , ]a b .
 

Let Y x  be the cubic B-spline solution to (14) satisfying the interpolating conditions such that 

                 
1

1

.
n

i i
i

Y x c B x                                                                 (15)   

Discretize Eq.(14) in knots , 1,2, , 1,jx j nL  we get, 

     1 1 1 .j k j j k j j k j jY Y Yp x x q x x r x x f x
                            

 (16)  

Using Eqs.(3)-(4) and (9) in Eq.(16) ,we have     
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Similarly, at the knots  0x    and nx  , the following equations are obtained 
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                              (19)                   

The boundary conditions are giving of the following two equations        

          1 0 14 6 ,c c c                                                                              (20) 

          1 14 6 .n n nc c c                                                                           (21) 

In This way  they  have a system of  3n  linear equations .Eqs.(17)-(19)   which can be written in matrix form as 

                .Ac b                                                 (22) 

Where  A  is the coefficients matrix given by  
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and 1 0 1 1,, , , , T

n ncc c c c cL ,
 

2 2 2 2
0 1 1[6 ,12 ( ),12 ( ),...,12 ( ),12 ( ),6 ] ,T

n nb h f x h f x h f x h f x  

since A is aa non-singular matrix,  so can solve the system  Ac b    for 1 0 1 1 1, , ,... , ,n n nc c c c c c
 

substituting 

these values in Eq. (15), to get the required approximate solution. 

Error Analysis 5. 

 Now, the error analysis is investigated by using the cubic B-spline approximations  Eqs.(3)-(5)  and  Eq.(9) the following  

relationships  can be established 

    1 1 1 1

1 4 1 1 ,
6 6 6 2j j j j jh Y Y Y Yx x x x Y x                                                

(23)  

    2
1 1 1 .

1 7 8 2
2j j j j j jYh x Y x Y x Y x h Y x Y x

    
                 (24)  

Moreover ,we have 

  3
1 112 6 ,j j j j jh Y x Y x Y x h Y x Y x

                                  
 (25) 

  3
1 112 6 .j j j j jh Y x Y x Y x h Y x Y x                                 (26) 

Where  
j j

Y x and Y x   indicate approximate values of in  jY x  in 1[ , ]j jx x  and 1[ , ]j jx x
 
respectively. 

, ,j jE Y x Y x Z Using the operator notation 

Equation (19) can also be written as  

1 11 4 1 1 ,
6 6 6 2j jh E E Y x E E y x Hence 

             
11 13 4 ,j jhS x E E E E s x                                            (27)  

Using , ,hD dE e D
dx

  we can get it  

2 2 4 4 6 6
1 2 1 ,

2! 4! 6!
hD hD h D h D h DE E e e L  
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3 3 5 5 7 7
1 .2

3! 5! 7!
hD hD h D h D h DE E e e hD L  

Therefore, Eq. (27) can be expressed  as. 

1
2 3 4 5 2 2 4 4 6 6

1 ,
3! 5! 6 72 2160j j

h D h D h D h D h DY x D y xL L  

Simplify, we get. 

4 5 6 7

,
180 1512j j

h D h DY x D y xL  

Hence   

   4 (5)1 ,
180j j jY x y x h y x L

                                                            
 (28) 

Similarly, writing  Eq. (20) in operator notation we have   

2 1 11 7 8 2 ,
2j j jh Y x E E y x h E y x  

3 3 4 4 5 5 6 6
2 23 2

2 6 40 180 j

h D h D h D h DhD h D y xL  

3 2 4 3 5 4 6 5
2 .3

2 6 24 120 j

h D h D h D h Dh h D y xL  

Simplify the relationship above, we have.   

   3 (5) 4 (6)1 1 .
60 360j j j jY x y x h y x h y x L                                               (29) 

Using the same method  in Eq.(21) it can also be written, 

   2 (5)1 1 .
2 12j j j

j j
Y x y x y x y x h y x L%                                      (30)  

Let us define the term error   ,e x Y x y x   using  relations  (24) and (26) in the Taylor series expand  e x    

we get   
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2

5 (5) 6 (6)5 2 1
.

360 720j j je x h h y x h y x L                                     (31)  

Where 0,1 , from Eq. (31) The new B-spline approximation is 5O h
 
accurate. 

6. Numerical Examples 

   In this section we illustrate the numerical techniques discussed in the previous sections by the following two boundary 

value problems of  Eqs.(1-2) , in order to illustrate the comparative performance of our method over other existing methods. 

We now consider four numerical examples to illustrate the comparative performance of our method. All calculations are 

implemented by Maple. 

Example 1: We consider a linear boundary value problem with constant coefficients :[18]  

        ( ) ( ) 6 ( ) ,y x y x y x x
 

with boundary conditions (0) 0, (1) 1,y y  

The exact solution to boundary value problem is 

            
2 3 3 2

3 2

(43 ) (43 ) 1 1
( ) .

36( ) 6 36

x xe e e e
y x x

e e  

The numerical result of the example (1) are presented in the Table (2)  for  with 20n  .In Table 3 the observed 

maximum absolute errors and compared our result with the results given in cubic b-spline method [18]. Figure 1 shows the 

comparison of the exact and numerical solutions for 20n . 

Table 2: The numerical solutions and exact solution of example (1). 
 

 

 

 

 

 

 

 

 

 

x New Cubic B-Spline   Cubic B-Spline[18]   
0 0 0 

0.2 5.59E-8 2.3534E-5 
0.3 6.23 E-8 4.41179E-5 
0.4 6.06 E-8 6.46773E-5 
0.5 5.44 E-8 8.19815E-5 
0.6 4.57 E-8 9.30536E-5 
0.7 3.59 E-8 9.47169E-5 
0.8 2.54 E-8 8.31905E-5 
0.9 1.52 E-8 5.36906E-5 
1 0 0 
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Table 3: Comparison of the error proposed method with CBS[18] for example(1) . 

 

 

 

 

 

 

 

 

Figure 1 : Comparison of the exact and the proposed method of example(1) for n=20 

 

Example 2:  We consider a linear boundary value problem with constant coefficients[18], 

2( ) ( ) 5 ( ) 6cos(2 ) 7sin(2 ),y x y x y x x x  for 0 ,
4

x  

with boundary conditions 

   (0) 4, ( ) 1
4

y y . 

The exact solution to boundary value problem is 

                    ( ) 2(1 )cos(2 ) sin(2 ).xy x e x x  

x New Cubic B-Spline  Exact Solution 
0 0 0 

0.2 0.1074285058 0.1074285617 
0.3 0.1636254812 0.1636255435 
0.4 0.2267411540 0.2267412146 
0.5 0.3006953149 0.3006953693 
0.6 0.3896566891 0.3896567348 
0.7 0.4982584629 0.4982584988 
0.8 0.6318199536 0.6318199790 
0.9 0.796586555 0.7965865702 
1 1 1 
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The numerical result of the example (2) are presented in the Table 4  compared our result  with the exact solution.   In Table 
5 the observed maximum absolute errors and compared our result with the results given in cubic B-spline method [18]. Figure 2 

shows the comparison of the exact and numerical solutions for 20n  . 

Table 4: The numerical solutions and exact solution of example (2) . 

x New Cubic B-Spline  Exact Solution 

80
 

3.989348208 3.9893481701 

3

80
 

3.906796607 3.9067967056 

5

80
 

3.748792026 3.7487922376 

7

80
 

3.523205708 3.5232056151 

9

80
 

3.238294433 3.2382892895 

11

80
 

2.902583355 2.9025837374 

13

80
 

2.524830455 2.5248342470 

15

80
 

2.113912251 2.1139139602 

17

80
 

1.678750121 1.6787494845 

19

80
 

1.228243494 1.2282459716 
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Table 5: Comparison of the error proposed method with CBS[18] for example(2) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : Comparison of the exact and the proposed method of example(2) for n=20. 

Example 3:  We consider a linear boundary value problem with constant coefficients[18] 

x New Cubic B-Spline  Cubic B-Spline[18] 

80
 

3.8E-8 2.0634E-5 

3

80
 

9.9 E-8 4.8130E-5 

5

80
 

2.12 E-7 6.0894E-5 

7

80
 

9.3 E-8 6.2779E-5 

9

80
 

5.143E-6 5.70988E-5 

11

80
 

3.82 E-7 4.67074E-5 

13

80
 

3.792E-6 3.40587E-5 

15

80
 

1.709E-6 2.12666E-5 

17

80
 

6.37 E-7 1.01538E-5 

19

80
 

2.478E-6 2.2885E-5 



            Journal of Iraqi Al-Khwarizmi Society (JIKhS)   Volume:4  Issue: Special   July 2020   pages: 39-56   

Fifth      International Scientific Conference of Iraqi Al-Khwarizmi Society In Karbala  13-14 April 2020 

52 

 

 

2 ( ) 3 ( ) 3 0x y x xy x y   for   1 2x , 

with boundary conditions 

(1) 5, (2) 0.y y  

The exact solution to boundary value problem is 

5
( ) [cos( 2 ln ) cot( 2 ln 2)sin( 2 ln )].y x x x

x
 

The numerical result of the example (3) are presented in the Table (6)  for  with.   In Table 7 the observed maximum absolute 
errors and compared our result with the results given in cubic B-spline method [18]. Figure 3 shows the comparison of the exact 

and numerical solutions for  20.n  

 

Table 6: The numerical solutions and exact solution of example (3). 

 

 

 

 

 

 

 

Table 7: Comparison of the error proposed method with CBS [18] for example(3) . 

 

 

 

x New Cubic B-Spline  Exact Solution 
1.1 4.094768326 4.0947693502 
1.2 3.316711309 3.3167126115 
1.3 2.649607254 2.6496084276 
1.4 2.077976455 2.0779773959 
1.5 1.587980746 1.5879814418 
1.6 1.167624994 1.1676254805 
1.7 0.806670353 0.8066706529 
1.8 0.496442085 0.4964422651 
1.9 0.229613526 0.2296136048 

x New Cubic B-Spline  Cubic B-Spline[18] 
1.1 1.024E-6 1.609202E-4 
1.2 1.303E-6 3.065565E-4 
1.3 1.174E-6 3.980724E-4 
1.4 9.41E-7 4.327606E-4 
1.5 6.96E-7 4.197742E-4 
1.6 4.86E-7 3.707492E-4 
1.7 2.999E-7 2.964084E-4 
1.8 1.801E-7 2.055654E-4 
1.9 7.88E-8 1.050575E-4 
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Figure 3 : Comparison of the exact and the proposed method of example(3) for n=20. 

 

Example 4:  We consider a linear boundary value problem with constant coefficients,[18] 

( ) ( )xy x y x x   for  1 2,x  

with boundary conditions 

(1) 1, (2) 1.y y  

The exact solution to boundary value problem is 

2 3ln 3
( ) .

4 4ln 2 4

x x
y x

 

The numerical result of the example (4) are presented in the Table 8  for  with   .In Table 9 the observed maximum absolute 
errors and compared our result with the results given in cubic B-spline method [18]. Figure 4 shows the comparison of the exact 

and numerical solutions for  20.n  

 

Table 8: The numerical solutions and exact solution of example (4). 

 

 

 

 

 

 

x New Cubic B-Spline  Exact Solution 
1.1 0.9493723880 0.9493723572 
1.2 0.9127242439 0.9127241956 
1.3 0.8886163346 0.8886162826 
1.4 0.8759299325 0.8759298796 
1.5 0.8737781718 0.8737781245 
1.6 0.8814461109 0.8814460712 
1.7 0.8983489704 0.8983489402 
1.8 0.9240023401 0.9240023201 
1.9 0.9580004464 0.9580004361 
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Table 9: Comparison of the error proposed method with CBS [18] for example(4) . 

 

 

 

 

 

 

 

 

 

Figure 4 : Comparison of the exact and the proposed method of example(4) for n=20. 

 

7. Conclusion  
The cubic B-spline method with a new approximation of the second derivative is developed for the approximate solution of 

second order two point BVPs in this paper. Four examples are considered for numerical illustration of the method. Numerical 

result are presented in Tables (2), (4), (6), and (8) and compared with the exact solutions. We also compared the results with the 

(CBS) method [18] in Tables (3), (5), (7), and (9) and It can be concluded that this method is quite suitable, accurate. 

The obtained numerical results show that the proposed methods maintain a high accuracy which make them are very 
encouraging for dealing with the solution of this type of two point boundary value problems. 

x New Cubic B-Spline  Cubic B-Spline[18] 
1.1 3.08E-8 2.38675E-5 
1.2 4.83 E-8 3.66902E-5 
1.3 5.20 E-8 4.21471E-5 
1.4 5.29 E-8 4.25917E-5 
1.5 4.73 E-8 3.95759E-5 
1.6 3.97 E-8 3.41494E-5 
1.7 3.02 E-8 270371E-5 
1.8 2.00 E-8 1.87491E-5 
1.9 1.03 E-8 9.6491E-5 
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