THE GENERALIZED q-OPERATOR ${ }_{r} \Phi_{s}$ AND ITS APPLICATIONS IN q-IDENTITIES

HUSAM L. SAAD ${ }^{1 *}$, SADEQ M. KHALAF ${ }^{2}$, §

Abstract

Based on the basic hypergeometric series ${ }_{r} \phi_{s}$, we construct a new generalized q-operator ${ }_{r} \Phi_{s}\left(\begin{array}{c}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} ; q,-c \theta\right)$ and obtain some of its identities. Using these identities, we generalize several well-known q-identities, such as the q-Gauss sum, the q-Chu-Vandermonde sum, and the q-Pffaf-Saalschütz sum.

Keywords: The q-operator, q-Gauss sum, q-Chu-Vandermonde sum, q-Pffaf-Saalschütz sum.

AMS Subject Classification: 05A30, 33D45.

1. Introduction and Notations

In this paper, we will follow the notations that were used in [5]. We assume that $|q|<1$.
Let a be a complex variable. The q-shifted factorial is defined by [5]

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) .
$$

We adopt the following compact notation for the multiple q-shifted factorial:

$$
\left(a_{1}, \ldots, a_{r} ; q\right)_{n}=\left(a_{1} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n},
$$

where n is an integer or ∞.
The basic hypergeometric series ${ }_{r} \phi_{s}$ is defined by:

$$
{ }_{r} \phi_{s}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q, x\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q\right)_{k} \cdots\left(a_{r} ; q\right)_{k}}{(q ; q)_{k}\left(b_{1} ; q\right)_{k} \cdots\left(b_{s} ; q\right)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} x^{k},
$$

where $r, s \in \mathbb{N} ; a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s} \in \mathbb{C}$; and none of the denominator factors evaluate to zero.

[^0]
[^0]: ${ }^{1}$ Basrah University, College of Science, Department of Mathematics, Iraq.
 e-mail: hus6274@hotmail.com; ORCID: https://orcid.org/0000-0001-8923-4759.

 * Corresponding author.
 2^{2} Basrah University, College of Science, Department of Mathematics, Iraq.
 e-mail: sadeqalshawi0@gmail.com; ORCID: https://orcid.org/0000-0002-5045-4428.
 § Manuscript received: April 28, 2021; accepted: August 23, 2021. TWMS Journal of Applied and Engineering Mathematics, Vol.13, No. 3 © Issık University, Department of Mathematics, 2023; all rights reserved.

