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Abstract
We report the experimental and theoretical study of the diffraction patterns (DPs) and thermal properties of Sudan III. 
DPs are used in the calculation of the Sudan III nonlinear refractive index (NLRI), n

2
 . As high as n

2
 = 7.69 ×10-6 cm2/W 

is obtained. The study of the Sudan III thermal conductivity, TC, shows the reduction of the TC against the increase of the 
Sudan III temperature. The property, all-optical switching (AOS), is studied in details, both static and dynamic ones, using  
two, cw, visible, single mode laser beams of wavelengths 473 and 635 nm.
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Introduction

Great interest has been expressed in the recent years, to 
study available materials, improved available materials, 
and synthesized new materials [1–15], due to the poten-
tial of enhancing their nonlinear optical (NLO) properties 
that leads to photonic devices use. Number of properties 
of materials have been studied simultaneously viz., thermal 
diffusivity [16], spectroscopic and thermal [17], thermally 
and optically induced change of structure, linear and NLO 
properties [18], nonlinear and thermo-optic parameters [19], 
thermal lens [20], thermo-optic coefficient [21, 22], medi-
cal, thermal and laser damage [23], optical and thermal [24], 
structural, thermal, and optical properties [25], thermal / 
spectral and optical enhancements [26, 27], etc.

Recently intense efforts have been directed towards the 
study of the NLO properties of variety of media by Jeyaram 
et al. viz., basic violet 3 solution via Z-scan techniques [28], 
novel organic compound [29], organic compound [30], and a 
Schiff base via variety of techniques [31] for variety of NLO 
applications. In addition, our group presented, new materials 
during the past six years, that possess high NLO properties, 
which demonstrated their potential for use as optical limiters 
and switches [32–38].

Sudan dyes are available in different types i.e., Sudan 
orange G, Sudan black B, Sudan brown RR, Sudan red B, 
Sudan red 7B, Sudan (I-IV), and Sudan red G [39–41]. 
These types of dyes have received vast interest including 
the optical properties viz., under the effect of solvents [42]. 
Sudan III dye doped polymer optical limiter behavior [43], 
vibrational studies investigation of structure and NLO prop-
erties [44], use in optical sensor applications [45], photo-
induced dichroism [46], Sudan III/PVK film composite 
physical structure [47], and optical properties [48].

We believe that, the diffraction patterns and thermal prop-
erties of Sudan III dye have not been studied previously. 
Therefore, in the current work, we will study the thermal 
properties of Sudan III dye where the thermal conductivity 
(TC) of Sudan III at different temperatures were studied. By 
excitation with a visible, cw, laser beam, the NLO proper-
ties of Sudan III dye were also investigated. The nonlinear 
refractive index (NLRI), n2, of Sudan III was determined 
using diffraction patterns (DPs) method. A theoretical simu-
lation of experimental results was carried out using Fresnel-
Kirchhoff (F.K.) integral. The property, all-optical switching 
(AOS), of the Sudan III was tested using 473 nm and 635 
nm laser beams.
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Experimental

Sample

Sudan III and dimethylformamide (DMF) used in the 
current study were purchased from Sigma Aldrich. The 
chemical structure of Sudan III is presented in Fig. 1. 
Its chemical formula, melting point, and molar mass are 
C22H16N4O, 199 °C, and 352.397 g/mol, respectively. This 
dye is characterized by its crystalline appearance and its 
color is red-brown. A certain amount of Sudan III was 
dissolved in DMF to obtain a concentration of 5 mM. This 
concentration was used to carry on all the experiments 
mentioned in this work.

Experimental Set‑Up

Two routes were followed in studying the properties of 
Sudan III.

NLO Properties Experiments

The NLRI, n2, of Sudan III dye was calculated by generation 
of DPs using the set-up illustrated in Fig. 2. The diffrac-
tion patterns temporal variation and their dependence on 
power input studies were carried out. The excitation beam is 
obtained by a laser device with power output varied between 
zero and 66 mW, cw beam of wavelength 473 nm. Spot size 
radius of the laser beam was 1.5 mm (at e-2) focused to a spot 
of 19.235 µm size by a glass, convex, 5 cm focal length lens.

The 1 mm thickness sample cell was situated at the lens 
focus, a 30×30 cm semitransparent screen was used where 
the DPs were recorded by a digital camera with exposure 
time of 1/32 sec. The AOS was carried out using two cw 
laser beams of wavelengths 473, and 635 nm having the 
same spot size (1.5 mm) via the technique cross-passing 
[49–51]. The two beams were focused at the sample cell 
by two, 20 cm, convex lenses focal lengths where the 
spot sizes of the two lasers beam become 76.941 µm and 
103.293 µm at their foci respectively. The beam 473 nm 
was taken as the controlling beam while the 635 nm beam 
considered as the controlled one as shown in Fig. 3. The 
diffraction patterns formed on a 60×60 cm semitranspar-
ent screen.

Fig. 1   The chemical structure of Sudan III

Fig. 2   Diagrammatic set-up for obtaining DPs
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Sudan III temperature in the presents of laser beam was 
measured using a thermocouple type digital precision instru-
ments HT-9815 thermocouple thermometer (-200 0C-1370 
0C) as shown in Fig. 2.

Thermal Conductivity Measurement

TC is considered vital for the physical studies and engineer-
ing applications. Heat transfer is a process by which heat is 
transferred from one region to another one in the direction 
of temperature fall. To calculate the TC of a material the 
following (Fourier law) mathematical formula is used [52]

Q̇ is the amount of heat flow through the sample per unit 
of time, A is the surface area normal to heat flow, dT is 
the difference in temperature between the two faces of the 
sample, dx is the sample thickness and K is the TC. The 
classical method for thermal conductivity measurement is 
Lee's disk method [53]. The classical method of Lee has 
undergo some modifications [54]. However, in the present 
work, a new modification has been introduced to measure 
the TC of Sudan III. Figure 4 shows the TC measurement 
set-up.

Two disks of 2.3 cm diameter have been used, disk 1 and 
disk 2. Disk 1 has 2.3 cm height whereas disk 2 has height 
of 1.1cm. The disks material is made of Brass. To insulate 
the side walls of the disks against the environment, the two 
disks have been wrapped around by insulating paper. For 
measurement purpose, a powder of Sudan III was pressed 
to make suitable hard disk sample of thickness of 1.6 mm. 
The sample has been placed between the two disks. Disk 
1 has been heated by adjustable heater. Three holes of few 

(1)Q̇ = −kA
dT

dx

millimeters deep inside the disks were made to connect the 
thermocouples, two holes at the two surfaces of disk 1 and 
one hole at the first face of disk 2 immediately after the 
sample. The three holes temperatures have been recorded 
and denoted as T1, T2 and T3 respectively as illustrated in 
Fig. 4. It is well known that under steady heat transfer condi-
tion, the heat flow rate through disk 1 and the sample is the 
same. This fact has been used in Fourier's law to measure 
the TC of the sample. The TC has been measured for a range 
of temperatures as shown in Fig. 5. The measurements has 
revealed that TC decreased as the temperature of the sample 
increased.

Linear Absorption Coefficient Measurement

The linear absorption coefficient, αi , of Sudan III at wave-
length, λi, was measured at RT using a spectrophotometer 

Fig. 3   Diagrammatic set-up for 
obtaining AOS

Fig. 4   Sketch of the thermal conductivity measurement device
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type (England 6800) where Fig. 6 shows the absorbance ( A ) 
measured in the UV-visible region. To calculate αi, the fol-
lowing mathematical formula was used [55]

A is sample absorbance and d its thickness. The values of 
α
473

 and α
635

 are 11.43 and 1.21 cm-1 respectively.

(2)αi = 2.303
A

d

Results

Diffraction Patterns

Figure 7 shows a chosen DP temporal variation as the laser 
beam traversed through the Sudan III obtained by chang-
ing the cw behavior of the laser beam into pulse (square) 
one using a frequency generator the TTL function. It is 

Fig. 5   TC versus temperatures 
of Sudan III

Fig. 6   Absorbance (A) spec-
trum of sudan III solution
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seen that at initial time the shape of the beam spot as it 
falls on the screen is a small bright spot with no rings as 
if the sample is absent.

As time lapse the spot quickly increases in area due 
to self-defocusing (SDF), until the spot breaks into rings 
which was symmetric in the x-y plane with respect to the 

Fig. 7   Temporal evolution of DPs as the laser beam passes through Sudan III, with power 62 mW
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propagation z- axis. As time lapse the pattern started losing 
symmetry in its upper half due to thermal convection cur-
rent so that it's upper half grew in smaller ratio compare to 
the lower one.

Finally, the asymmetric pattern reaches a steady state. At 
low power input, laser beam draws a bright spot on the screen. 
With the increase of power input, the beam area increases due 
to SDF as seen in Fig. 8. With the continuously increased 
power input, the spot breaks into rings which increases in 
area, in number and asymmetry, following the same behavior 
noticed in Fig. 7. For a chosen input power of 37 mW, Fig. 9 
shows the effect of concentration of Sudan III on the DPs 
where it can be seen that the DP started as a bright spot that 
increases in area then breaks into rings. A behavior mimic 
the effect of input power or time evolution of the DPs. When 
the concentration increased so does the number of Sudan III 
molecules that increases the temperature locally so does the 
DP evolute with concentration. The Sudan III temperature and 
number of rings in the DP are studied when DP resulted where 
it can be seen in Fig. 10 these quantities increases monotoni-
cally against power input. The increase of number of rings 
with laser beam power input agrees well with the conclusion 
reached in subsection “Linear Absorption Coefficient Meas-
urement”, i.e., with the power input increased the absorbed 
amount of energy increased, so that the refractive index (RI), 
increases which increases the phase of the laser beam.

Calculation of Sudan III NLRI

The DPs were used in the calculation of Sudan III NLRI, 
n
2
 , where it is believed that number of rings resulted at the 

highest incident power input [56] so that

ω is the beam radius at entrance of the sample, P  is the 
incident laser beam power, and λ is the beam wavelength. 
For P = 62 mW, N =14, d =0.1 cm,λ = 473 nm,ω =19.235 
μm so that n

2
 = 7.693×10-6 cm2/W for Sudan III. Such high 

n
2
 value is higher than so many materials [56–64] as shown 

in Table (1).

All‑Optical Switching

Two laser beams of wavelengths 473 and 635 nm were  
used. First beam, 473 nm, is the controlling or excitation 
beam while the second one is the controlled, 635 beam.  
As can be seen from subsection “Linear Absorption Coef-
ficient Measurement” the Sudan III have low absorption 
coefficients at 635 nm wavelength, so that low energy was 
absorbed and less heat generated so that no rings appeared 
as seen in Fig. 11X1(a), when 635 nm beam imping alone 

(3)n
2
=

πω2

2

Nλ

Pd

Fig. 8   Variations of the DPs against input power when the laser beam passes through Sudan III
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on Sudan III. When the 473 nm beam with moderate power 
input imping on Sudan III alone DPs resulted as seen in 
Fig. 11X1(c).When the two beams imping on Sudan III, 
simultaneously, two DPs resulted one due to the controlling 

beam and one for the controlled beam where it can be seen 
that one new patterns resulted for the 635 nm beam due to 
the 473 nm controlled beam as seen in Fig. 11X1. When 
the controlling beam power increased, its DPs increased in 

Fig. 9   Variations of the DPs against Sudan III concentration at power input 37 mW

Fig. 10   Variations of Sudan III 
solution temperature (oC) and 
number of rings, N , against 
input power of laser beam
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Fig. 11   Static AOS. When the 635 nm beam passes in Sudan III solu-
tion alone and its power increased from zero to 50 mW a bright spot 
appeared as seen in Fig. 11X1(a). When the 473 nm beam with low 
power, DPs appeared as seen in Fig. 11X1(c), and red rings appeared 

as seen in Fig. 11X1(b) as a result of the XPM effect of the 473 nm 
against the 635 nm. Effect of 473 nm power on the 635 nm rings is 
seen in Fig. 11X2 and on its rings are shown in Fig. 11X3, The effect 
of 635 nm beam on its rings is shown in Fig. 11X4
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area, in number of rings, intensity, and asymmetry as seen 
in Fig. 11 X2, while the other 635 nm beam DPs area, num-
ber of rings, and asymmetry increase, as shown in Fig. 11 
X3. When increasing the intensity of the 635 nm beam 
input power it increases its DP intensity only and it has no 
effect on the DPs of the 473 nm as seen in Fig. 11X4. The 

enhancement of the new DPs due to the 635 nm is due to 
the phenomena cross-phase modulation (XPM), an effect 
noticed as early as 1987 [65–70]. Figure 12 shows tem-
poral variation of the results shown in Fig. 11 where the 
input laser beam power (473 nm) changed into pulse one 
by changing the controlling beam output power of 473 nm, 

Fig. 12   Dynamic AOS where the controlled red 635 nm patterns followed the evolution of the controlling blue 473 nm patterns in Sudan III 
solution
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Fig. 13   Simulation results of the 2D temporal variations (0 -1000 msec) of a chosen (1st c.) DPs shown in Fig. 7, 1-D intensity variation against 
x-axis (2nd c.) and against y-axis (3rd c.) in Sudan III solution
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Fig. 13   (continued)
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Fig. 14   Simulation results of variation of diffraction against input power (14-62 mW) (1st c.), the 1-D intensity variation against x-axis (2nd c.) 
and against y-axis (3rd c.), in Sudan III solution
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Fig. 15   Simulation results of the 2-D temporal variation of beam phase at input power 62 mW, in Sudan III solution
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by using a frequency generator and using the TTL function 
that change the 473 nm laser beam into pulsed (square) one. 
This method changed the enhanced 635 nm pattern due to 
the XPM into pulse one i.e., the effect become dynamical 
all-optical switching.

Simulation of DPs

To simulate the DPs formed in subsection "Diffraction pat-
terns" due to the passing of the cw laser beam, we need to 
develop an equation based on the F. K. integral and Fraun-
hofer approximation. In determining the DPs, it is supposed 
that a horizontal, cw, laser beam with Gaussian profile enter 
the sample cell of thickness, d, where the complex amplitude 
of the laser beam enters the sample cell from left along the 
z-direction and vary spatially can be written in the (x-y) 
plane as follows:

(4)

E(x, y, t, z = 0) = (
2P

πω2
)
1

2 exp

(
−
x2 + y2

ω2

)
exp(−ik

x2 + y2

2R
)

P is the incident laser beam power on the sample, k is 
the light wave vector (=2 π/λ ), r is the perpendicular dis-
tance from the beam center and R is the beam wave front 
radius. Based on the amount of laser beam absorbed energy 
by the medium, the later temperature increased with Gauss-
ian profile. Based on the medium thermal properties such as 
thermo-optic coefficient diffusivity, conductivity, etc., that 
lead to the medium RI variation, n(x,y,t), the laser beam suf-
fers variations of its initial phase, Δφ(x, y, t) , so that equa-
tion (4) becomes:

The x and y spatial variables are at the sample plane 
becomes x' and y' at the screen. The laser beam intensity on 
the screen via F.K. integral and Fraunhofer approximation, 
is written as follows [71]:

(5)
E(x, y, t, z) = (

2P

πω2
)
1

2 (−
�d

2
)exp

(
−
x2 + y2

ω2

)

exp(−ik
x2 + y2

2R
)exp(iΔ�(x, y, t))

Fig. 16   Calculated results of 2-D variation of beam phase against input power in Sudan III solution
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Fig. 17   Simulation results of temporal variation results of medium 2-D temperature at input power of 62 mW, in Sudan III solution
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Fig. 18   Calculated results of 2-D variation of medium temperature against input power in Sudan III solution

Fig. 19   Comparison of experimental (blue) as shown in Fig. 8 and simulated (red) chosen diffraction patterns (i) 14 mW, (ii) 19 mW, (iii) 27 
mW, (iv) 35 mW, (v) 46 mW, (vi) 62 mW, in Sudan III
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L is sample – screen distance.
Equation (6) was solved with a numerical scheme based 

on the Mat Lab system. The results of the calculations are 
shown in Figs. (13, 14, 15, 16, 17, 18). Figure 3 are the 
simulation results of temporal behavior of the DPs in 2D 
and intensity distribution against x and y axes and Fig. 14 
shows the evolution of DPs against input power and inten-
sity distribution against x and y axes. Figures 15 and 16 
shows the calculations results of 2D temporal variations 
of the beam phase at 62 mW and it's 2D variations against 
input power in Sudan III solution respectively. Figures 17 
and 18 shows the simulation results of 2D temporal varia-
tions of medium temperature and it's 2D variations against 
input power in Sudan III solution respectively. Compari-
son of the theoretical (red) and experimental (blue) DPs 
against power input are shown in Fig. 19.

Conclusion

This paper presents series of experimental and theoretical 
studies concerning the diffraction patterns that resulted 
when 473 nm, cw, visible laser beam traversed through 
Sudan III dye. The thermal properties of the Sudan III dye 
have been studied via obtaining the thermal conductivity 
and its relation with the dye temperature and in the dif-
fraction patterns. The property all-optical switching in the 
Sudan III dye was tested using two laser beams viz., 473 

(6)

I
(
x
�

, y
�

, t
)
= |( 2P

πω2
)
1

2
i�ω2

�L
exp(ikL)exp

(
−
�d

2

)
∫

∞

−∞

dx∫
∞

−∞

dy.

exp

(
−
x2 + y2

ω2

)
.exp[i

(
−k

x2 + y2

2R

)

+ Δ�(x, y, t)].exp

(
−ik

xx
�
+ yy

�

L

)
|2

and 635 nm and it was found that the Sudan III dye behave 
well during the test. Static and dynamic all-optical switch-
ing have been tested. High nonlinear refractive index, n2, 
value of 7.693x10-6 cm2/W was obtained.
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