DOI: http://dx.doi.org/10.21123/bsj.2016.13.2.0376

Measurement of radionuclides in imported Coffee Consumed in Basra southern of Iraq and estimation of its annual effective dose

Ali Abd Abbas

Abdul-Munem Khaleel Ibrahim Marwah Jawad Kadhim

Physics Department, College of Science, University of Basra, Iraq

Received 15/7/ 2015 Accepted 29/12/ 2015

EXAMPLE 1 This work is licensed under a <u>Creative Commons Attribution-NonCommercial-</u> <u>NoDerivatives 4.0 International Licens</u>

Abstract:

Radioactive elements were identified in samples of imported coffee consumed in the province of Basra using gamma spectrometry SAM940TM. It is a scintillation detector of NaI(Tl) crystal and the dimensions of 2×2 inch. We have identified specific concentration A_s(Bq/kg) and annual effective dose D(Sv/y) for radioactive elements ⁴⁰K, ¹³¹I, ¹³⁴Cs and ¹³⁷Cs. The estimated average effective dose for adults from coffee samples were found to be 0.037mSv/y, 88.434nSv/y, 46.909nSv/y, 27.212nSv/y for (⁴⁰K, ¹³¹I, ¹³⁴Cs, ¹³⁷Cs) respectively. The present results of the study revealed that the radioactivity was relatively low in the coffee and within the permissible limit.

Key worlds: Coffee, SAM940 identifer, gamma ray, radionuclide.

Introduction:

Radiation in the environment classified into two types of natural radiation is natural occurring radioactive matter in the environment. and industrial radiation; the natural radiation is split into two rays of cosmic and terrestrial radiation [1]. The cosmic rays cause, is outside of our solar system, any stars and little ones of our solar system [1,2]. The radiation sources in the terrestrial radiation include ^{238}U and ^{232}Th decay series. They found an abundance in rocks, soil, food, water and air are causing radon gas and thoron[3]. The ^{235}U decay series its half- life 7.1×10^8 years, called actinium series and half-life

for ^{238}U and ^{232}Th are 4.5×10^9 , $1.4 \times$ 10^{10} years respectively [4]. As well as some of the elements that non-series for example ${}^{40}K$ which half-life 1.28×10^9 years and found an abundance in rocks, food and water [3]. The industrial sources of radiation it may significant impact on pollution the of the environment and through multiple domains. The most important of radiation resulting nuclear from experiments and the use of radioisotopes industry. agriculture. scientific in research, medicine, fuel cycle in terms of mining, mineral processing, nuclear fuel and radioactive waste storage address[1].

Materials and methods:

1-Sampling preparation

Coffee samples collected from the Basra local market, Ten different brands that originated from 8 different countries were selected and listed in Table (1).

Each sample was grinded very fine. Fifty gram of each sample was placed in a plastic can of 10 cm height and 4.6 cm diameter. The can was placed in the detectorsystem counted for 1200 second.

 Table (1):Represents samples of coffee for different production countries.

Sample code	Sample Name	Production	
S 1	NESCAFE CLASSIC	Brazil	
S2	COFFEE golden	Brazil	
S 3	NESCAFE CLASSIC	Spain	
S4	City Cafe	European Union	
S5	BON AROMA	Poland	
S6	Arabica	Lebanon	
S7	Bon nagar	Lebanon	
S8	Bon al hamwi	Syria	
S9	Coffee prince	Jordan	
S10	Mac Coffee	Singapore	

2-Measurements

Measurement were performed using a SAM940TM gamma ray spectrometer. This system hasNaI(Tl) crystallization 2×2 inch with 256 channel, the detector measures the spectrum emitted from radioactive isotopes and low level Becquerel measurement.The device works at operation voltage of 600 volts. It is of coarse gain=1, fine gain=1.1386, upper level discriminative= 100 volts and lower level discriminative=0.8 volts. The detector was calibrated by standard radioactive elements ^{137}Cs which has the energy of 661.660 keVphotopeak,¹³³Ba with energies of (53.161,80.997, 302.853, 383.851)keV 160.613, photopeaks, and ${}^{60}Co$ which has the energies of (1173.238,1332.502)keV.

The detector was shielded lead and copper cylinder as shown in figure (1), which represents the measurement system. Efficiency \mathcal{E} of each gamma

energy specified in the calibration source was calculated using the formula [5]

Where ΣN is the net counts of the corresponding photopeak, A is the activity in Bq, P_{σ} is the emission probability per disintegration [6], (t) is the counting time in seconds and (m) is the mass sample (kg).

Fig. (1):SAM940TM gamma ray spectroscopy system.

3- Activity concentrations

The activity concentrations in the samples was obtained using the following expression [3,5,7]

$$A_{s} = \frac{\sum N}{\epsilon t m P_{x}} \qquad \dots (2)$$

Where A_s (Bq/kg) is the activity concentration of nuclides in the coffee samples.

4- Annual effective dose

The annual effective dose from consumption of coffee is calculated using the formula [8]

$$D = A_s U g \qquad \dots (3)$$

Where D is the annual effective dose (Sv/y), A_s is the activity concentration for the radionuclide (Bq/kg), U is the annual intake of coffee (kg/yr); the normal consumption of coffee will be (5-10) gram per day [9], and g is dose conversion factor for the radionuclide (Sv/Bq). It was calculated according to ICRP [10] for intake by ingestion of radionuclides.

Results and Discussion:

the Table (2)presents activity ^{40}K , ^{131}I , ^{134}C sand concentration for ^{137}Cs in the coffee samples. ^{40}K was detected in all samples with a maximum value of 54.765 Bq/kg in samples (S2,S3,S5), and a minimum value of 24.841 Bq/kg in sample S4with an average value of 49.695 Bq/kg.¹³¹I was detected in five samples with а maximum value of 0.055Bq/kg in sample S1, and a minimum value of 0.018 Bq/kg in sample S4with an average value of 0.036 Bq/kg. ¹³⁴Cs was detected in nine samples with a maximum value of 0.049 Bq/kg in sample S8, and a minimum value of 0.004Bq/kg in sample S9 with an average value of 0.021Bq/kg. ¹³⁷Cs was detected in three samples with a maximum value 0.020Bg/kg in sample S5, and a minimum value of 0.016Bq/kg in samples (S9,S10) with an average value of 0.018Bq/kg. Fig (2) shows the spectrum of sample S5.

Fig. (2): spectrum of sample S5.

Table (2):Measurement of Activityconcentrations of radionuclide incoffee samples.

$A_s(Bq/kg)$					
samples	⁴⁰ K	¹³¹ I	¹³⁴ Cs	¹³⁷ Cs	
S1	54.384	0.055	0.011	ND	
S2	54.765	ND	0.011	ND	
S3	54.765	0.026	0.019	ND	
S4	24.841	0.018	0.030	ND	
S5	54.765	0.029	ND	0.020	
S6	54.232	ND	0.023	ND	
S7	54.308	0.051	0.030	ND	
S8	36.507	ND	0.049	ND	
S9	54.079	ND	0.004	0.016	
S10	54.308	ND	0.008	0.016	
Ave.	49.695	0.036	0.021	0.018	
		ND:- not detected			

Fig.(3):Activity concentrations of⁴⁰*K***in coffee samples.**

 ^{131}I , ^{134}Cs , ^{137}Cs in coffee samples.

Table (3) presents the annual effective ingestion dose adults for for ^{40}K , ^{131}I , ^{134}Cs and ^{137}Cs in coffee samples. Where the ${}^{40}K$ was of а maximum value 0.041mSv/y in samples (NESCAFE CLASSIC and COFFEE golden products in Brazil, NESCAFE CLASSIC product in Spain BON AROMA product in Poland), and a minimum value 0.019mSv/vin sample City Cafe product in European Union, with an average value of 0.037mSv/y. ¹³¹*I* with maximum а value 144.672nSv/y in sample NESCAFE CLASSIC product in Brazil, and a 48.206nSv/y minimum value in sampleCity Cafe product in European Union, with an average value of 88.434nSv/y.¹³⁴Cs with a maximum value 111.940nSv/y in sample Bon al hamwi product in Syria, and a minimum value 8.618nSv/yin sample Coffee prince product in Jordan with an average value of 46.909 nSv/v.¹³⁷Cs with a maximum value 31.403nSv/y in sample BON AROMA product in Poland, and a minimum value 25.116nSv/y in samples (Coffee prince product in Jordan and Mac Coffee product in Singapore) with an average value of 27.212nSv/y.

Table (3): Annual effective dose	for
adults.	

D (Sv/y)adults					
Samp	$^{40}K \times 10^{10}$	$^{131}I \times 10$	$^{134}Cs \times 10$	$^{137}Cs \times 10$	
les					
S1	0.041	144.672	25.855	ND	
S2	0.041	ND	25.855	ND	
S3	0.041	67.478	43.092	ND	
S4	0.019	48.206	68.856	ND	
S5	0.041	77.088	ND	31.403	
S6	0.040	134.930	51.756	ND	
S 7	0.040	ND	68.856	ND	
S8	0.027	ND	111.940	ND	
S9	0.040	ND	8.618	25.116	
S10	0.040	ND	17.328	25.116	
Ave.	0.037	88.434	46.909	27.212	
		ND:- not detected			

One can conclude from the above results, that the average annual dose from ${}^{40}K$ is below the reference value of 1.0 mSv/y according to the ICRP publications. The estimated annual effective dose for radionuclides was much below, than the reference value of (200-800) μ Sv/y according to the UNSCEAR 2000 report [11].

References:

- [1]IAEA. International Atomic Energy Agency. Radiation Biology A Handbook for Teachers and Students. Vienna, 2010.
- [2]UNSCEAR. Sources and effects of ionizing radiation Report of the United Nations Scientific committee on the effects of Atomic Radiation to the General Assembly, Volume 1, (New York :United Nations), 2010.
- [3]Waleed H Al-Musowi. Environmental Radioactivity in Shutt Al-Basrah River Banks and Basrah Sport City. A thesis Submitted to the College of Education for Pure Sciences University of Basrah as Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in Physics, 2013.

- [4]Nesha'at R.Abid. Al-Ataby. Study of Environmental Radioactivity in the Soil of Al-Tuwaitha Zone and its Surrounding Sides. Athesis Submitted to the College of Science University of Baghdad in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics, 2005.
- [5]Alrefae, Nageswaran and Al-Shemali. Radioactivity of long lived gamma emitters in canned seafood consumed in Kuwait. Journal of the Association of Arab Universities for Basic and Applied Sciences 15,6-9, 2014.
- [6]IAEA. International Atomic Energy Agency. Measurement of Radiation in Food and the Environment. Technical Reports Series 295, Vienna 1989.
- [7]Alrefae and Nageswaran. Radioactivity of long lived gamma emitters in rice consumed in Kuwait. Journal of the Association of Arab Universities for Basic and Applied Sciences 13,24-27, 2013.
- [8]Alrefae, Nageswaran and Al-Shemali. Radioactivity of long lived gamma emitters in breakfast cereal consumed in Kuwait and estimates of annual effective dose. Iran. J. Radiat. Res., 10(3-4): 117-122; 2012.
- [9]Adel Hamid Barhoum. Natural planet Foundation and preparations.
 <u>HTTPS://BARHOUMADEL.COM</u> 16 November 2009.
- [10] ICRP. Publication 119Compendium of Dose Coefficients based on ICRP 60, Volume 41 Supplement 1. 2012.
- [11] UNSCEAR. Sources and effects of ionizing radiation Report of the United Nations Scientific committee on the effects of Atomic Radiation to the General Assembly, (New York :United Nations), 2000.

قياس فعالية النظائر المشعة في القهوة المستوردة المستهلكة في البصرة جنوب العراق و تحديد الجرع السنوية الفعالة

مروة جواد كاظم

علي عبد عباس

عبدالمنعم خليل ابراهيم

قسم الفيزياء، كلية العلوم، جامعة البصرة، العراق

الخلاصة:

تم تحديد العناصر المشعة في عينات القهوة المستوردة المستهلكة في محافظة البصرة بواسطة مطيافية اشعة ثم تم تحديد العناصر المشعة في عينات القهوة المستوردة المستهلكة في محافظة البصرة بواسطة مطيافية اشعة SAM 940TM ذا حجم 2 ×2 انج. تم عياس التركيز النوعي(بيكرل/كيلوغرام) و الجرعة السنوية المؤثرة (سيفرت /السنة) للعناصر المشعة ^{40}k ، قياس التركيز النوعي(بيكرل/كيلوغرام) و الجرعة السنوية المؤثرة (سيفرت /السنة) للعناصر المشعة ^{40}k ، قياس التركيز النوعي(بيكرل/كيلوغرام) و الجرعة السنوية المؤثرة (سيفرت /السنة) للعناصر المشعة ^{40}k ، سيفرت/سنة) للعناصر المشعة ^{40}k ، ملي قياس التركيز النوعي(بيكرل/كيلوغرام) و الجرعة السنوية المؤثرة (سيفرت /السنة) للعناصر المشعة ^{40}k ، من التركيز النوعي (بيكرل/كيلوغرام) و الجرعة السنوية المؤثرة البالغين في نماذج القهوة و كانت (0.037 ملي سيفرت/سنة) العناصر المشعة ^{40}k ، منه معدل الجرعة السنوية المؤثرة البالغين في نماذج القهوة و كانت (0.037 ملي سيفرت/سنة) البوتاسيوم معلي المؤرث البالغين في نماذج القهوة و كانت (1300 ملي معنور النورية)، مع معدل الجرعة السنوية المؤثرة البالغين في نماذج القهوة و كانت (1300 ملي معور ت/سنة) البوتاسيوم معنورت/سنة، 34.048 الوسيفرت/سنة، 46.901 ملي 13⁴⁰ معال المورة ما معانوسيفرت/سنة و 212.72 نانوسيفرت/سنة) البوتاسيوم ^{40}k ، البور المع المعار المعار المعار المعاري و كانت النتائج دون الحد المسموح به عالمياً.

الكلمات المفتاحية: القهوة، منظومة المعرِّف سام-940، نويدة مشعة.