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Abstract: This research aims to propose a new family of one-parameter multi-step iterative methods
that combine the homotopy perturbation method with a quadrature formula for solving nonlinear
equations. The proposed methods are based on a higher-order convergence scheme that allows for
faster and more efficient convergence compared to existing methods. It aims also to demonstrate that
the efficiency index of the proposed iterative methods can reach up to 3

√
4 ≈ 1.587 and 4

√
8 ≈ 1.681,

respectively, indicating a high degree of accuracy and efficiency in solving nonlinear equations. To
evaluate the effectiveness of the suggested methods, several numerical examples including their
performance are provided and compared with existing methods.
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1. Introduction

Nonlinear equations are ubiquitous in various scientific and engineering fields and
are of great importance in applied mathematics. Finding their solutions analytically is
often infeasible or impossible, and therefore numerical iterative methods are commonly
employed to obtain approximations. Among the classical iterative formulas, Newton’s
method and its variants are widely used, but many other techniques have been developed
and studied, such as the Adomian decomposition method, the variational iteration method,
and the differential transform method, to name a few (see [1–5] and the references therein).

One of the techniques that has gained attention for obtaining iterative methods for
nonlinear equations is the homotopy analysis method (HAM) introduced by Liao in 1992 [6].
Another successful iterative method for nonlinear equations is the homotopy perturbation
method (HPM), which is a special case of HAM introduced by He in 1999 [7] (see [8–10] for
more details). Since then, many developments and extensions of HPM have been proposed
by many authors, such as Sehati et al. [11] and others, resulting in a variety of novel iterative
methods with higher orders of convergence. For instance, Waheed et al. [12] used the HPM
to develop certain iterative methods with high accuracy and efficiency.

Recent advances in artificial intelligence and machine learning techniques have also
been applied to develop iterative methods for nonlinear equations, such as using deep
learning neural networks, for predicting iterative solutions [13,14].
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An essential aspect of iterative methods is their convergence rate, which determines
how quickly the method converges to the true solution. Numerous studies have focused on
the convergence analysis of iterative methods for nonlinear equations, resulting in various
convergence criteria that can be used to improve the efficiency of iterative methods and
optimize their convergence rate [11,15–17].

Iterative methods for solving nonlinear equations are a vital research area with many
practical applications. The recent developments in this field, including the use of the HPM
and artificial intelligence techniques, have expanded the available toolkit for approximating
the solutions of nonlinear equations and have led to improved insights into their behavior.
As research in this area continues, further advances can be expected in the accuracy
and efficiency of iterative methods, enabling researchers to tackle increasingly complex
nonlinear problems.

Motivated by the objective of enhancing the precision and efficiency of iterative meth-
ods employed in solving nonlinear equations, this paper introduces a novel multi-step
iterative method that combines the Haar wavelets quadrature formula and the homotopy
perturbation technique. The organization of the paper is as follows: Section 2 presents
the construction of the new iterative methods, comprising a novel set of algorithms de-
signed specifically for solving nonlinear equations. The algorithms employed as proposed
methods are demonstrated, accompanied by an explanation of their underlying rationale.
Section 3 provides a convergence analysis of the proposed methods, accompanied by the
declaration of efficiency indices. The performance of the algorithms is further assessed
through an analysis of convergence rates. Additionally, efficiency indices, which serve
as indicators of the computational cost and accuracy of the methods, are described. In
Section 4, a comparative analysis is conducted between the performance of the proposed
algorithms and several existing methods found in the literature. Various examples are
employed to evaluate the performance of the algorithms, and numerical results are pre-
sented to demonstrate their effectiveness in solving the problem at hand. Furthermore,
graphical representations are utilized to provide a more comprehensive description of the
convergence, accuracy, and reliability of the proposed algorithms. Lastly, Section 5 delves
into a discussion of the obtained results, drawing conclusions from the analysis conducted.
The strengths and weaknesses of the proposed methods are highlighted, and suggestions
for future research directions are provided.

2. The New Iterative Methods Construction

Consider the following nonlinear equation:

F(x) = 0, (1)

and suppose α be a simple root of Equation (1), and x0 is an initial approximation near to α.
Consider the quadrature formula which is defined by

F(x) = F(x0) +
∫ x

x0

F′(µ)dµ. (2)

Approximating the above integral in Equation (2) by using Haar wavelets quadrature
formula [18], one could obtain that

F(x) ≈ F(x0) +
(x− x0)

2r

2r

∑
`=1

F′
(

x0 +
(`− 0.5)(x− x0)

2r

)
. (3)

Assuming that F(x) is close enough to F(x0) in Equation (3) leads to

(x− x0)

2r

2r

∑
`=1

F′
(

x0 +
(`− 0.5)(x− x0)

2r

)
≈ 0. (4)
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Based on HPM, the construction of the homotopy R× [0, 1]→ R can be made, which
will satisfy

H(x, p) = pF(x) + (1− p)

[
(x− x0)

2r

2r

∑
`=1

F′
(

x0 +
(`− 0.5)(x− x0)

2r

)]
= 0, (5)

where p ∈ [0, 1] is an artificial parameter. As a trivial case, one could see that

H(x, 0) =
(x− x0)

2r

2r

∑
`=1

F′
(

x0 +
(`− 0.5)(x− x0)

2r

)
= 0, (6)

and

H(x, 1) = F(x) = 0. (7)

The solution of Equation (5) is obtained as an infinite series that is given as

x = x0 + px1 + p2x2 + p3x3 + · · · =
∞

∑
k=0

pkxk. (8)

Consequently, the approximate solution of Equation (1) is given by

x̃ = lim
p→1

x =
∞

∑
k=0

xk, (9)

provided the series (8) converges. Series (9) is convergent for most cases, and also the rate
of convergence depends on F(x) [7]. Equation (5) can be expressed as follows by using
Taylor’s series [19] for F(x) and F′

(
x0 +

(`−0.5)(x−x0)
2r

)
about x0:

p
[

F(x0) + (x− x0)F′(x0) +
1
2
(x− x0)

2F′′(x0) + · · ·
]

+ (1− p)

[
(x− x0)

2r

2r

∑
`=1

{
F′(x0) +

(`− 0.5)(x− x0)

2r
F′′(x0) + · · ·

}]
= 0.

Now, taking r = 1 to obtain

p
[

F(x0) + (x− x0)F′(x0) +
1
2
(x− x0)

2F′′(x0)

]
+ (1− p)

[
(x− x0)F′(x0) +

1
2
(x− x0)

2F′′(x0)

]
= 0. (10)

Equation (8) is substituted into Equation (10), resulting in

p

F(x0) +

(
∞

∑
k=1

pkxk

)
F′(x0) +

1
2

(
∞

∑
k=1

pkxk

)2

F′′(x0)


+ (1− p)

( ∞

∑
k=1

pkxk

)
F′(x0) +

1
2

(
∞

∑
k=1

pkxk

)2

F′′(x0)

 = 0. (11)
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Matching powers of the above coefficients of p, one can obtain the following system
of equations

p0 : 0,

p1 : F(x0) + x1F′(x0) = 0,

p2 : x2F′(x0) +
1
2

x2
1F′′(x0) = 0,

p3 : x3F′(x0) + x1x2F′′(x0) = 0,

p4 : x4F′(x0) +

(
x1x3 +

1
2

x2
2

)
F′′(x0) = 0,

p5 : x5F′(x0) + (x1x4 + x2x3)F′′(x0) = 0,

p6 : x6F′(x0) +

(
x1x5 + x2x4 +

1
2

x2
3

)
F′′(x0) = 0,

and so on. After solving the above system of equations, the following is obtained:

x1 = − F(x0)

F′(x0)
, x2 = − F2(x0)F′′(x0)

2(F′(x0))
3 , (12)

x3 = − F3(x0)(F′′(x0))
2

2(F′(x0))
5 , x4 = −5F4(x0)(F′′(x0))

3

8(F′(x0))
7 .

Substituting the values of x1, x2, x3 and x4 in (9) obtains

x̃ = x0 −
F(x0)

F′(x0)
− F2(x0)F′′(x0)

2(F′(x0))
3 − F3(x0)(F′′(x0))

2

2(F′(x0))
5 − 5F4(x0)(F′′(x0))

3

8(F′(x0))
7 . (13)

The above formula is a generalization of Equation (8) in [20]. From the aforementioned
formulation, a one-step iterative method is presented for solving nonlinear equations,
which is given by the following Algorithm 1.

Algorithm 1: A suggested one-step iterative method.
For a suitable initial approximation x0, calculate the next solution xi+1 using the
below iterative method

xi+1 = xi −
F(xi)

F′(xi)
− F2(xi)F′′(xi)

2(F′(xi))
3 −

F3(xi)(F′′(xi))
2

2(F′(xi))
5 − 5F4(xi)(F′′(xi))

3

8(F′(xi))
7 .

As the aim of this study is to develop effective multi-step iterative methods, we rely
on Algorithm 1 and the following iterative method proposed by [17]:

yi = xi −
F(xi)

λiF(xi) + F′(xi)
,

where λi ∈ R, 0 < |λi| < +∞, and λi is selected such that the corresponding function value
λiF(xi) and F′(xi) have the same signs.

In addition, to improve the efficiency of the new iterative methods, the first and
second derivatives F′(yi) and F′′(yi) are approximated, respectively, by using a Bernoulli
interpolating polynomial of degree 2 and as follows:

F′(yi) = 2F[xi, yi]− F′(xi) := K1(xi, yi), (14)
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F′′(yi) =
2

xi − yi
(F[xi, yi]− K1(xi, yi)) := K2(xi, yi). (15)

Furthermore, using the Bernoulli interpolating polynomial of degree 3, the derivative
F′(zi) is approximated:

F′(zi) = F[yi, zi] +
yi − zi
yi − xi

(
F[yi, xi]− F′(xi)

)
+ 2(F[xi, zi]− F[yi, xi]) := K3(xi, yi, zi). (16)

Therefore, the new two and three step iterative methods, which will be referred to as
(HM2) and (HM3), respectively, are given by the following Algorithms 2 and 3:

Algorithm 2: A suggested two-step iterative method (HM2).
For a suitable initial approximation x0, calculate the next solution xi+1 using the
following iterative method:

yi = xi −
F(xi)

λiF(xi) + F′(xi)
, i = 0, 1, 2, . . . ,

xi+1 = yi −
F(yi)

K1(xi, yi)
− F2(yi)K2(xi, yi)

2(K1(xi, yi))
3 −

F3(yi)(K2(xi, yi))
2

2(K1(xi, yi))
5 − 5F4(yi)(K2(xi, yi))

3

8(K1(xi, yi))
7 .

Algorithm 3: A suggested three-step iterative method (HM3).
For a suitable initial approximation x0, calculate the next solution xi+1 using the
following iterative method:

yi = xi −
F(xi)

λiF(xi) + F′(xi)
, i = 0, 1, 2, . . . ,

zi = yi −
F(yi)

K1(xi, yi)
− F2(yi)K2(xi, yi)

2(K1(xi, yi))
3 −

F3(yi)(K2(xi, yi))
2

2(K1(xi, yi))
5 − 5F4(yi)(K2(xi, yi))

3

8(K1(xi, yi))
7 ,

xi+1 = zi −
F(zi)

λiF(zi) + K3(xi, yi, zi)
.

3. Convergence Investigation

In this section, a convergence analysis of Algorithms 2 and 3 is provided and their
efficiency indices are stated. Specifically, it is meant to show that both algorithms converge
to the exact solution of the nonlinear equation under certain conditions on the initial guess
and the nonlinear function. Moreover, the convergence rate of the proposed iterative
methods is analyzed by computing their efficiency indices, which reflect the number of
iterations required to achieve a given level of accuracy.

Theorem 1. Suppose that F : D ⊆ R→ R is a smooth function with a simple root α ∈ D. If x0 is
sufficiently near to α, then Algorithm 2 exhibits at least fourth-order convergence in its iteration
towards the exact root.

Proof. Let α be a simple root of F(x) = 0. (Note that, F(α) = 0 and F′(α) 6= 0). By
applying the Taylor series expansion around α, one can expand F(xi) and F′(xi) to obtain
the following:

F(xi) = F′(α)
[
ei + c2e2

i + c3e3
i + c4e4

i + O
(

e5
i

)]
, (17)
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where cn = F(n)(α)
n!F′(α) , n = 2, 3, 4, . . . and ei = xi − α. From Equation (17), it can be shown that

F′(xi) = F′(α)
[
1 + 2c2ei + 3c3e2

i + 4c4e3
i + 5c4e4

i + O
(

e5
i

)]
, (18)

and hence,

F(xi)

λiF(xi) + F′(xi)
=ei + (−c2 − λi)e2

i +
(

λ2
i + 3λic2 + 2c2

2 − λic2 − 2c3

)
e3

i (19)

+ O
(

e4
i

)
.

Moreover,

yi = α + (c2 + λi)e2
i +

(
−λ2

i − 3λic2 − 2c2
2 + λic2 + 2c3

)
e3

i + O
(

e4
i

)
, (20)

K1(xi, yi) = F′(α)
[
1 +

(
2λic2 + 2c2

2 − c3

)
e2

i +
(

2c2(λic2)− 4c3
2 − 6λic2

2 (21)

+
(
−2λ2

i + 6c3

)
c2 + 2λic3 − 2c4

)
e3

i + O
(

e4
i

)]
,

K2(xi, yi) = F′(α)
[
2c2 + 4c3ei + ((2c2 + 2λi)c3 + 6c4)e2

i +
(

2(λic2)c3 + 4c2
3 (22)

−2(λi + 2c2)(c2 + λi)c3 + 4λic4 + 4c2c4 + 8c5)e3
i + O

(
e4

i

)]
.

From Equation (20), it can be seen that

F(yi) = F′(α)
[
(c2 + λi)e2

i +
(
−λ2

i − 3λic2 − 2c2
2 + λic2 + 2c3

)
e3

i + O
(

e4
i

)]
. (23)

In addition,

F(yi)

K1(xi, yi)
= (c2 + λi)e2

i +
(
−λ2

i − 3λic2 − 2c2
2 + λic2 + 2c3

)
e3

i + O
(

e4
i

)
, (24)

and

F2(yi)K2(xi, yi)

2(K1(xi, yi))
3 = c2(c2+ λi)

2e4
i − 2(c2 + λi)

(
−c2(λic2) + 2c3

2 + 3λic2
2 (25)

+
(

λ2
i − 3c3

)
c2 − λic3

)
e5

i + O
(

e6
i

)
,

F3(yi)(K2(xi, yi))
2

2(K1(xi, yi))
5 = 2(c2 + λi)

3c2
2e6

i (26)

− 6(c2 + λi)
2(−c2(λic2) + 2c3

2 + 3λic2
2 + (λ2

i −
10
3

c3)c2 −
4
3

λic3)c2e7
i + O(e8

i ),

5F4(yi)(K2(xi, yi))
3

8(K1(xi, yi))
7 = 5(c2 + λi)

4c3
2e8

i (27)

+
(
−20λ2

i c2 − 60λic2
2 − 40c3

2 + 20c2(λic2) + 30λic3 + 70c2c3

)
(c2 + λi)

3c2
2e9

i + O
(

e10
i

)
.

Substituting Equations (24)–(27) in Algorithm 2 obtains

xi+1 = α− c3(c2 + λi)e4
i + O

(
e5

i

)
, (28)
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implying that

ei+1 = −c3(c2 + λi)e4
i + O

(
e5

i

)
. (29)

As a result, it can be seen that Algorithm 2 has fourth-order convergence.

Theorem 2. Suppose that F : D ⊆ R→ R is a smooth function with a simple root α ∈ D. If x0 is
sufficiently near to α, then Algorithm 3 exhibits at least eighth-order convergence in its iteration
towards the exact root.

Proof. By applying a similar argument as in Theorem 1, one could have the following:

zi = α− c3(c2 + λi)e4
i (30)

+
(
−λic2c3 − 2c2

3 + (λi + 2c2)(c2 + λi)c3 − 2c4(c2 + λi)
)

e5
i + O

(
e6

i

)
.

Expanding F(zi) about α and using Equation (30) to have

F(zi) = F′(α)
[
−c3(c2 + λi)e4

i (31)

+
(
−λic2c3 − 2c2

3 + (λi + 2c2)(c2 + λi)c3 − 2c4(c2 + λi)
)

e5
i + O

(
e6

i

)]
and

K3(xi, yi, zi) = F′(α)
[
1 +

(
−2c2

2c3 + (c4 − 2λic3)c2 + λic4

)
e4

i + O
(

e5
i

)]
. (32)

From Equations (31) and (32), it can be seen that

F(zi)

λiF(zi) + K3(xi, yi, zi)
= −c3(c2 + λi)e4

i (33)

+
(
−λic2c3 − 2c2

3 + (λi + 2c2)(c2 + λi)c3 − 2c4(c2 + λi)
)

e5
i + O

(
e6

i

)
.

Then

xi+1 = α + c3

(
2λic2

2c3 − c2
2c4 + λ2

i c2c3 − λ2
i c4 − 2λic2c4 + λi((c2 + λi)c3)c2 (34)

+λ2
i (c2 + λi)c3 + c3

2c3

)
e8

i + O
(

e9
i

)
.

From Equation (34), one could obtain

ei+1 = α + c3

(
2λic2

2c3 − c2
2c4 + λ2

i c2c3 − λ2
i c4 − 2λic2c4 + λi((c2 + λi)c3)c2 (35)

+λ2
i (c2 + λi)c3 + c3

2c3

)
e8

i + O
(

e9
i

)
.

As a result, it can be seen that Algorithm 3 has eighth-order convergence.

In fact, it is essential in numerical analysis to know the behavior of an approximate
method. Therefore, the order of convergence of the new iterative methods can be explained
by the following definition and remark (more details can be found in [11,21,22]).

Definition 1. Let F : D ⊂ R→ R is a scalar function on an open interval D with a simple root α
of the nonlinear equation. An iterative method is said to have an integer order of convergence s if it
produces the sequence {xi} of real numbers such that

lim
x→∞

xi+1 − α

(xi − α)s = A 6= 0,
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for some A 6= 0 and s ≥ 1, then s is said to be the order of convergence of the sequence, and A is
known as the asymptotic error constant, or equivalently

xi+1 − α = A(xi − α)s + O
(
(xi − α)s+1

)
.

Remark 1. Let ei = xi − α be the error in the ith iteration. The equation

ei+1 = ces
i + O

(
es+1

i

)
is called the error equation for the method, s being the order of convergence.

Remark 2. The definition of efficiency index in [16] is analyzed, which is given as EI = m
√

s, where
s is the order of the iterative method and m is the number of function evaluations in each iteration.
Using this definition, the efficiency indices of our suggested Algorithms 2 and 3 are 1.587 and 1.681,
respectively.

4. Numerical Applications

The purpose of this section is to compare the performance of the proposed
Algorithms 2 and 3 with the Noor method (NR2) [2], the Chun method (CM) [23], and
the Sehati et al. method (AL2) [11]. The comparison is aimed at demonstrating the applica-
bility and efficacy of the newly proposed methods.

To evaluate the methods, the Maple16 program is utilized and floating-point arithmetic
with 1000 digits (Digits := 1000) is employed. The computations were performed on a
desktop machine that runs on Windows 10 Pro (64-bit) operating system. The computer
is equipped with an Intel(R) Core(TM) i3-4170 CPU that runs at a speed of 3.70 GHz,
and it has a total installed memory of 10.00 GB RAM. The system configuration provided
ample resources to ensure a smooth and efficient execution of the Maple16 algorithms
used in this study. The stopping criteria |xi+1 − xi| < ε as well as |F(xi+1)| < ε are used,
where ε = 10−15, and (HM2) and (HM3) have been applied for the value of |λi| = 0.5.
Table 1 presents various test functions Fi(x), i = 1, . . . , 5, and the approximated root α of
each equation Fi(x) = 0. The table also provides information about the initial guess x0,
the number of iterations (NI), the value of |xi+1 − xi|, the absolute value of the function
|F(xi+1)|, and the computational order of convergence (COC) , which is described in [16]
and given as the following:

ρ =
log|(xi+1 − α)/(xi − α)|
log|(xi − α)/(xi−1 − α)| .

All the results and the performance comparison are included in Table 2.

Table 1. Nonlinear equations and their simple root α.

F(x) α

F1(x) = x− e−x − 2 = 0 2.12002823898764122948468710

F2(x) = xex2 − (sin x)2 + 3 cos x + 5 = 0 −1.2076478271309189270094168

F3(x) = x2 − (1− x)5 = 0 0.3459548158482420179582044

F4(x) = ln
(

x2 + x + 2
)
− x + 11 = 0 16.6951567675073761976927688

F5(x) = (1 + cos x)(ex − 2) = 0 0.6931471805599453094172322
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Table 2. Comparison between the proposed methods and relevant methods.

F(x) x0 Methods NI |xi+1− xi| |F(xi+1)| COC

F1 2.0

NR2 3 6.8094693 × 10−16 6.3164342 × 10−48 3.0104059

CM 3 8.93125110 × 10−31 5.4817818 × 10−124 4.01084410

AL2 3 2.2199937 × 10−78 2.0350825 × 10−548 7.0116691

HM2 3 9.0762879 × 10−26 6.0604694 × 10−103 4.0094105

HM3 3 3.9771853 × 10−98 3.1045139 × 10−784 8.0082867

F2 −1.0

NR2 5 1.8095423 × 10−39 2.4092523 × 10−115 3.0000063

CM 5 1.5057542 × 10−44 1.7691495 × 10−173 3.9998224

AL2 3 1.65614610 × 10−22 6.6848624 × 10−150 6.7759406

HM2 4 4.0189653 × 10−42 1.0630597 × 10−164 3.9996505

HM3 3 1.9180050 × 10−49 1.8554791 × 10−389 7.9462676

F3 0.2

NR2 4 8.2499542 × 10−20 2.4019841 × 10−57 2.9998339

CM 4 5.4788184 × 10−36 1.0139405 × 10−140 4.0007370

AL2 4 2.6904210 × 10−100 3.71201210 × 10−695 6.9990345

HM2 4 3.7572186 × 10−44 5.2755324 × 10−174 3.9993329

HM3 3 1.1771498 × 10−55 2.3415694 × 10−440 8.0457563

F4 16.0

NR2 3 2.0752478 × 10−17 1.1309175 × 10−54 3.0094031

CM 3 7.0787489 × 10−36 5.8881265 × 10−148 4.0092711

AL2 diverge diverge diverge diverge

HM2 3 3.8856993 × 10−23 1.4531784 × 10−94 4.0468837

HM3 3 1.9058709 × 10−84 4.3697445 × 10−679 8.0447728

F5 0.5

NR2 4 1.8521494 × 10−29 5.2002262 × 10−87 2.9999240

CM 3 4.8721383 × 10−19 2.6686961 × 10−75 4.1825251

AL2 3 2.9291152 × 10−44 9.7204429 × 10−306 6.9492016

HM2 3 5.1650339 × 10−16 3.7212218 × 10−62 4.0243631

HM3 3 9.3624134 × 10−65 1.5920864 × 10−514 8.0130984

Moreover, Figures 1–5 are presented to provide a more comprehensive description of
the convergence, accuracy, and reliability of the proposed Algorithms 2 and 3. These graphs
display the logarithm of residuals at each iteration for the nonlinear equations listed in
Table 1. Additionally, Figure 6 is included, which compares the efficiency of the suggested
two- and three-step methods with the alternative methods that have been considered.
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Figure 1. Log of residuals for F1(x) = 0.

Figure 2. Log of residuals for F2(x) = 0.

Figure 3. Log of residuals for F3(x) = 0.
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Figure 4. Log of residuals for F4(x) = 0.

Figure 5. Log of residuals for F5(x) = 0.

Figure 6. Comparison of efficiency indices among different methods.
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5. Discussion and Conclusions

The numerical findings in Table 2 and Figures 1–5 demonstrate that none of the five
nonlinear equations above exhibits the failure or divergence of our multi-step iterative
methods. The new three-step iterative method proves to be more effective and accurate,
and provides solutions faster than the other methods that it is compared against, such as
Noor’s method, Chun’s method, and the Sehati et al. method. Moreover, the suggested
iterative methods have a higher computational order of convergence (COC) than any other
methods, making them more efficient. Our findings can be viewed as an alternative to
comparable methods for solving nonlinear equations as they approximate higher deriva-
tives, enabling us to obtain solutions with fewer computational steps and a higher order
of convergence.

This paper introduces a new class of iterative methods free from second derivatives
to solve nonlinear equations based on the homotopy perturbation method, Haar wavelets
quadrature rule, and some numerical techniques. The suggested iterative methods have
a fourth-order convergence for the two-step type with two function evaluations and one
first derivative evaluation, while for the three-step type, it has an eighth-order convergence
with three function evaluations and one first derivative evaluation. The convergence order
using Theorems 1 and 2, efficiency index, computational order of convergence, and con-
vergence criterion of the new multi-step iterative methods are evaluated. The proposed
Algorithms 2 and 3 outperform the previously mentioned methods in terms of efficiency
index. The eighth-order iterative method (HM3) is the key finding of this study since it is
both fast and efficient, as evident through both theoretical evaluation and numerical testing.

The suggested methods are numerically and graphically compared to several currently
used methods, and the proposed methods outperform several other previously known
methods in terms of convergence rate and computational efficiency. The obtained results
show that the proposed methods are promising tools for solving nonlinear equations,
as they outperform existing methods. Overall, our work provides a novel approach to
solving nonlinear equations that can significantly improve the accuracy and efficiency of
numerical methods, indicating its potential for use in a range of scientific and engineer-
ing applications.

There are several potential directions for future work. For instance, hybrid algorithms
that combine the proposed methods with other existing techniques could be developed to
further improve their performance. Additionally, more efficient and accurate versions of
the methods could be created to enhance their effectiveness. Furthermore, the methods can
be adapted or modified to tackle more complex and diverse problems, including systems
of nonlinear equations.

Author Contributions: Conceptualization, H.J.S. and A.H.A.; Methodology, H.J.S. and A.H.A.;
Software, A.H.A. and H.A.; Validation, A.D.P.; Formal analysis, R.M.; Investigation, R.M.; Resources,
R.M.; Data curation, H.J.S.; Writing—original draft, H.J.S. and R.M.; Writing—review & editing,
A.H.A., A.D.P. and H.A.; Visualization, A.H.A. and H.A.; Supervision, A.D.P.; Project administration,
A.D.P.; Funding acquisition, A.D.P. All authors have read and agreed to the published version of the
manuscript.

Funding: The authors did not receive any funding to support this study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were used for this work.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Noor, K.I.; Noor, M.A. Predictor-corrector Hally method for nonlinear equations. Appl. Math. Comput. 2007, 188, 1587–1591.
2. Noor, M.A.; Noor, K.I.; Mohyud-Din, S.T.; Shabbir, A. An iterative method with cubic convergence for nonlinear equations. Appl.

Math. Comput. 2006, 183, 1249–1255 [CrossRef]

http://doi.org/10.1016/j.amc.2006.05.133


Mathematics 2023, 11, 2603 13 of 13

3. Noor, M.A. Some iterative methods for solving nonlinear equations using homotopy perturbation method. Int. J. Comput. Math.
2010, 1, 141149. [CrossRef]

4. Noor, M.A.; Khan, W.A. New iterative methods for solving nonlinear equation by using homotopy perturbation method. Appl.
Math. Comput. 2012, 219, 3565–3574. [CrossRef]

5. Abdul-Hassan, N.Y.; Ali, A.H.; Park, C. A new fifth-order iterative method free from second derivative for solving nonlinear
equations. J. Appl. Math. Comput. 2022, 68, 2877–2886. [CrossRef]

6. Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong
University, Shanghai, China, 1992.

7. He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [CrossRef]
8. Liao, S.J. Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 2005,

169, 1186–1194. [CrossRef]
9. Az-Zo’bi, E.A.; Al-Khaled, K.; Darweesh, A. Numeric-analytic solutions for nonlinear oscillators via the modified multi-stage

decomposition method. Mathematics 2019, 7, 550. [CrossRef]
10. Alim, M.A.; Kawser, M.A. Illustration of the homotopy perturbation method to the modified nonlinear single degree of freedom

system. Chaos Solitons Fractals 2023, 171, 113481. [CrossRef]
11. Sehati, M.M.; Karbassi, S.M.; Heydari, M.; Loghmani, G.B. several new iterative methods for solving nonlinear algebraic equations

incorporating homotopy perturbation method (HPM). Int. J. Phys. Sci. 2012, 12, 5017–5025. [CrossRef]
12. Waheed, A.; Din, S.T.M.; Zeb, M.; Usman, M. Some Higher Order Algorithms for Solving Fixed Point Problems. Commun. Math.

Appl. 2018, 1, 41–52.
13. Freno, B.A.; Carlberg, T.K. Machine-learning error models for approximate solutions to parameterized systems of nonlinear

equations. Comput. Methods Appl. Mech. Eng. 2019, 348, 250–296. [CrossRef]
14. Gong, W.; Liao, Z.; Mi, X.; Wang, L.; Guo, Y. Nonlinear equations solving with intelligent optimization algorithms: A survey.

Complex Syst. Model. Simul. 2021, 1, 15–32. [CrossRef]
15. Abbasbandy, S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method. Appl.

Math. Comput. 2023, 145, 887–893. [CrossRef]
16. Saeed, H.J.; Abdul-Hassan, N.Y. An Efficient Three-Step Iterative Methods Based on Bernstein Quadrature Formula for Solving

Nonlinear Equations. Basrah J. Sci. 2021, 3, 355–383. [CrossRef]
17. Wu, X.Y. A New Continuation Newton-Like Method and its Deformation. Appl. Math. Comput. 2000, 112, 75–78. [CrossRef]
18. Aziz, I.; Siraj-ul-Islam; Khan, W. Quadrature Rules for Numerical Integration Based on Haar wavelets and Hybrid Functions.

Comput. Math. Appl. 2011, 61, 2770–2781. [CrossRef]
19. Ali, A.H.; Páles, Z. Taylor-type Expansions in Terms of Exponential Polynomials. Math. Inequalities Appl. 2022, 25, 1123–1141.

[CrossRef]
20. Abbasbandy, S. Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition

method. Appl. Math. Comput. 2006, 172, 431–438. [CrossRef]
21. Ljajko, E.; Tosic, M.; Kevkic, T.; Stojanovic, V. Application of the Homotopy Perturbations Method in Approximation Probability

Distributions of Non-linear Time Series. Univ. Politeh. Buchar. Sci.-Bull.-Ser.-Appl. Math. Phys. 2021, 83, 177–186.
22. Khan, K.; Syed, H.Z. Semi Analytic Solution of Hodgkin-Huxley Model by Homotopy Perturbation Method. Punjab Univ. J. Math.

2021, 53, 825–842. [CrossRef]
23. Chun, C. A new iterative method for solving nonlinear equations. Appl. Math. Comput. 2006, 178, 415–422. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/00207160801969513
http://dx.doi.org/10.1016/j.amc.2012.09.040
http://dx.doi.org/10.1007/s12190-021-01647-1
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/j.amc.2004.10.058
http://dx.doi.org/10.3390/math7060550
http://dx.doi.org/10.1016/j.chaos.2023.113481
http://dx.doi.org/10.5897/IJPS12.279
http://dx.doi.org/10.1016/j.cma.2019.01.024
http://dx.doi.org/10.23919/CSMS.2021.0002
http://dx.doi.org/10.1016/S0096-3003(03)00282-0
http://dx.doi.org/10.29072/basjs.2021303
http://dx.doi.org/10.1016/S0096-3003(99)00049-1
http://dx.doi.org/10.1016/j.camwa.2011.03.043
http://dx.doi.org/10.7153/mia-2022-25-69
http://dx.doi.org/10.1016/j.amc.2005.02.015
http://dx.doi.org/10.52280/pujm.2021.531105
http://dx.doi.org/10.1016/j.amc.2005.11.055

	Introduction
	The New Iterative Methods Construction
	Convergence Investigation
	Numerical Applications
	Discussion and Conclusions
	References

