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A B S T R A C T   

Gallium nitride nanocrystalline thin films (GaN NCTH) were prepared on Si substrates using the 
radio frequency magnetron sputtering (RF) method. XRD patterns with narrow peaks intensity 
and field emission scanning electron microscopy (FESEM) images exhibits of the GaN nano-
particles have covered surfaces of the substrate with a regular distribution smooth and an average 
particles size proximately between are 10–20 nm. AFM indicates a smooth surface and RMS is 
1.38 nm of GaN NCTH and the optical band gap was calculated to be 3.38 eV. The current-voltage 
characteristic of metal-semiconductor-metal (M-S-M) GaN ultraviolet photodetectors (UV-PD) in 
the dark and irradiated with 370 nm light and intensity was (1.4) mW/cm2 evaluated under bias 
voltages of − 1 to 5 V. The average rise time speed of the photodetector is about 22 ms when 
current increases from 10 % to 90 % of its value of saturation, while the average fall time is 17 ms 
when current decreases from 90 % to 10 % of its value of saturation. UV-PD displays 19–261 
sensitivity at a different voltage bias; internal photodetector gain between the low value is 1.19 at 
8 V and 1.59 at 2 V.   

1. Introduction 

Gallium Nitride (GaN) is a semiconducting and one of the most committed materials and has a broad bandgap direct [1,2] is 
between (3.2–3.4) eV based on the structure of the crystal [3]. Moreover, GaN possesses properties of which non-toxic [4], excellent 
chemically [5], thermally stable, and thermal conductivity [6] and have a peak of high extremely is (3 × 107 cm s− 1), a very high 
voltage breakdown (3 × 106 Vcm− 1), and velocity of saturation (1.5 ×107 cm s− 1) [7], resistant (inert) in environments of extreme 
such as radioactive [8], and a high optical transition probability, making it a perfect building block for optoelectronic systems that use 
blue-green light-emitting diodes, laser diodes, and other choice materials [6]. GaN thin film prepared was by several techniques, such 
as chemical vapor deposition (CVD) [9], RF, sol-gel [10], hydride vapor phase epitaxy [11], and molecular beam epitaxy [12]. 
Although the quality of GaN thin films is good, the manufacturing cost prepared by the methods mentioned is relatively high, difficult 
to handle in air, and the setup is complicated [13]. It is used in the synthesis of many important applications of devices such as 
transistors of high power [14], solar cell [15], betavoltaic [16], photodetector [17], and light-emitting diode (LED) devices [18]. As 
stated above, GaN nanoparticles are known to have good luminous centers, which refers to the effect of quantum confinement. Thus, 
quantum dots electronic structure formation of well separated atomic like states with increases in energy spacing as dot size decreases. 
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Fig. 1. FESEM image of GaN NCTH prepared on Si substrate.  

Fig. 2. Statistical distribution of particles size of GaN NCTH prepared on Si substrate.  
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Hence, the mixing quantum dot size properly chosen leads to the emission of white light [19]. In this study, a field emission scanning 
electron microscope (FESEM) was used to explore the surface morphology. Meanwhile, an atomic force microscope (AFM) was used to 
measure the roughness of the surface. High-resolution X-ray diffractometry (HRXRD) was used to study the structures. Finally, a 
Raman scattering spectroscopy device was used to offer a structural fingerprint that can be used to identify compounds. 

Fig. 3. The EDX spectra results of GaN NCTH prepared on Si substrate.  

Fig. 4. AFM 3D micrograph of GaN NCTH prepared on Si substrate.  

Fig. 5. XRD patterns of GaN NCTH prepared on Si substrate.  
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1.1. Experimental details 

As described in previous work [20] synthesis of GaN NCTH on P-type Si (111) substrate, was preceded by cleaning of Si substrates 
using the RCA method with chemical wet etching [21], (we added cleaned glass substrates to deposition same films for optical studies 
purpose) and then NCTH deposited by RF method through 80 min recorded times of growth (200 ± 5) nm. 

2. Results and discussion 

2.1. Morphological and structural characterizations of GaN NCTH 

Fig. 1 exhibits a FESEM image of GaN NCTH prepared on Si substrate with 300 and 500 nm magnification. These images show a 
homogeneous distribution of aggregated to form grains with an average particles size are (10− 20) nm according to the image-j 
program as noted in Fig. 2. EDX analysis was also used to determine the GaN NCTH prepared on Si, as shown in Fig. 3, which ap-
pears to have a Ga to N ratio in GaN thin films and noted oxygen atoms, perhaps present as a result of surface contaminants spreading 
from the substrate during the deposition process. [22]. Moreover, topography AFM indicates a smooth surface and the RMS of GaN 
NCTH prepared on Si is 1.38 nm as shown in Fig. 4, while Mantarcl and Kundakçi referred to RMS of 6.257 and 1.024 nm of GaN/Si 
synthesized by the RF method [23]. However, Thahab reported the RMS of n-type and p-type GaN/Si obtained were 14.8 and 4.37, 
respectively [24]. As a matter of fact, a previous study referred to substrate type having an affected roughness surface, which referred 
to RMS GaN NCTH prepared on quartz, glass, and FTO were (1.46, 1.45, and 30.8) nm, respectively [1]. Fig. 5 exhibits XRD analysis 
associated with GaN NCTH with a narrow peak at three plans (101), (102), and (004) corresponding to 2 Theta (36.9, 48, and 72,6) 
degrees [22,25–29]. Meanwhile, XRD exhibits two peaks related to Si substrate at plans (111) and (222), corresponding to (28.25, and 
58.87) degrees, respectively, according to database 01–077–2111. 

Fig. 6. Raman spectra of GaN NCTH prepared on Si substrate.  

Fig. 7. (A) UV–vis spectra for GaN NCTHs prepared on Si substrates (B) A plot of (α hν)2 versus (hν).  
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2.2. Raman and optical properties 

Raman scattering spectroscopy of the GaN NCTH on Si substrate samples is shown in Fig. 6. As shown in Raman spectra exhibit one, 
a clear high-intensity peak returns to Si at 520 cm− 1 and the noted active phonon E2(high) band returns to GaN at 566 cm− 1 while 
A1(LO) is 730 cm− 1 and these bands correspond to previous [30,31]. Two phonon E2(high) and A1(LO) in GaN corresponded to 
backscattering. However, in undoped material, the intensity ratio band A1(LO) to E2(high) is relative to 1:3 [30]. Saron et al. reported a 
position intensity band related to the temperature of preparation, which was an inverse [32]. At 417 cm− 1, it exhibits a small peak 
return phonon mode which, means the acoustic overtone mode in GaN wurtzite [32]. Fig. 7A exhibits optical properties for GaN NCTH, 
which have a noted optical absorption spectrum and appear to have a strong edge of absorption present at a wavelength of 320 nm. The 
transmission spectra exhibit a high transmission in the visible region between 85 % and 90 % while Bittar et al. reported a transmission 
value is 60 % of GaN prepared on Si substrate [33]. The Energy of the bandgap is calculated from the relationship αhν = A(hν − Eg)

1/2 

[34], where , hν, α, and Eg are constant, photon energy, absorption coefficient, and bandgap, respectively. Therefore, absorbtion 
coefficient was relationship of transmation T according to equation α = 1

d ln (1/T) [35] where (d) is the thickness of the thin film. 
Assuming bandgap direct as shown in Fig. 7(B) and estimated bandgap of GaN NCTH is 3.39 eV, which matches the value obtained by 
Duanet et al. [36]. While El-Naggar reported to a bandgap of GaN prepared on Si are (3.33–3.35) eV and refer to the bandgap 

Fig. 8. Reflectance spectra of GaN NCTH prepared onto Si substrates.  

Fig. 9. The schematic diagram of the device (GaN NCTH MSM UV-PD).  
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depending on a precise ratio of ionic and covalence bonds in GaN of the structure band determined and energy of such compounds type 
[37]. Fig. 8 exhibits the reflectance spectrum of the prepared GaN NCTH, which has low reflectance values in visible spectrum, 9 % a 
reflectance value in the wavelengths ranging 380–450 nm. Refer low reflectance the more UV photodetectors absorbed, which means 
the photo sensitivity (S) of increasing [38]. 

2.3. Device fabrication 

The MSM-structured UV-PD device was produced by depositing a Pt grid (100 nm thickness) on top of GaN NCTH using a metal 
mask. Previous work [39] illustrates the dimensions and design of the shadow mask. The deposition process of Pt electrodes using RF 
reactive magnetron sputtering was carried out under the following conditions: chamber vacuum of 2 × 10− 5 mbar, high-purity argon 
(99.99 %) as sputtering gas at a 17 % fixed ratio, a total pressure of 3 × 10− 3 mbar with an RF power of 120 W and a temperature of 
25 ◦C. Fig. 9 displays the schematic design of MSM UV-PD for measuring the photocurrent. The device’s effective area is 0.1634 cm2 

and was estimated using the area of the GaN NCTH sample exposed to light without Pt electrodes. The same value was determined by 
our prior study [39]. 

Fig. 10 illustrates the I-V characteristics of fabricated M-S-M GaN PD under dark and illumination by 1.4 mW/cm2 intensity of 
370 nm light. The photodetector exhibits the Schottky behavior of nonlinear and increased current with increases in applied voltage. 
The Schottky contact obtains deposited Pt-metal onto n-GaN because the value of work function Pt (ɸm) is 5.65 eV and the value of 
electron affinity GaN (χ) is 4.1 eV. The value of ideal barrier height (ɸB) onto n-type GaN is 1.55 eV can be computed by assuming the 
nonappearance (theoretically) of interface states [40]. 

The generated current of the photodetector was measured at a range of bias voltages applied from − 1–5 V on the contacts. The 
average rise time speed of the photodetector is about 22 ms when the current increases from 10 % to 90 % of its value of saturation, 

Fig. 10. I-V characteristic of M-S-M GaN prepared on Si photodetector in dark and irradiation.  

Fig. 11. Response time of M-S-M GaN prepared on Si photodetector irradiation by chopped 370 nm.  

A.M. Selman and M.J. Kadhim                                                                                                                                                                                     



Optik 265 (2022) 169418

7

while the average fall time is 17 ms when the current decreases from 90 % to 10 % of its value of saturation. Wang et al. [41] reported 
rise time of GaN PD is 70 ms and the fall time is 90 ms but reported of shorter response time (rise time <10 ms and fall time <10 ms) at 
Si-doped devices. While Krishna et al. [42] refer rise time between (23− 117) ms and fall time between (16− 56) ms. 

When the photodetector is exposed to light, photocurrent is produced, which increases the overall amount of current by creating 
electron-hole pairs. Thus, because the detector is usually built to detect a specific wavelength or range of wavelengths, studying the 
photosensor’s photoresponse can help determine the sensor’s response peak [43]. Returning to Fig. 10, notice how the ohmic behaver 
at the Pt electrode deposition contact with GaN NCTH while the Schottky behaver Al metal contact with the device. However, contact 
type depends on the woke function of metal and semiconductors. In the case of ohmic contact, the work function of the metal is smaller 
than that of semiconductor n-type, while in the state of p-type semiconductors, the opposite is true. [43]. 

Fig. 11 exhibits the response time of M-S-M GaN UV-PD irradiation by chopped 370 nm UV light with 1.6 mW/cm2 under (2− 8) 
bias voltages. These curves exhibit figures of rectangular shape and agreeable variation with time under UV light irradiation when on 
and off switched repeatedly. Nonetheless, the photocurrent for every cycle on and off is steady and repeatable. In addition, the 
sensitivity (S) of the M-S-M GaN PD was determined by using relation (S(%) =

Iph − Id
Id × 100) at a different applied bias voltage [44]. 

Where Iph, and Id are photocurrent and dark current, respectively, the sensitivity S (%) of UV-PD at 3 V is the highest (261), while the 
lowest value is 19 at 8 V. Prakash et al. reported sensitivity of GaN photodetector with 350 nm is 5.3 % at 0.2 V is less than 16 times 
compared to the sensitivity of r-GO/GaN photodetector [45]. The responsitivity (R) was evaluated for the photodetector and indicates 
the ratio of photocurrent to incident light power density (E) on the device’s effective active area (A) [45] which is represented by the 
relation R = IPh(A)/[E(W/cm2) × A(cm2)] [46]. At this wave length and bias voltage 8 V gain of high value responsivity is 27.972 A/W 
while Cange et al. [47] calculated the responsitivity at 10 V which, is less than this work, and was 3.096, 1.079, and 2.420 A/W. The 
reason for the less value of photoresponse is due to the increase in light intensity and also increases the of recombination possibility 
according to previous literature [48,49]. Meanwhile, quantum efficiency (η) and detectivity (D) are significant factors in the assess-
ment of a photosensitive device’s performance, so quantum efficiency is given by the equation and is related to the number of charge 
carrier pairs excited by absorbed photons, and it is represented by η = hcR/eλ [50]. As shown in the following relation, the detectivity 
of a photodetector is defined as the lowest level at which it can respond. D = R

̅̅̅
A

√

̅̅̅̅̅̅
2eId

√ [45], where e, λ, h, and c are the electric charge, 

wavelength of UV light, Plank’s constant, and speed of light, respectively. High value of detectivetiy is 2.4 × 1023 Jones at 8 V of the 
GaN NCTH UV-PD while Nallabala et al. [51] reported detectivity of 9.4 × 1014 Jones of the Au/Nd2O3/GaN MIS BB PD hypered 
device. In addation yadav et al. [52] reported D value is 1.73 × 1013 Jones of the ITO/GaN/ITO. In this paper, the ratio value of 
photocurrent to darkcurrent was studied, which is known as gain (g) where gain the low value are 1.59, 1.26, 1.13, 1.36, 1.38, 1.25, 
and 1.19 at 2, 3, 4, 5, 6, 7 and 8 V respectively. Table 1 summarizes the photoelectrical properties of the GaN NCTH UV-PD and 
compares it with other GaN UV-PD devices fabricated. 

3. Conclusions 

GaN NCTH prepared on the Si substrate was synthesized by RF method. GaN NCTH is nanoparticles that show morphology for-
mation and particle size of GaN NCTH ranging from 10 to 20 nm. XRD patterns show that the synthesis of thin films is polycrystalline. 
Hence, the XRD patterns of GaN NCTH which shows a characteristic peak at plans (101), (102), and (004) are corresponding to 2 Theta 
(36.9, 48, and 72,6) degree while XRD patterns Si in (111), and (222) corresponding to (28.25, and 58.87) degrees, respectively. On 
the other hand, Raman spectra exhibit one a clear high-intensity peak returns to Si at 520 cm− 1 and noted active phonon E2(high) band 
returns GaN at 566 cm− 1 while A1(LO) is 730 cm− 1 and these bands correspond to previous. The UV-PD appears of resulted in 
responsivity high at 8 V applied bias under 370 nm of irradiation of (1.6) mW/cm2 light intensity which indicates results that the UV 
detector shows excellent stability over time, good sensitivity, and high photocurrent. 
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Table 1 
Comparison of the photoelectrical factors of variation GaN UV-PD.  

Bais Voltage 
V 

GaN 
Nanost. 

λ 
nm 

S% IPh 

A 
R 
A/W 

D 
Jones 

η Ref. 

2 NPs 370 60 0.000067 0.293 8.8 × 1021 1 This work 
3 261 0.00033 1.442 1.9 × 1022 5 
4 125 0.00045 1.967 1.2 × 1022 7 
5 36 0.0015 6.556 1.3 × 1022 22 
1 NFs 325 – 113.6 × 10− 6 10.5 2.4 × 1010 – [53] 
5 NWs 360 – 10− 10 0.5 – – [54] 
0 – – – 3.53 × 10− 11 0.03 1.8 × 1012 – [55] 
10 – – – – 3.096 – – [47]  
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