Combining Cubic B-Spline Galerkin Method with Quadratic Weight Function for Solving Partial Integro-Differential Equations

Hameeda O.Al-Humedi ${ }^{a}$, Zahraa Adnan jameel ${ }^{\text {b }}$
$a_{\text {Department of Mathematics, College of Education for Pure Sciences, Basrah University, Basrah, Iraq. Email: ahameeda722@yahoo.com }}$
${ }^{b}$ Department of Mathematics, College of Education for Pure Sciences, Basrah University, Basrah, Iraq. Email: zahraad788@yahoo.com

ARTICLEINFO

Article history:

Received: 18/12 /2019
Rrevised form: 07/1/2020
Accepted : 28/1/2020
Available online: 17/02 / 2020

Keywords:

B-spline method, Galerkin method, integro-differential equation, VonNeuman.

Abstract

In this article, a numerical scheme was implemented for solving the partial integrodifferential equations (PIDEs) with weakly singular kernel by using the cubic B-spline Galerkin method with quadratic B-spline as a weight function. backward Euler scheme was used for time direction and the cubic B-spline Galerkin method with quadratic weight function was used for spatial derivative. We observed from the numerical examples that the proposed method possesses a high degree of efficiency and accuracy. In addition, the numerical results are in suitable agreement with the exact solutions via calculating L_{2} and L_{∞} norms errors. Theoretically, we discussed the stable evaluation of the current method using the Von-Neumann method, which explained that the present technique is unconditionally stable.

MSC :

DOI : 10.29304/jqcm.2020.12.1.660

1. Introduction

Many mathematical formulations of physical phenomena contain PIDEs, which can describe some physical situations such as viscoelasticity, convection- diffusion problems, heat flow in materials with memory, nuclear reactor dynamics, geophysics and plasma physics etc.

Consider the following PIDE with a weakly singular kernel is

$$
\begin{equation*}
u_{t}(x, t)+m u_{x}(x, t)-b u_{x x}(x, t)=\int_{0}^{t} K(t-s) u(x, s) d s+f(x, t) \quad x \in[a, b], t>0 \tag{1}
\end{equation*}
$$

where, $K(t-s)=(t-s)^{-\alpha}, \quad 0<\alpha<1$
subject to the initial condition are :

[^0]
[^0]: Corresponding author Zahraa Adnan jameel
 Email addresses: zahraad788@yahoo.com

 Communicated by Alaa H. H. Al-Ka'bi

