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Abstract

Glass ionomer cement (GIC) is a common restorative material in dentistry, but it exhibits relatively weak mechanical
properties. The present study focuses on incorporating nano-hydroxyapatite (nHAP) with different ratios (1, 3, 5, and 7wt
%) in GIC to improve its properties. Mechanical properties, sorption, solubility, and diffusion coefficients after storage
in distilled water for 60 days were studied. The highest sorption was measured at 7%wt (46.66 mg/mm3), and the lowest
solubility was in the case of the sample containing 5% (29.166 mg/mm3). Moreover, the highest value of diffusion
coefficient was 8.5 mm/s in the case of the sample with 7%wt nHAP. All in all, an ideal nHAP/GIC composition was
prepared, and it can be applied as the basis of underneath dental filling.
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1. Introduction

T he concept of restoring damaged tissues and
replacing lost ones using synthetic bio-

materials is common, especially in dentistry. Glass
ionomer cement (GIC) is a good example for recon-
structive dental applications [1]. Cement is used as
crowns and to fill cracks caused by tooth decay in
modern dentistry instead of outdated fillings such as
amalgam. Cement-based dental composites have
demonstrated superior biocompatibility, natural
appearance, and low plaque accumulation [2]. GIC is
formed by the reaction between polyacrylic acid and
calcium fluoroaluminosilicate glass powder [3e5].
Because of its effectiveness and simplicity, it is
employed in medical applications, such as treating
dental disorders including dental decay in the oral
cavity [6,7]. Nowadays, many people suffer from

tooth decay, root canal infections, and cavities which
are caused by bacterial infection of the teeth and lead
to the damage of the tooth structure [8]. Dental caries
has become the most serious concern in oral health
worldwide, owing to the potential of a carcinogenic
environment forming inside the mouth cavity, which
is dependent on several agents, such as diet and oral
health [9]. Recently, nanometallic materials, such as
Ag, TiO2, ZrO2, ZnO and Cu, were adopted to opti-
mize the mechanical properties of GIC. However,
these caused problems including cytotoxicity,
discoloration, adhesion, and low bonding [10e14]. At
the same time, several researchers began incorpo-
rating nanoparticles, nanofillers such as niobium
pentoxide, bioactive glass, and forsterite, but it was
found that these nanofillers have poor mechanical
properties when combined with GIC, and negatively
affect the release of fluoride [15e17]. Dental
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materials are typically defined by evaluating me-
chanical parameters such as flexural strength,
compressive strength, modulus of bending and
others [18e21].
GIC has various advantages, such as fluoride

release, transparency, and good adhesion to the
tooth structure [22], as well as biocompatibility with
bones, gums, and pulp. However, despite these
excellent properties, its application has been
restricted [23] because of its brittleness and rela-
tively weak mechanical properties. As a result, it is
used as a filling for milk teeth, to fill cracks caused
by tooth decay, and as an adhesive for crowns and
fractures. But it is not used for high pressure areas,
such as the back teeth. To overcome these obstacles,
GIC was modified by adding different materials like
antibacterial compounds, silica particles, such as
aluminum, hydroxyapatite (HAP), corals, eggshells,
and other natural materials [6]. One of the most
promising materials is HAP which has apatite-like
crystal structure in the skeletal system and dental
structure, as well as excellent biocompatibility. It is a
promising bio-ceramic and biologically active cal-
cium phosphate because it is similar to the bone
component of humans [24]. Therefore, the effect of
incorporating HAP powder into dental materials to
achieve the required form and mechanical integra-
tion was studied. HAP is used as a reinforcing ma-
terial and has a significant impact on the mechanical
properties of polymers [24e26]. It has also been
widely used as an alternative in bone and tooth
repair due to its experimentally proven compati-
bility, as well as its ability to increase the hardness
of compounds and improve surface hardness. Hy-
droxyapatite treated with silane added to zinc oxide
was tested satisfactorily in a variety of applications
[27,28]. In addition, HAP can be naturally prepared
from low-cost biological sources like eggshells,
seashells, and fish bones [29,30] which is highly
advantageous from economic and environmental
points of view. In this research, nano-HAP (nHAP)
powder was prepared by calcination and added to
glass cement in different proportions to study the
changes in the physical and mechanical character-
istics of the final material [31]. The incorporation of
nHAP increases the possibility of potential applica-
tions of the developed material in dentistry [32,33].

2. Materials and methods

The powder/liquid-type GIC, Cavex Glass Ion-
omer from Cavex (Germany, Lot 2033134) was used.
The ratio of powder to liquid was 2:1. The powder
(aluminium silicate glass) consists of oxides SiO2,

Al2O3, B2O4, P2O5, and CaF2, while the liquid is
polyacrylic acid. nHAP (particle size <100 nm) was
synthesised and characterised at the University of
Basrah (Iraq) from oyster shells which were
collected with dimensions in a range between 3 and
5 cm. These were purified by washing it with water
and alcohol several times. Subsequently, the oyster
shells were dried using an oven at 80 �C for 24 h.
Then, the dried oyster shells were crushed with a
pestle, and sieved with a sieve of less than 36 mm to
obtain calcium carbonate. CaCO3 converted to cal-
cium oxide in an electric furnace (MVMIHM-VOGT
P6/B) and then, heated up to 1200 �C for 2 h at an
increment rate of 10 �C/min. After that, the sample
was cooled, ground again and sieved using a 500-
mesh sieve to obtain calcium oxide particles with
size less than 25 mm. This was used in co-precipi-
tation process to synthesize nHAP nanocrystals at
room temperature. 2 mol of CaO was dissolved in
100 ml distilled water and 0.6 mol H2PO4 was added
to the flask with vigorous stirring using a magnetic
stirrer. The mixture was centrifuged for 10 min at
5000 rpm and washed for three times with distilled
water to remove residual Ca and phosphate ions.
Finally, the product was kept in an oven at 120 �C for
48 h and added in different ratios, 1%wt, 3%wt, 5%
wt, and 7%wt to GIC to improve the physical and
mechanical properties.

2.1. Flexural strength and modulus

For all nHAP concentrations, 24 samples
(2 � 2 � 25 mm3, Fig. 1) were prepared in a special
mold according to the ISO 997-1 2007 standard. After
that, the samples were stored in distilled water for
24 h at 37 �C. Flexural strengths weremeasured using
the universal testing machine (Zwick/roll
BT1-FR2.5 TN, Germany). The flexural strength
(FS) in MPa was calculated using the following
equation [27]:

FS ¼ 3PL/(2bd2) (1)

where P is the maximum load exerted on the
sample at the point of fracture (N), L is the distance
between two supports (20 mm), b is the width (mm),
while d is the thickness (mm).
Flexural modulus, E (MPa) was determined as

follows [34,35]:

E ¼ (3PL3)/(4bd3D) (2)

where D is the deformation of the specimen at P.
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2.2. Diametric tensile strength (DTS)

All in all, 20 disc models (diameter 16 mm x height
10 mm, Fig. 2) were prepared to carry out diagonal
tensile strength (DTS) tests. DTS was calculated by
using the following equation [31]:

DTS (MPa) ¼ 2F'/pRN (3)

where F0 is the load at fracture (N), R is the
sample's diameter (mm), and N is the sample's
height (mm).

2.3. Water sorption and solubility

The prepared samples were stored in desiccators
containing silica gel at 37 �C for one week. The
samples were extracted and weighed; subse-
quently, the process was repeated until a constant
mass was obtained which was measured (with the
accuracy of ±0.1 mg (KERN ACS 220�4, Germany).

Thereafter, all samples prepared with the previ-
ously mentioned nHAP concentrations were
immersed in distilled water at 37 �C. Their weights
were measured at regular intervals (2 h). The
weight of the samples increased on the first day in
comparison to the previous day. Then, a slowdown
in absorption was recorded over time until the
stability of the samples was reached (mass change
of less than ± 0.1 mg) (M1). The weighing process
continued for 60 days, after which the samples
were extracted from distilled water and placed into
the silica gel containing desiccator and weighed a
week later (M2). Subsequently, the solubility (WS)
and absorbance (WA) were calculated according to
the glass cement (Cave, Germany, Lot 2033134 ISO
9917-1:2007) standard using the following equa-
tions [27,35]:

WA ¼ (M1 - M2)/V (4)

WS ¼ (M0 - M2)/V (5)

Fig. 1. Template (left) and prepared samples (right) to measure flexural strength (FS).

Fig. 2. Template (left) and prepared samples to measure diametric tensile strength (DTS).
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where V is the volume.

2.4. Diffusion coefficients

To obtain the diffusion coefficient by using Fick's
second law the Stefan approximation was applied as
follows:

vc
vt
¼D

�
v2c
vx2

þ v2c
vy2

þv2c
vz2

�
ð6Þ

where t (s) is time, and c (%) is the concentration.
The diffusion coefficient of the 1D model for the
mass flow in the solids is D (ms�1), and the differ-
ential equation is expressed in the following form:

vc
vt
¼D

�
v2c
vx2

�
ð7Þ

The solution of Fick's second law for longer
periods of diffusion is given [28] as follows:

Mt
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¼ � 8

p2

X∞
n¼0

1
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#
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and it is reduced by the initial stage of absorption
when the value of Mt/M∞ � 0.6.

Mt

M∞
¼ 4
L

�
Dt
p

�1 =
2

ð9Þ

In eq. (9), the diffusion coefficient of the liquid
during the adsorption is D (mm/s), andMt expresses
the absorption at time t (s), while M∞ is the mass (g)
of absorption when the weight is constant, and L is
the thickness of the sample.
If the uptake Mt is determined at reasonable time

intervals till the equilibrium state is attained, then
subsequently, the graph of Mt/M vs t1/2 should show
a straight line, and the slope of the line is S which
can also be calculated by the following equation
[36]:

S¼4
�

D
pL2

�1 =

2

ð10Þ

3. Results and discussion

Samples consisting of different ratios of nHAP
mixed with GIC were prepared to enhance me-
chanical and physical properties of the latter. After
60 days of storage in distilled water, the character-
istics of the prepared nHAP/GIC materials were
investigated, and flexural strength (FS), modulus
diametric tensile strength (DTS), diffusion,

solubility and absorption coefficient measurements
were performed. The flexural strength of the sam-
ples ranged from 13.446 MPa to 29.951 MPa, where
the lowest value belongs to the one with 7 wt%
nHAP (Table 1). This decrease in FS is attributed to
the increase in nHAP content, which leads to a more
brittle structure due to the lack of complete powder-
liquid bonding. The highest FS value (29.951 MPa)
corresponds to the sample which contain 5wt%
nHAP, and it is better than the GIC (Cavex, Ger-
many, Lot 2033134 ISO 9917-1:2007) standard which
is used as reference to compare the results. The
incorporation of nHAP enhanced the external
strength compared to pure GIC [30]. The increase in
the surface area caused by nHAP and its good
diffusion in the powder increased the bonding,
which provided more flexibility. HAP porosity en-
hances the amount of external strength of GIC [37].
The flexural modulus was also measured (Table

2). The flexural modulus increased by the increasing
amount of nHAP up to 5wt%, but it dropped to even
below the pure GIC at 7 wt%. The flexural modulus
values ranged between 175.94 MPa and 742.96 MPa,
and the largest value belonged to 5wt%
(742.96 MPa), whereas the lowest one corresponded
to the sample with 7wt% at 175.94 MPa.
The diametric tensile strength (DTS) of the ranged

from 7.52 MPa to 14.01 MPa (Table 3). The highest
and lowest values were 5 wt% and 7 wt% with 7.52
and 14.01 MPa, respectively. Because the nHAP fil-
led the empty spaces, the integration of nHAP into
GIC boosted the DTS by up to 5% wt compared to
pure GIC. Thus, the formation of cracks was

Table 1. Flexural strength (FS) values (in MPa) of the pure glass ion-
omer cement (GIC) without nano-hydroxyapatite (nHAP) and the pre-
pared nHAP/GIC samples with different weight ratios of nHAP.

Weight ratios
of nHAP (%)

Flexural strength
(Mpa)±SD

0 24.794 ± 3.71
1 24.898 ± 3.38
3 26.796 ± 0.82
5 29.951 ± 2.72
7 13.446 ± 0.69

Table 2. Flexural modulus (MPa) values of the pure glass ionomer
cement (GIC) without nano-hydroxyapatite (nHAP) and the prepared
nHAP/GIC samples with different weight ratios of nHAP.

Weight ratios
of nHAP (%)

Flexural Modulus
(MPa) ± SD

0 176.84 ± 0.95
1 317.46 ± 1.25
3 428.94 ± 1.31
5 742.96 ± 0.85
7 175.94 ± 1.35
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prevented in case of pores and blemishes. However,
further increase of nHAP content (7%) led to brittle
nHAP/GIC material.
The sample with 7wt% nHAP showed a significant

change in DTS as well compared to the others and
having even less suitable properties than pure glass
cement. This decrease is attributed to the prepon-
derance of nHAPs overwhelmed by the reaction

with polyacrylic acid. In addition, agglomeration of
nHAP may result in heterogeneous dispersion in
the matrix. Generally, GIC is water sensitive, and it
has a high solubility in the sitting process (pro-
cessing process), probably decreasing the mechan-
ical properties [38].
The water sorption of the nHAP/GIC samples was

also determined (Fig. 3). The values were computed
for all ratios after being immersed in water for
different periods of time (1, 7, and 60 days). The
results indicated that the values of the water sorp-
tion increased when the immersion period in water
increased. The sorption values ranged from 0 to
50 mg/mm3. The highest value of sorption was
46.66 ± 2.08 mg/mm3 at 60 days experienced in case
of the sample with 7wt% nHAP, whereas the lowest
value was 34.66 ± 2.08 mg/mm3 which is corre-
sponding to the sample with 5wt% nHAP. One of
the weaknesses of GIC is that it is hydrolytically

Table 3. Diametric tensile strength (DTS) values (MPa) of the pure glass
ionomer cement (GIC) without nano-hydroxyapatite (nHAP) and the
prepared nHAP/GIC samples with different weight ratios of nHAP.

Weight ratios
of nHAP (%)

Diametric tensile
strength (MPa) ±SD

0 13.05 ± 0.64
1 12.23 ± 0.77
3 12.96 ± 0.35
5 14.01 ± 0.39
7 7.52 ± 0.46

Fig. 3. Water sorption (mg/mm3) of the pure GIC and the prepared nHAP/GIC samples (0, 1, 3, 5, and 7 wt% of nHAP) during different periods of
times (1, 7, and 60 days).
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susceptible at initial stages of setting when exposed
to air and moisture. It was previously reported that
water sorption and solubility is one of the most
critical attributes for a restorative material [39]. In
addition, the increase in sorption and solubility can
be linked with surface roughness.
The water solubility of the samples was deter-

mined (Fig. 4). It was found that the solubility ranges
from 0 to 60 mg/mm3. The highest solubility was at
60 days (1%) and was equal to 53.66 ± 5.06 mg/mm3,
whereas the lowest value was at 5wt% and equal to
29.17 ± 2.02 mg/mm3.
The solubility of the modified GIC samples,

without statistical differences at first day is due to
the incomplete preparation and unproduced
ammonium polyacrylate. The difference appeared
in the measurements of 1 and 60 days, and the
samples with 1 wt% and 7 wt% nHAP content had
higher solubility while those with 3wt% and 5wt%
nano-hydroxyapatite showed a statistically

significant decrease in solubility. This finding could
be associated with the improved microstructure of
the modified GIC by addition of a certain amount of
nHAP.
The diffusion coefficients of the modified GIC

with different ratios (0, 1, 3, 5, and 7wt%) of nHAP
were determined (Table 4). The results shows that
the diffusion coefficient ranges from 3.4 mm/s to
8.5 mm/s, and the highest and lowest values belong

Fig. 4. Water solubility (mg/mm3) of the modified GIC mixing with various ratios (0, 1, 3, 5 and 7) wt% from nHAP during different periods (1, 7 and
60 days).

Table 4. Diffusion coefficient (mm/s) of the pure GIC and the prepared
nHAP/GIC samples (0, 1, 3, 5, and 7 wt% of nHAP).

Weight ratios
of nHAP %

Diffusion coefficient
(mm/s) ± SD

0 4.6 ± 1.52
1 3.4 ± 1.15
3 3.6 ± 1.21
5 4.2 ± 1.41
7 8.5 ± 2.84
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to the sample with the highest nHAP content and
lowest nHAP content, respectively.
Thus, with increasing nHAP added to GIC, its

sitting time increases. At all concentrations, the
siting time remained in the rational range of
90e360 s which is regulated in ISO:9917-1, except in
case of the sample with 7wt% nHAP content, which
surpasses the uppermost limit. The best concen-
tricity of nHAP was indicated at 5wt% by weight
because it could provide dentists with a more
convenient time to mix powder and liquid. It also
has better physical and clinical properties for
absorbance and solubility than other concentrations.

4. Conclusion

Nano-hydroxyapatite prepared in our laboratories
from oyster shells was successfully added to glass
ionomer cement in four different formulations (1, 3,
5, and 7 wt.%). nHAP/GIC samples were tested and
compared to pure glass. Incorporation of a properly
selected amount of nHAP makes GIC useful for
significant restorative application in areas subject to
high compressive forces. For all concentrations, the
positioning time remained in the logical range be-
tween 90 and 360 s regulated in ISO:9917-1, except
in the case of the 7 wt% sample, which is above the
upper limit. An improvement was also observed in
the physical properties of a 5% wt sample in terms
of absorption and solubility. With these results, we
observed a greater improvement in mechanical and
physical properties compared to pure GIC in the
case of the sample with 5 wt% nHAP content ac-
cording to ISO: 9917-1. All in all, an ideal cement
formulation has been successfully developed. It has
been found that this nHAP/GIC can be applied as a
basis under dental fillings, because its properties
fulfil the recommendations of the American Dental
Association (ADA).
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