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Abstract: Glutathione is a naturally occurring compound that plays a crucial role in the cellular
response to oxidative stress through its ability to quench free radicals, thus mitigating the risk of
potential damage, including cell death. While glutathione is endogenously present in different plants
and animal cells, their concentration varies considerably. The alteration in glutathione homeostasis
can be used as a potential marker for human diseases. In the case of the depletion of endogenous
glutathione, exogenous sources can be used to replenish the pool. To this end, both natural and
synthetic glutathione can be used. However, the health benefit of glutathione from natural sources
derived from fruits and vegetables is still debated. There is increasingly growing evidence of the
potential health benefits of glutathione in different diseases; however, the determination and in situ
quantification of endogenously produced glutathione remains a major challenge. For this reason,
it has been difficult to understand the bioprocessing of exogenously delivered glutathione in vivo.
The development of an in situ technique will also aid in the routine monitoring of glutathione as
a biomarker for different oxidative stress-mediated diseases. Furthermore, an understanding of
the in vivo bioprocessing of exogenously delivered glutathione will also aid the food industry both
towards improving the longevity and profile of food products and the development of glutathione
delivery products for long-term societal health benefits. In this review, we surveyed the natural
plant-derived sources of glutathione, the identification and quantification of extracted glutathione
from these sources, and the role of glutathione in the food industry and its effect on human health.

Keywords: glutathione; oxidative stress; bioactive peptides; natural peptide

1. Introduction

Environmental factors including pollution, smoke, ultraviolet rays, and diet can
cause damage to somatic cells due to the production of high amounts of reactive oxygen
species (ROS)-mediated oxidative stress [1]. In normal functioning of the body, ROS is
naturally neutralized by endogenous antioxidants, which is highly cell type-dependent [2,3].
However, to neutralize the overproduction of ROS, exogenous antioxidants are required.
These exogenous antioxidants can be delivered through natural sources such as specific
fruits and vegetables, via widely consumed processed food fortified with antioxidants, or
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through medication. In the case of processed food, the supplementation of antioxidants
(during fortification or otherwise) has additional benefits, including the enhancement of
flavor, aroma, color, health benefits to consumers, and prolonged shelf-life by restricting
the oxidation-mediated rancidity of food [4–8]. To avoid any potential harmful impact of
synthetic antioxidants, there is a push towards using natural antioxidants found in sources
such as plants, fish, and livestock. Some of the examples of natural (water and fat soluble)
antioxidants include vitamin E, α-tocopherol, phenolic compounds (curcumin, melatonin,
minocycline, resveratrol), flavonoids, essential oils, carotenoids, and low-molecular-weight
peptides such as glutathione [2,9]. In this review, we will be focusing on glutathione as a
natural antioxidant.

Exogenous glutathione can be delivered through the consumption of a range of fruits
and vegetables. Glutathione in fruits and vegetables, when consumed, do not enhance
innate glutathione levels; instead, it promotes the production of endogenous glutathione in
cells, thus enhancing the innate antioxidant response of cells. The direct consumption of
natural fruits and vegetables also avoids the need for the extraction of glutathione. However,
advancements in nutraceuticals have led to the extraction, isolation, and purification
of glutathione from these natural sources. Traditionally, glutathione is isolated from
natural plant-based sources using an acid extraction method, which is similar to other
natural compounds.

Glutathione is an essential antioxidant which plays a critical role in human, animal,
and plant life. Glutathione is a tripeptide consisting of glutamic–glycine–cysteine and is
found in reduced (GSH) and oxidized (GSSG) forms (Figure 1). The ratio between GSH and
GSSG is reflective of the level of oxidative stress, where an increase in the ratio (GSSG:GSH)
indicates a greater amount of oxidative stress [10]. In normal functioning, GSSG is reduced
to GSH by glutathione reductase using a nicotinamide adenine dinucleotide phosphate
(NADPH) unit, whereas GSH is oxidized by free radicals (members of the ROS family)
to GSSG. In unstressed cells, the amount of GSH is ~90% compared to ~10% GSSG [11].
In neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease, the
ratio between GSH and GSSG is considerably reduced [10]. The altercation in the ratio of
GSH:GSSG is explored as a potential therapeutic marker to diagnose these neurodegen-
erative diseases. The role of the GSH:GSSG ratio in Parkinson’s disease has been recently
reviewed elsewhere [12]. Disturbance in glutathione homeostasis has also been related to
the etiology of a range of other diseases including cardiovascular, cancer, diabetes, cystic
fibrosis, ageing, and illnesses related to excess oxidative stress [13–17].
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Glutathione can also improve the performance of other antioxidants, including vitamin
C and E and activate inhibitory enzymes that expose them to a high concentration of oxygen
by restoring the disulfide bonds of the enzyme [18]. Glutathione has been proposed to play
an important role in preventing iron-mediated programmed cell death in ageing and age-
dependent neurodegenerative diseases [19]. Reduction in naturally occurring GSH with
ageing increases labile iron, causing ferroptosis (age-related iron-mediated programmed
cell death). In this review, we discuss the sources of GSH in plants, recent progress in its
identification and quantification, and its importance in the food industry and in human
health, with a particular focus on recent studies in the field.

2. Plant Sources of Glutathione

Glutathione is found in different plant species and its concentration varies in different
parts of plants such as leaves, fruit, seeds, fruit peels, petiole, and flowers. For example,
fruits such as strawberries, lemons, avocados, and tomatoes are good sources of glutathione
with concentrations of ~11.6, 10.5, 15.5, 2.5, and 1.5 mg/100 g, respectively [20]. Some of the
examples of vegetables and fruits containing good concentration of GSH includes broccoli,
green peppers, oranges, apples, bananas, carrots, spinach, and cauliflower. Being sulfur
rich, these vegetables and fruits are known to promote endogenous glutathione production.
However, the consumption of plant-based sources may not directly contribute towards
glutathione but instead promote its (glutathione) endogenous intracellular biochemical
production in cells. Endogenous glutathione in cells boosts functions as a natural antioxi-
dant. For example, the consumption of polyphenols containing fruits and vegetables can
promote the intracellular production of glutathione. It has been shown, using a unique
transgenic reporter mouse strain, that flavonoids (a type of polyphenol found in fruits
and vegetables) promote a simultaneous increase in γ-glutamylcysteine synthetase and
intracellular glutathione concentration in muscles [21]. The degradation of glutathione in
the gastrointestinal environment during digestion cannot be disregarded [22]. Furthermore,
in some tissues, extracellular glutathione needs to be degraded into individual amino acids
before transportation inside the cell. This degradation is carried out by the only known
glutathionase enzyme, γ-glutamyltranspeptidase, found on the cell plasma membrane.
Inside the cell, precursor units are enzymatically linked by combining glutamic acid with
cysteine to form γ-glutamylcysteine using the enzyme glutamate–cysteine ligase (GCL).
Finally, glycine is added to γ-glutamylcysteine by ATP and Mg2+-dependent glutathione
synthase (GS) to biosynthesize glutathione (Figure 2) [16,23]. The enzyme GCL can catalyze
the entire reaction to synthesize glutathione, but the presence of the GS enzyme can increase
the rate of glutathione formation [23].
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3. Structure and Chemistry of Glutathione

Glutathione is a low-molecular-weight tripeptide of physiological importance found
in living organisms (plants and animals alike). It is found in practically every compart-
ment of plant cells, including the chloroplasts, apoplast, mitochondria, cytosol, vacuole,
peroxisomes, and endoplasmic reticulum, and predominantly in mitochondria in animal
cells [18,24]. Glutathione has a molecular formula of C10H17N3O6S with a molecular weight
of 307.32 g/mol and an individual atomic percentage of C = 39.08%, H = 5.58%, N = 13.67%,
O = 31.24%, and S = 10.43% [25]. Glutathione was first identified in baker’s yeasts and
many animal tissues in 1888 by J. de Rey-Paihade, who named this substance philothion.
In 1921, Hopkins suggested that this substance was a dipeptide consisting of cysteine and
glutamic acid due to the presence of nitrogen and sulfur atoms, but he did not notice the
presence of glycine. In 1927, it was noticed that glutathione was a tripeptide comprising a
third amino acid of a low molecular weight, perhaps serine. In 1929, Hopkins conducted
the acid hydrolysis of glutathione and demonstrated that it is comprised of a tripeptide
containing glutamate, cysteine, and glycine [26]. Then came the research that confirms that
glutathione is a tripeptide containing glycine, cysteine, and glutamic acid (Figure 3) [27].
In 1935, Harington and Mead reported a chemical method of glutathione synthesis which
paved the foundation for the potential commercial production of glutathione [28]. The com-
mercial production of glutathione commenced in 1950s; however, chemically synthesized
glutathione was a racemic mixture of D- and L-isomers, with only L-isomer being physi-
ologically active [29]. Thus, it required a subsequent purification to remove the inactive
D-isomer. The global glutathione market was estimated at USD 77 million in 2020 and is
projected to reach USD 84 million by 2027 (News Channel Nebraska).
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Glutathione comprises an N-terminal glutamic acid (Glu), a central cysteine (Cys),
and a C-terminal glycine (Gly). What distinguishes the structure of glutathione is that
Glu is linked to Cys in an amide linkage through carboxyl γ and not from carboxyl α
position. Gly, the third amino acid, is linked to Cys in an amide linkage, so the glutathione
is L-Glu-L-Cys-Gly-γ. The intracellular concentration of glutathione ranges between 0.5
and 10 mM/L depending on the cell type [15,30]. Glutathione contains a large percentage
of the Cys, so the thiol group (of Cys) is the leading chemical group regulating its biological
and biological functions [31].

The glutathione synthesis pathway is called the γ-glutamyl cycle and has been de-
scribed in detail previously [13,23,32]. The de novo synthesis of glutathione requires the
consecutive action of two enzymes, γ-glutamylcysteine synthetase (γ-GCS) and GSH syn-
thetase [13,33]. The expression of γ-GCS is highly cell type-dependent, which regulates
the amount of glutathione formation. The rate-limiting component in the biosynthesis of
glutathione is the availability of cysteine. The cellular uptake of cysteine can be enhanced
by oxidants such as hydrogen peroxide and electrophilic compounds, which also promote
the expression of γ-GCS. However, the phosphorylation of γ-GCS inhibits glutathione
synthesis; thus, in one way, glutathione regulates γ-GCS activity via a negative feedback
mechanism [13].
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4. Extraction and Sample Preparation Methods

There are several ways to produce biological peptides including (i) the use of specific
enzymes or microorganisms, (ii) acid or basic hydrolysis of the proteins, and (iii) synthetic
solid-state peptide synthesis. Explorations of glutathione synthesis were inspired by the
observation by Bloch, who studied the biosynthesis of glutathione from its constituent
amino acids in rat liver slices and its consequent biosynthetic pathway [34]. The initial
research in the field was focused on the exploration of the enzymatic and fermentation
production methods of glutathione synthesis, which have been reviewed in detail by
Li et al. [29].

Later, glutathione extraction was explored in plant tissues where it was isolated from
different parts such as roots, stems, leaves, fruits, and seeds. Table 1 describes the list
of different sources of glutathione, extraction methods, type and amount of glutathione,
and detection methods. Lata et al. [35]. extracted glutathione from the peels, pulp, and
seeds of four varieties of frozen-stored apples. In their work, different parts of the fruit
were snap frozen in liquid nitrogen and grounded to obtain a fine powder. Glutathione
was extracted from frozen apple powder by homogenizing it in 0.1 M of hydrochloric acid
(HCl) containing polyvinylpyrrolidone (PVP), followed by centrifugation at 14,000 rpm for
20 min at 4 ◦C. The obtained supernatant was reduced with dithiothreitol (DTT) derivatized
using monobromobimane. The total glutathione content was determined using fluorometry
at 480 nm by exciting the sample at 380 nm [35]. They concluded that the concentration
of glutathione in apple seeds was higher than in the core and peel. Xu et al. [36] extracted
glutathione from fat-removed and crushed corn embryos by using ultrasound to break-
down cell walls, followed by extraction at 90 ◦C for 20 min. The total glutathione content
in an extracted sample was determined using UV/visible spectroscopy and selecting the
maximum absorption wavelength between 190 nm and 600 nm. In their work, they also
determined the functional activity of extracted glutathione against neutralizing hydroxyl
radical, superoxide anion radical, and DPPH radical. Recently, dry yeast has been used
to extract glutathione as a cost-effective, easy to transport alternative to fermentation
broths [37]. In this method, hot water (~78 ◦C) was used to disrupt the yeast cells, releasing
intracellular glutathione along with other water-soluble components, following which
the suspension was rapidly cooled using ice and centrifuged at room temperature for
20 min. The total glutathione (reduced form—GSH) content was determined from the su-
pernatant using the standard 5,5′-dithiobis-(2-nitrobenzoic acid (DTNB assay) (determining
the thiol/sulfhydryl concentration). The extracted GSH was purified and concentrated
in a multistep process using ultrafiltration (UF) and nanofiltration (NF) membranes [37].
Baysar and Karatas [38] extracted both reduced and oxidized forms of glutathione (GSH
and GSSG, respectively) from fresh apricot fruits from six different species. GSH and GSSG
were extracted using perchloric acid (HClO4) solution from the homogenized fruits. These
homogenized solutions were centrifuged at 4 ◦C and filtered to remove the precipitated
protein. The total glutathione content was determined using high-pressure liquid chro-
matography (HPLC) [38]. A similar approach using HClO4 and HPLC was used to extract
GSH and GSSG from eight different species of edible mushrooms [39]. GSH and GSSG were
extracted from homogenized mushrooms using the HClO4 solution method as outlined in
the work by Baysar and Karatas [38]. However, the key difference between the two HPLC
methods was the use of different columns and mobile phases [38,39].

The studies outlined above highlight the methods of extracting intracellular glu-
tathione; however, the commercial production from these approaches is not sufficiently
cost-effective. To this end, microorganisms with the ability to produce extracellular glu-
tathione have been explored [29]. Examples of such microorganisms include C. tropicalis
PK233, Proteus mirabilis IFO 3849, S. cerevisiae, and C. utilis 02-08 [40,41]. In the case of
C. utilis 02-08, the pH of the culture was shown to govern the concentration of extracted
glutathione, with a shift in pH to a lower value inducing a significant improvement in the
glutathione yield [29]. Furthermore, considering cysteine availability is the rate-limiting fac-
tor in glutathione biosynthesis. Perhaps, biochemical and genetic engineering approaches
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towards increasing the bioavailability of cysteine can profoundly increase glutathione syn-
thesis in food-grade microorganisms, leading to a cost-effective pathway for the commercial
production of glutathione.

Table 1. Detailing different sources of glutathione, extraction methods, type, and amount of glu-
tathione and detection methods.

Source Material Extraction Method Glutathione Amount Detection Method Reference

Beta vulgaris (leaf), Prunus persica
(leaf), Medicago truncatula (nodule),
Hordeum vulgare (leaf), Lycopersicon

esculentum (leaf), Beta vulgaris
(root), Trifolium sp. (leaf), Oryza

sativa (leaf)

Plant tissue (100–500 mg) was frozen
in liquid nitrogen, grounded,

200–1000 µL of cold (4 ◦C) extraction
solution (5% (w/v) MPA and 1 mM

EDTA in 0.1% formic acid),
supplemented with 1% (m/v)

polyvinylpolypyrrolidone (PVPP).
Homogenates were centrifuged and
the pellet was extracted again. The
supernatants were combined and

syringe-filtered to obtain
extracted glutathione.

Beta vulgaris (leaf)—152 nmol/g
GSH; 23 nmol/g GSSG, Prunus
persica (leaf)—155 nmol/g GSH;
6 nmol/g, Medicago truncatula
(nodule)—202 nmol/g GSH;
7 nmol/g, Hordeum vulgare

(leaf)—not detected GSH; not
detected, Lycopersicon esculentum

(leaf)—707 nmol/g GSH; 47 nmol/g,
Beta vulgaris (root)—92 nmol/g GSH;

46 nmol/g, Trifolium sp.
(leaf)—42 nmol/g GSH, Oryza sativa
(leaf)—252 nmol/g GSH; 13 nmol/g

High-pressure liquid
chromatography (HPLC) [42]

Kappaphycus alvarezii seaweed
extract sprayed maize

Leaf tissue (1 g) was frozen in liquid
nitrogen, homogenized with 25%
H3PO3 (1 mL) and 3 mL of 0.1 M

sodium phosphate–EDTA buffer (pH
8.0). The solution was centrifuged,
and the supernatant was collected.

GSH—44–194 µg/g FW O-phthalaldehyde
(OPT)/spectrofluorimetry [43]

Salvia species (Salvia nemorosa L.,
and Salvia reuterana Boiss)

Leaf tissue (0.2 g) was homogenized
with 6% metaphosphoric acid (2 mL)
containing 1 mM EDTA, centrifuged,
and the supernatant was collected.

GSH–36,352 nmol/g FW; GSSG–86
nmol/g FW DTNB/UV vis spectroscopy [44]

Cashew plants (Anacardium
occidentale L.)

The leaf samples (0.1 g FW) were
homogenized in cold 6%

trichloroacetic acid (TCA) (w/v), the
homogenate was centrifuged, and

the supernatant was collected.

GSH—1.4–2.3 µmol/g DTNB/UV vis spectroscopy [45]

Seed of wheat
(Triticum aestivum L.) - 2 µmol/g DW DTNB/UV vis spectroscopy [46]

Brassica juncea

Fresh shoot sample (200 g) was
homogenized with 5% w/v

sulfosalicylic acid, centrifuged, and
the supernatant was collected.

glutathione 230–350 nmol/min.mg
protein DTNB/UV vis spectroscopy [47]

Arabidopsis thaliana

Leaf or root tissues (500 mg) were
homogenized with 1 mL of 5%

trichloroacetic acid (TCA),
centrifuged, and the supernatant

was collected.

GSH—1100–6500 nmol/g FW,
GSSG—100–680 nmol/g FW DTNB/UV vis spectroscopy [48]

Tomato (Solanum lycopersicum L.
cv. Condine Red)

Leaf tissue (0.2 g) was homogenized
with 2% metaphosphoric acid (2 mL),

centrifuged, and the supernatant
was neutralized with 0.2 M NaOH

before analysis.

GSH+GSSG–350–420 nmol/g FW DTNB/UV vis spectroscopy [49]

Vicia faba L.

Leaf tissue (0.25 g) was
homogenized with 2%

metaphosphoric acid (2 mL) and 2
mM EDTA, centrifuged, and the

supernatant was collected.

GSH—400–1250 nmol/g FW,
GSSG—55–90 nmol/g FW DTNB/UV vis spectroscopy [50]

Cassia alata - GSH—3–7 µmol/g FW DTNB/UV vis spectroscopy [51]

Maize (Zea mays) - Leaves GSH—0.8–1.5 µmol/g FW,
roots GSH—0.6–1.1 µmol/g FW DTNB/UV vis spectroscopy [52]

Oilseed rape
(Brassica napus L.) roots - GSH—1–1.7 µmol/g FW,

GSSG—1.2–2 µmol/g FW DTNB/UV vis spectroscopy [53]

Tomato plants (Solanum
lycopersicum L. cv. Badun) - GSH—120–500 nmol/g FW,

GSSG—160–430 nmol/g FW DTNB/UV vis spectroscopy [54]

Olive fruits (Olea europaea L.)

Olive powder (0.4 g) was
homogenized with 0.1 M of cold HCl

(7 mL), centrifuged, and the
supernatant was collected.

GSH—1.3–5.2 mg/g FW,
GSSG—0.3–0.7 mg/g FW

Liquid chromatography–
electrospray/mass

spectrometry (LC–ES/MS)
[55]

Cucumber
(Cucumis sativus L.) seeds

Plant tissue was homogenized with
5% metaphosphoric acid (5 mL),
centrifuged, and the supernatant

was collected.

Shoot GSH—580–800 µmol/g FW,
GSSG—80–90 µmol/g FW; roots

GSH—270–370 µmol/g FW,
GSSG—40–58 µmol/g FW

DTNB/UV vis spectroscopy [56]



Metabolites 2023, 13, 465 7 of 18

Table 1. Cont.

Source Material Extraction Method Glutathione Amount Detection Method Reference

Tomato (Solanum lycopersicum L.
cv. Micro-Tom)

Leaves were homogenized with 3%
trichloroacetic acid containing

0.5 mM EDTA, centrifuged, and the
supernatant was collected.

GSH/GSSG ratio-4–9 DTNB/UV vis spectroscopy [57].

Red beetroot vacuoles (Beta
vulgaris L.) -

OPT: GSH—0.059 µmol/mg protein;
GSSG—0.019 µmol/mg protein,
DTNB: GSH—0.091 µmol/mg

protein; GSSG—0.031 µmol/mg
protein, HPLC:

GSH—0.039 µmol/mg protein;
GSSG—0.007 µmol/mg protein

OPT/spectrofluorimetry,
DTNB/UV vis spectroscopy,

HPLC
[58]

Pepper (Capsicum annuum L.)

Pericarps and placentas were frozen
in liquid nitrogen and crushed into a
powder. Powdered tissue (0.4 g) was
homogenized with 0.1 M HCl (1 mL),

centrifuged, and filtered.

GSH—50–80 µg/g FW,
GSSG–2.5–13 µg/g FW LC–ES/MS [59]

Raspberry fruit (Rubus idaeus L.)

Frozen raspberry tissue was frozen
in liquid nitrogen and crushed into a
powder. Powdered tissue (5 g) was
homogenized with chilled 50 mM
sodium phosphate buffer (pH 8.0)

containing 5 mM EDTA, centrifuged,
and the supernatant was collected.

GSH—40–75 mg/kg DW OPT/spectrofluorimetry [60]

Sweet pepper
(Capsicum annuum L.)

Frozen leaf tissues were
homogenized with cold 5%
sulfosalicylic acid (10 mL),

centrifuged, and the supernatant
was collected.

GSH—11–14 mg/100 g FW, GSSG—1.5–2.6 mg/100 g FW [61]

Perilla frutescens

Tissues were frozen in liquid
nitrogen and crushed into a powder.

Powdered tissue (0.2 g) was
homogenized with 0.1%

trifluoroacetic acid, centrifuged, and
the supernatant was collected.

GSH—3 µg/mL HPLC [62]

Brassica rapa L.

Frozen powdered sample (0.1 g) was
homogenized with 0.1 M of cold HCl

(1 mL), centrifuged, and the
supernatant was collected.

GSH—200–850 nmol/g FW,
GSSG—20–50 nmol/g FW HPLC [63]

Upland Cotton (Gossypium
hirsutum L.)

Plant samples (0.4 g) were
homogenized in trichloroacetic acid
(4 mL, 5% v/v), the homogenate was

centrifuged, and the supernatant
was collected.

GSH—0.05–0.6 µM/g FW DTNB/UV vis spectroscopy [64]

Apricot fruits - GSH—86–914 µg/g FW,
GSSG—17–35 µg/g FW HPLC [38]

Tylophora pauciflora - GSH—61 µg/mg FW DTNB/UV vis spectroscopy [65]

5. Identification and Quantification of Glutathione

The extraction of glutathione, as outlined in the previous section, requires a purification
step after the digestion of the source material (e.g., plant products and microorganisms).
The primary contaminants that require removal from extracts are proteins, which are
typically precipitated out before quantifying the glutathione content. The quantification of
extracted glutathione and its reduced (GSH) or oxidized (GSSG) form have been conducted
using a range of analytical techniques, including UV/visible spectroscopy, fluorometry,
HPLC, capillary electrophoresis, gas chromatography, mass spectroscopy, nuclear magnetic
resonance spectroscopy, and electrochemistry [10,15,17,66–73]. In UV/visible spectroscopy,
which is one of the most widely used methods, extracted glutathione is indirectly quantified
by determining the amount of thiol groups present in cysteine. This is done using different
standard assays such as the DTNB assay, also known as Ellman’s reagent (5,5′-dithiobis
(2-nitrobenzoic acid)). In the DTNB assay, the thiol groups in glutathione (or any peptide
or protein containing thiol groups) react with Ellman’s reagent, cleaving the disulfide bond
to provide 2-nitro-5-thiobenzoate (TNB−) [74,75]. TNB− undergoes a further ionization in
neutral and alkaline pH in water to form the yellow-colored TNB2− species, the absorbance
of which is quantified using a plate reader at 412 nm. The reported limit of detection of
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the DTNB assay is 0.103 nM [75]. It should be noted that the approach measures all the
DTNB reactive thiols contained in the extract and is not selective to glutathione or its forms.
However, DTNB does not react with GSSG (oxidized form of glutathione). Recently, a
colorimetric method was developed to quantify glutathione in solution using a nanohybrid
composed of manganese dioxide and carbon dots [76]. Carbon dots were used to stabilize
manganese dioxide in water, whereas manganese dioxide was used to reduce DTMB to
form a blue product (the absorbance of which was determined at 655 nm). This blue product
faded away in the presence of glutathione, leading to its (glutathione) quantification. This
approach exhibited a limit of detection of 0.095 µm with a great selectivity in fetal calf
serum [76].

The total concentration of glutathione and its two forms in plants depends on several
factors, including the type of plant, the part of plant used in the extraction, the specific
extraction method, and the type of test used [77]. For example, Pradedova et al. [58] com-
pared different analytical methods to quantify total glutathione, GSH, and GSSG amounts
in red beetroot vacuoles (Beta vulgaris L.). They used spectrofluorimetric method with
orthophthalic aldehyde (OPT), UV/visible spectroscopy using DTNB, and HPLC. They ob-
served significant differences in the amount of measured GSH, GSSG, and total glutathione
depending on the analytical method used. Out of all three methods, DTNB yielded the
highest values of all three species: GSH with the concentration of 0.091 µg/mg of dry
protein, GSSG with a concentration of 0.031 µg/mg of dry protein, and a total glutathione
amount of 0.153 µg/mg of dry protein. They obtained least values in HPLC analysis with
a concentration of 0.039 µg/mg, GSSG with a concentration of 0.007 µg/mg, and a total
glutathione amount of 0.053 µg/mg of dry protein [58]. Considering the sensitivity of the
three techniques, HPLC is regarded as the most sensitive. Therefore, the values obtained
by HPLC would be considered the most accurate, particularly considering that UV/Vis
spectroscopic analysis can be highly dependent on the sample concentration, leading to
an overestimation when using highly concentrated samples during measurements. Fur-
thermore, the use of HPLC also avoids interference from staining reagents such as DTNB
and OPT. In addition, both of these methods (DTNB and OPT) are highly dependent
on the sample conditions, making them relatively less accurate than the HPLC method.
However, HPLC analysis can be a costly endeavor, which inspired the development of
electrochemical methods.

The attraction towards electrochemical methods has been based on the fact that it
allows for the direct analysis of untreated GSH (GSH can undergo a rapid oxidation to
form GSSG). However, electrochemical methods are marred with major obstacles, includ-
ing the complex composition of the extracted mixtures, leading to electrode fouling [78].
Furthermore, interference from electroactive species comprising ascorbate and cysteine can
also lead to unreliable results when analyzing untreated GSH due to interference in redox
signals. Interference from solution conductivity also remains a factor which needs to be
taken into consideration.

Recently, the electrochemical approach, utilizing the solid-state electrochemistry
of cuprous chloride (CuCl), was developed for the detection and quantification of glu-
tathione [79]. In this approach, Au@Cu-MOF (metal–organic framework) nanocapsule
was synthesized with Cu-MOF shell and encapsulated Au particles. Using solid-state
Au@Cu-MOF nanocapsule-modified electrodes, they obtained a detection limit of 2.5 pM,
which was one of the lowest values ever reported. This approach takes advantage of
the strong interaction of glutathione towards metal ions (Cu in this case), leading to the
formation of a Cu-GSH complex, avoiding electrode fouling by chloride ions (Cl−) present
in the solution, which in turn caused a sharp reduction in the peak current of CuCl. This
change in current was used to quantify the amount of GSH [79]. The strong affinity of
glutathione towards metal ions was recently exploited towards its quantification using a
handheld multifunctional smartphone platform integrated with a 3D printing portable
device as an on-site detection platform technology [80]. The detection approach used in
this study was based on the fluorescence resonance energy transfer (FRET) method using
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silver ions (Ag+) and yellow color light-emitting 2,3-diaminophenazine (OxOPD) as the
redox components. In this method, Ag+ ions oxidize o-phenylenediamine (OPD) to pro-
duce OxOPD, causing a change in the FRET signal between 562 and 442 nm. Glutathione
preferentially reacts with Ag+ ions (due to its high metal ion affinity) and inhibits the
production of OxOPD, resulting in a change in FRET peaks; this change in signal can then
be used to quantify the glutathione concentration. The limit of detection of this FRET-based
method was 0.07 Mm [80], which is significantly lower than electrochemical approaches.
The electrochemical analysis of glutathione and its two forms (GSH and GSSG) has been
critically reviewed previously [78], while the other analytical methods described in this
section have been comprehensively reviewed elsewhere [81], and readers are directed to
these reviews for a detailed background.

Taken together from these studies, the precise concentration of the two forms of glu-
tathione can be determined in isolation (one form at a time) using a range of methods, as
demonstrated in this section. However, the simultaneous and selective determination of
both forms (GSH and GSSG) was a great challenge. To this end, Tsiasioti and Tzanavaras
developed a zone fluidics approach utilizing OPT-based fluorometric detection to simulta-
neously and selectively quantify GSH and GSSG in an automated method [82]. By simple
adjustment in solution pH from mild to highly basic, they managed to selectively quantify
GSH and GSSG by using fluorometric detection at 340/425 nm. In this method, when
determining GSSG, GSH was first masked using N-ethyl-maleimide. The limit of detection
of this approach was 60 nmol L−1 for GSH and 53 nmol L−1 for GSSG, with over 96% re-
producibility when performed repeatedly over multiple days. One of the major advantages
of this method was the high selectivity of the two forms, with no interference from cysteine
present in solution [82]. Based on this study, it can be established that the limit of detection
of the zone fluidic method is significantly better than DTNB methods [76]. Despite the
superior performance of this fluidics approach, it is not a straightforward method in terms
of the development of the experimental setup, which could limit its wide applicability and
commercial uptake.

All the methods discussed above are based on extracted samples and in vitro analyses.
However, the estimation of both GSH and GSSG is challenging in vivo. For the in vivo
detection of GSH and GSSG, techniques such as proton magnetic resonance spectroscopy,
mass spectroscopy, electron paramagnetic resonance imaging, fluorescence imaging, and
implanted biosensors have been explored [15]. The use of proton magnetic resonance
spectroscopy and mass spectroscopy techniques focused on GSH detection in tumors,
particularly as an indicator of treatment efficacy and success, taking advantage of the
high flux of GSH in and between tumor cells and their microenvironment. However, the
exploration of these techniques in models other than cancer still remains in its infancy. The
significant cost of these sophisticated instruments and the need for highly skilled operators
can be justified for diagnostic purposes; however, their utilization in the commercial
production of glutathione in the nutraceutical industry cannot be justified.

6. Role of Glutathione in Food

Glutathione plays a pivotal role in physiological processes, including in maintaining
redox balance, reducing oxidative stress, removing toxins, and regulating immune system
functions. The state and concentration of glutathione in the body is considered a vital
sign and a therapeutic target for many chronic and age-related diseases. It has been
postulated that glutathione levels can be improved in humans by using fruits and vegetables
containing glutathione or amino acids that help its (glutathione) synthesis [9]. Eating green
foods, including asparagus, avocado, cucumber, green beans, and spinach raw or slightly
steamed, is preferable to preserve both forms of glutathione (GSH and GSSG). Studies have
shown that dairy products and cereals are low in glutathione, while fruits and vegetables
contain moderate to relatively high amounts of glutathione [9,83]. However, processing,
preservation, and cooking methods can alter the glutathione content in food products [83].
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In addition to health benefits, glutathione is also responsible for the odor and taste of
processed food (e.g., GSH induce a sulfurous odor in processed food) [84,85].

The role of glutathione and its two forms in processed food continues to gain con-
siderable attention, primarily in the development of a better understanding and improve
the quality of developed products [86,87]. For example, both GSH and GSSG have been
shown to improve the gas-retaining properties of rice batter used in gluten-free bread
manufacturing along with the retention of viscoelastic properties (in the obtained dough).
Sensory tests revealed that GSSG bread has a significantly less sulfurous odor compared
to GSH bread (which has been attributed to the presence of hydrogen sulfide and methyl
mercaptan in the GSH bread headspace) [85,88]. The similar effect of GSH on elasticity was
also reported on wheat dough. Verheyen et al. [89] used GSH as a replacement to rising
yeast (Saccharomyces cerevisiae) in wheat dough. They observed a significant softening of
the dough after 3 h of fermentation when using a yeast-equivalent amount of GSH instead
of active yeast, thus leading the way of potentially replacing dry yeast in bread making.
The impact of glutathione in the fermentation food industry is widespread. For example,
glutathione supplementation has been shown to impact the stress protection and growth
promotion of several lactic acid bacteria species (widely used in the modern fermented
food industry and probiotic-based therapeutics) [86]. Supplemented glutathione prevents
against all kinds of stress factors, including oxidative, acid, cold, and osmotic stress [86].
Furthermore, the role of glutathione in wine maturation and quality (in terms of a change
in odor and taste during storage) have been well documented, regardless of the grape and
wine variety [90–92]. Taken together, these studies highlight that the supplementation of
GSH can bring a dramatic change in the final properties of the processed food and thus
play a crucial role in the global food industry. Based on these reports, food can be used as
a delivery medium to dose humans with glutathione by using processed food (fortified
or supplemented with glutathione). This is particularly useful considering the crucial role
glutathione plays in human health and a wide range of diseases.

7. Role of Glutathione in Human Diseases

Glutathione plays a pivotal role in physiological processes, including the maintenance
of redox balance, neutralizing oxidative stress by promoting the metabolic detoxification of
both xenobiotic and endogenous compounds, and regulating the function of the immune
system [14]. The depletion of glutathione leads to the (i) release of inflammatory cytokines,
(ii) the formation of free radicals, and (iii) the inhibition of some cell functions, all of which
have been known to cause many chronic degenerative diseases and functional loss with
ageing. Further, glutathione metabolism dysregulation has been shown to induce diseases
to the central nervous system, frailty and sarcopenia, infections, chronic liver diseases,
metabolic diseases, pulmonary, and cardiovascular diseases [14]. Glutathione contributes
to the detoxification of living organisms (by neutralizing ROS), regulates cell proliferation,
and is involved in immune function. Knowing the concentration of glutathione makes
it possible to detect early diseases because of its significant role in regulating cellular
stress [93]. Recent studies have shown that glutathione not only affects normal immune
function but also participates in complex immune reactions such as fever. The complex role
of glutathione was discovered in patients who do not develop a fever during infection [94].
Generally, fever is associated with oxidative stress; therefore, it was believed that the
antioxidant properties of glutathione can reduce its incidence. Studies have shown that
even a low glutathione level is sufficient to reduce fever. However, the main problem arises
when the primary symptoms of infection (i.e., fever) is not manifested. Therefore, it can be
proposed that regardless of fever, patients with infection should be treated with glutathione.
The impact of glutathione on fever has been comprehensively reviewed in a recent review
by Wrotek et al. [94].

The spread of chronic diseases and premature aging at present has led to increased
studies in the field of antioxidants, especially glutathione, because of its importance in
reducing these diseases. Nutrients, including antioxidants and glutathione, have been
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recommended to be taken for a very long time or for a lifetime to have an apparent effect
on humans. The high cost of these nutrients remains an inhibitory factor limiting their
uptake. However, the uptake of exogeneous glutathione consumed as a supplement is
still debated [9]. In the meantime, attempts are being made to increase the amount of
glutathione in food, such as animal tissues (meat) through the application of modern
genetic and reproductive techniques, and improve the levels of these antigens in animals’
bodies. Thus, it is possible to improve the quality of meat products, extend their storage
life, and obtain high-quality meat which contains good proportions of glutathione and
other antioxidants important to human consumers [95]. Becker et al. [96] conducted a pilot
clinical study on the effect of thiol-containing antioxidants (glutathione, α-lipoic acid, and
N-acetylcysteine) on the recovery and survival of malnutrition syndrome kwashiorkor
children. Kwashiorkor disease is a severe form of malnutrition reported to be associated
with oxidative stress. In their study [96], children suffering from the disease were randomly
assigned to either a standard treatment (recommended by the WHO) or one of the three
study groups receiving either 2 × 600 mg of reduced glutathione (GSH) or 2 × 50 mg of α-
lipoic acid or 2 × 100 mg of N-acetylcysteine per day. In a 20-day follow-up, they observed
that GSH and α-lipoic acid supplementation had a strong correlation with patient survival
rate, as determined from initial skin lesions, blood glutathione levels, glutathione, and
total protein concentrations. This study outlined the therapeutic potential of glutathione
supplementation in reducing the incidence of severe acute malnutrition caused by oxidative
stress [96]. Manley [97] stated that the diet of people plays a vital role in determining the
levels of glutathione inside the body, as it was noted that people whose diet depends on
red and white meat have higher levels of glutathione, up to 2.3 µmol/kg compared to
1.9 µmol/kg in vegetarian people. The reason behind this disparity is the low amount
of vitamin B12 in meat. When consumed, vitamin B12 from meat regulates the sulfur
biochemical pathway to produce glutathione.

Glutathione also plays a critical role in infections of the pulmonary system. Studies
have shown that glutathione depletion increases a person’s susceptibility towards infections
such as tuberculosis. The depletion of glutathione in peripheral blood mononuclear cells
and red blood cells has been observed in tuberculosis patients compared to a healthy con-
trol [98]. To mitigate this shortage, patients were supplemented with liposomal glutathione.
The supplemented liposomal glutathione significantly enhanced the T-cell response in
HIV-positive patients with tuberculosis infection, while simultaneously reducing the level
of free radicals and immunosuppressive cytokines (interleukin-10 (IL-10) and the transform-
ing growth factor-β (TGF-β)) relative to the placebo-controlled group [99]. The observed
infection control has been reasoned to the anti-mycobacterial effects of glutathione [93].
Glutathione also regulates natural killer (NK) cell activity in innate intracellular bacterial
infections in tuberculosis-infected patients. In tuberculosis, the cytolytic activity of NK cells
is critically impaired in patients with low glutathione levels. The treatment of such patients
with N-acetylcysteine can recover and regain the cytolytic activity of NK cells and their
efficiency in tackling tuberculosis infection [93,100,101]. Glutathione also regulates den-
dritic cell maturation and their function in the differentiation of native T-cells. An increase
in glutathione has been shown to upregulate IL-12 production by dendritic cells, where
(IL-12) is responsible for T-cells differentiation, with a significant potential in the infection
control [93]. Due to the fundamental role of glutathione in multiple immune cell types
and their functions, it (glutathione) has been shown to be critical in different infections,
including HIV. The role of glutathione in HIV has been reviewed in detail elsewhere [93].

Recently, Polonikov [102] hypothesized the role of glutathione in the severity of
COVID-19. Using the clinical data of four patients, they observed an inverse correlation
of the amount of glutathione and COVID-19 severity in patients where severe cases had
significantly low endogenous glutathione levels, higher ROS, and a higher ROS/glutathione
ratio in plasma than patients with mild disease [102]. It was hypothesized that glutathione
deficiency can increase the susceptibility for the uncontrolled replication of SARS-CoV-2
(COVID-19) virus, leading to a significant increase in viral loading regardless of other
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factors such as aging, chronic disease comorbidity, and smoking. In this study, it was
proposed that the long-term oral administration or parenteral injection of N-acetylcysteine
(a precursor of endogenous glutathione synthesis) could be used as an efficient therapy
for COVID-19 patients with a serious illness [102–104]. The primary reasons behind the
use of N-acetylcysteine over pure glutathione as a therapeutic strategy include the low
bioavailability and short half-life (2 min) of glutathione when administered orally or
intravenously [16,105]. The reason for its low bioavailability is the rapid degradation
of glutathione by intestinal and hepatic gamma-glutamyl transferase [22]. To mitigate
intestinal degradation, the orobuccal or sublingual form of glutathione delivery has been
developed, which was shown to increase the level of GSH and the GSH/GSSG ratio [22,106].

While most work has implicated glutathione in a restorative and preventative role in
the cellular function and pathologies of difference diseases, a fine balance must be main-
tained in glutathione homeostasis as glutathione has shown to have both protective and
pathogenic roles. For example, changes in the glutathione antioxidant system and disrup-
tion in its homeostasis have been implicated in tumor initiation, progression, and treatment
response [15]. At high concentrations in tumor cells, glutathione has been shown to cause
tumor progression and an increased resistance to chemotherapeutic drugs. Therefore, focus
has been drawn towards targeting the glutathione antioxidant system in tumor cells as
a therapeutic approach using drugs to target glutathione directly, indirectly, or by using
glutathione-based prodrugs (Figure 4) [15]. The concept of a therapeutic approach towards
glutathione homeostasis in cancer has been recently reviewed by Kennedy et al. [15], and
readers interested in this topic are directed to that comprehensive review.
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Glutathione prodrugs or amino acid precursors can also regulate ageing. In ageing,
mitochondria start to dysfunction due to the decline in de novo glutathione synthesis, re-
sulting in enhanced oxidative stress, thereby making cells susceptible to microbial infection
and death. This compromised mitochondrial function is driven by the combination of a
shortfall in glutathione precursor amino acids (cysteine and glycine) and the accumulation
of homocysteine (a toxic transsulfuration/glutathione biosynthesis pathway intermedi-
ate) [93]. Therefore, it is believed that a supplementation with glutathione precursors can
alleviate mitochondrial dysfunction and prevent cell death, restricting ageing. However,
the mode of supplementation must be carefully considered, as described previously in
this review.

8. Conclusions and Future Work

Glutathione continues to draw significant research attention due to its critical role in
virtually all animal and plant species. Glutathione plays a central role as an antioxidant
against ROS, thus regulating the signaling pathways involving cellular homeostasis. The
role of glutathione is also important in different cellular processes including proliferation,
apoptosis, immune system modulation, and the cellular component metabolism. The
functional outcome of glutathione is regulated by the ratio between its reduced form (GSH)
and oxidized form (GSSG), which is indicative of the level of oxidative stress. While
endogenous glutathione (with a higher concentration of GSH) can optimally regulate
cellular homeostasis, in the cases of upregulated ROS production, exogeneous glutathione
is warranted.

While the health benefits of exogenous glutathione are seemingly well-established
now, the mode of delivery and question of the use of natural food products, such as
fruits and vegetables as (glutathione) sources, remains under dispute. There is a great
need to develop experimental strategies to characterize the glutathione metabolism upon
consumption (both synthetic and natural) in vivo. Perhaps a systematic in vivo study
comparing the exogenous glutathione metabolism compared to endogenous (synthesized
using either glutathione precursor amino acids or glutathione-based prodrugs) can provide
compelling outcomes to settle this debate. Besides this, the identification and determination
of glutathione either as an intact molecule or its two forms require them to be extracted
and analyzed. While some in vivo studies have shown promise in the identification and
quantification of glutathione forms, these have been limited to a specific field of research
particularly focusing on diagnosing a disease type (e.g., cancer). There are perceived
gaps in the field, i.e., (i) the development of analytical and imaging techniques to allow
for the routine monitoring of glutathione and its forms in healthy adults similar to the
periodic screening of different diseases used as a diagnostic tool or a forecasting method to
predict future ailments, and (ii) the in vivo determination of glutathione in plants and plant
products, which remains greatly unexplored. Furthermore, the potential of food fortification
with glutathione as a therapeutic delivery mechanism to the general population could be
explored as clinical and greater epidemiological case studies, particularly in light of its
(glutathione) therapeutic role in a range of diseases, including infections, cardiovascular,
diabetes, and cancer. The fortification of food can have a dual effect of (i) improving food
quality, as observed in different industries, including bakery and wine, and (ii) replenishing
glutathione resources in humans to vane off future illness caused by oxidative stress and
maintain long-term healthy lives.
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