Generalized q-difference equation of the generalized q-operator $\Phi_{s}(\theta)$ and its application in q-integrals

Faiz A. Reshem, Husam L. Saad *
Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq

ARTICLE INFO

MSC:

05A30
33D45

Keywords:

Andrews-Askey q-integral
Askey-Roy q-integral
Askey-Wilson q-integral
q-difference equation

Abstract

In this paper, we employ the q-difference equation technique to generalize some well-known q-integrals such as the extension of Askey-Roy q-integral, Andrews-Askey q-integral, and Askey-Wilson q-integral.

1. Introduction

The q-differential operator is defined by Refs. 2-5
The notations used in Ref. 1 are employed in this paper, and we suppose that $|q|<1$.

The q-shifted factorial is defined by Ref. 1 :
$(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right) \quad$ and $\quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)$.
The basic hypergeometric series ${ }_{r} \phi_{s}$ is given by Ref. 1:
${ }_{r} \phi_{s}\left(\begin{array}{c}a_{0}, a_{1}, \ldots, a_{r-1} \\ b_{1}, b_{2}, \ldots, b_{s}\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{0}, \ldots, a_{r-1} ; q\right)_{n}}{\left(q, b_{1}, \ldots, b_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} x^{n}$,
where $q \neq 0$ when $r>s+1$. Note that
${ }_{s+1} \phi_{s}\left(\begin{array}{c}a_{1}, a_{2}, \ldots, a_{s+1} \\ b_{1}, b_{2}, \ldots, b_{s}\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{s+1} ; q\right)_{n}}{\left(q, b_{1}, b_{2}, \ldots, b_{s} ; q\right)_{n}} x^{n}, \quad|x|<1$.
The multiple q-shifted factorials is:
$\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{m}, q\right)_{n}$.
The q-binomial coefficients is given by Ref. 1 :
$\left[\begin{array}{l}n \\ k\end{array}\right]=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, \quad 0 \leqslant k \leqslant n$.
The following identity, will be used in this paper ${ }^{1}$:
$(q / a ; q)_{n}=\left(a q^{-n} ; q\right)_{n}\left(-\frac{q}{a}\right)^{n} q^{\binom{n}{2}}$.
The q-Chu-Vandermonde sum is
${ }_{2} \phi_{1}\left(\begin{array}{c}q^{-n}, a \\ c\end{array} ; q, c q^{n} / a\right)=\frac{(c / a ; q)_{n}}{(c ; q)_{n}}$.

[^0]https://doi.org/10.1016/j.padiff.2023.100517
Received 29 December 2022; Received in revised form 21 April 2023; Accepted 24 April 2023

2666-8181/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

[^0]: * Corresponding author.

 E-mail addresses: fa7786@yahoo.com (F.A. Reshem), hus6274@hotmail.com (H.L. Saad).

