Contents lists available at ScienceDirect

Chemosphere

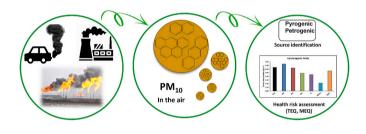
journal homepage: www.elsevier.com/locate/chemosphere

Characterization, risk assessment, and source estimation of PM_{10} -bound polycyclic aromatic hydrocarbons during wintertime in the ambient air of Basrah City, Iraq

Ahmed S. Alshaheen^a, Ibrahim M. Al-Naiema^{a,*}, Dhaferah M. Tuama^b, Waleed H. Al-Mosuwi^b

^a Department of Chemistry, College of Sciences, University of Basrah, Basrah City, 61004, Iraq
^b Directorate of protect and improve the environment in the southern region of Iraq, Basrah City, 61004, Iraq

HIGHLIGHTS


G R A P H I C A L A B S T R A C T

- Chrysene and fluoranthene were the most abundant PAHs in PM_{10} of Basrah.
- Petrogenic and pyrogenic sources dominated over biomass and coal combustion.
- PM₁₀ bound-PAHs in Basrah City were dominated by 4–5 aromatic rings species.
- Benzo[a]pyrene accounts for >50% of the total carcinogenic power of PAHs.

ARTICLE INFO

Handling Editor: Volker Matthias

Keywords: Particulate matter PAHs Air quality Pollution sources Basrah City Gas-particle partitioning

ABSTRACT

In this study, the concentration and structure of polycyclic aromatic hydrocarbons (PAHs) associated with the ambient PM_{10} in Basrah City, Iraq have been investigated for the first time. From December 2021 to February 2022, PM_{10} samples were collected on quartz fiber filters, extracted using an optimized extraction protocol, and analyzed for the sixteen US EPA priority PAHs. The results indicated that 4- and 5-ring PAHs represent 52% of the total detected PAHs. The most abundant PAHs over the study period were chrysene (1.2 \pm 1.5 ng m⁻³), fluorene (0.9 \pm 1.4 ng m⁻³), and benzo[*b*]fluoranthene (0.7 \pm 0.9 ng m⁻³). Source identification suggested that PM_{10} -bound PAHs primarily originated from pyrogenic and petrogenic activities in Basrah City. In addition, the cancer risk associated to PAH exposure was assessed based on benzo[*a*]pyrene equivalent concentration and was found ranging from 0.07 to 6.32 ng m⁻³; hence, it exceeded the threshold limit of 1.0 ng m⁻³ established by the European legislation (EU, 2014). Benzo[*a*]pyrene was determined to be main contributor to total carcinogenic power of the detected PAHs, accounting for 50.3%, followed by dibenz[*a*,*h*]anthracene (22.3%). Similarly, benzo [*a*]pyrene represented a major contributor to PAH associated mutagenicity, accounting for 43.5% of the total.

1. Introduction

Over the last few decades, air pollution has become a serious threat to humans, with seven million annual premature deaths estimated worldwide (WHO, 2014). Both natural and man-made sources contribute to air pollution (Saxena and Srivastava, 2020). However, emissions from fossil fuel consumption alone account for 65% of the air pollution-linked access death (Lelieveld et al., 2019), considering that

https://doi.org/10.1016/j.chemosphere.2023.138444

Received 6 December 2022; Received in revised form 14 March 2023; Accepted 17 March 2023 Available online 21 March 2023 0045-6535/© 2023 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Department of Chemistry, College of Science, University of Basrah, Basrah City, 61004, Iraq. *E-mail address:* Ibrahim.jasim@uobasrah.edu.iq (I.M. Al-Naiema).