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A comparative assessment of fuzzy logic and evidential

belief function models for mapping artesian zone

boundary in an arid region, Iraq

Alaa M. Al-Abadi, Suaad A. Al-Bhadili and Maitham A. Al-Ghanimy
ABSTRACT
This paper discusses and compares the potential application of the evidential belief function

model and fuzzy logic inference system technique for spatial delineation of a groundwater

artesian zone boundary in an arid region of central Iraq. First, a flowing well inventory of a total of

93 perennial flowing wells was constructed and randomly partitioned into two data sets: 70%

(65 wells) for training and 30% (28 wells) for validation. Twelve groundwater conditioning factors

were considered in the geospatial analysis depending on data availability and literature review.

The random forest (RF) algorithm was first applied to investigate the most important conditioning

factors in groundwater potential analysis. The most important factors with training flowing wells

were used to develop predictive models. The prediction accuracy of the developed models was

checked using the area under the relative operating characteristic curve. Results showed that

the best model with a higher prediction accuracy of 86% was a fuzzy AND model followed by the

evidential model with 84%. The main conclusion of this study is that the integrated use of the

adapted models with RF offer a rapid assessment tool in groundwater exploration and can be

helpful in groundwater management.
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INTRODUCTION
Groundwater is an important water resource around the

world. The broad geographical distribution, huge reserves,

generally good quality, and the ability to cope with seasonal

fluctuations and contamination, helps water bearing layers

maintain the pledge to ensure current and future safe

supply. Poor management of hydrogeological systems (aqui-

fers) along with the impact of inadequate land-use practices

has caused adverse effects such as groundwater depletion,

water-quality deterioration, and the decimation of aquatic

ecosystems. Sometimes, mining of aquifers produces

additional adverse problems such as land subsidence and

a drying of the wetland. It is anticipated that pressures on

groundwater resources will be increased mainly as a result
of population growth and growing competition for water.

Thus, it is crucial to develop proper management plans to

ensure the long life of aquifers in both quantity and quality

aspects. In this context, spatial delineation of aquifer poten-

tiality has become a necessary and easy to implement option

for the achievement of successful protection and manage-

ment groundwater plans (Ozdemir ). It is also useful to

plan and engineer the implementation of successful

resource exploration.

In the past few years, different modeling techniques inte-

grated with geographical information system (GIS) have

been used as a spatial tool for demarcating groundwater

potentiality. GIS is an important system for integrating
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and analyzing information from different sources and disci-

plines. The GIS-based models can be effectively connected

in multisource data analysis with heterogeneous and uncer-

tain data (Chacón et al. ). Although many GIS-based

models have been applied previously for modeling ground-

water potentiality, it is still early to distinguish which one

is the best. Therefore, the comparative studies of using differ-

ent methods are highly necessary (Bui et al. ; Rahmati

et al. ). The evidential belief function (EBF) technique

is a mathematical framework for describing quantified

belief held by an agent (Reineking ). It is based on the

theory of Bayesian probability and has a relative flexibility

to accept uncertainty and the ability to combine beliefs

from multiple sources of evidence (Thiam ). The appli-

cation of the EBF data-driven model in groundwater

potential studies is still limited and only a few studies exist

(Table 1). On the other hand, fuzzy logic (FL) is an approach

for computing based on ‘degrees of truth’ rather than the

usual ‘true or false’ (1 or 0) Boolean logic on which the

modern computer is based. FL has been widely used in

many fields of science and engineering. The power of FL

is that it is easy to implement, and the process of assigning

weights for groundwater conditioning factors used in the

analysis is totally determined by the experts. The use of

this technique for spatially studying groundwater pro-

ductivity is still limited as well (Rather & Andrabi ;

Aouragh et al. ).

The main objective of this paper is to delineate the

spatial boundary of a groundwater artesian zone at Karbala

Governorate, central Iraq, using EBF and FL prediction

models under a GIS platform. The study also involves a

comprehensive comparison of these two models and ident-

ifies the best one for potential delineation of this zone.

The artesian zone in the study area is a portion of a series

of long springs and flowing wells that are distributed parallel

to the Euphrates River from north (Al-Anbar) to south (As-

Samawah) in Iraqi western and southern deserts. Despite

the importance of this zone, no studies have been performed

so far to spatially delineate its boundary. Spatial prediction

of a groundwater artesian zone in the interested area will

contribute to effective management of groundwater as

groundwater could be extracted with minimal effort. In

addition, obtaining a new flowing well will become an

easier task.
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THE STUDY AREA

The study area lies about 100 km southwest of Baghdad, the

capital of Iraq, between (44�25000″–43�45000″) longitude

(E/W) and (32�40000″–32�20000″) latitude (N/E) (Figure 1)

and covers an area of about 4,051 km2. The study area is rela-

tivelyflat, and the elevation ranges from0 to 224 m (Figure 2).

It is almost completely covered by pebbly or gypsiferous

pebbly soil or gypcrete in addition to eolian, sheets, and

shrub dunes. The climate is dry and relatively hot in

summer, and cold with little rain in winter. It is believed to

be influenced by theMediterranean Sea climate. Themonthly

averages of climatic variables atKarbala station for the period

1990–2014 from the Iraqi Meteorological Organization is

summarized in Table 2. The wind prevalent in the area is

mostly northwest–southeast accompanied by sand storms in

the summer and sometimes winds from the south and south-

west. The study area is covered by gypcrete deposits except an

area limited by Razzazah Lake and Tar-Al Sayed where Dib-

dibba, Injana, and Nfayil formations are outcropped. The

rock exposed in the study area dates back to the Miocene

period (Figure 3(a) and 3(b)). A brief description of the

exposed formations is summarized in Table 3. Tectonically,

the study area is located within an unstable shelf which

dates back to the cratonic era according to the bilateral div-

ision of Iraq. In general, the study area is located between

two tectonic zones, the Mesopotamian zone and Al-Salman

zone within a stable shelf. The Mesopotamian zone is rela-

tively flat terrain with a gradient of less than 10 cm per

kilometer extending from Baiji in the northwest to the Ara-

bian Gulf in the southeast (Jassim & Goff ). The

Salman zone comprises northeast–southwest and prominent

northwest and southeast trending uplifts and depressions,

bounded by faults. Two groups of faults exist within the

area of interest. The first group trends northeast–southwest

like the Khanaquin Baquba-Karbala fault and the second

group trends northwest–southeast similar to the Abu Jir

fault zone which is represented by the Heet-Abu Jir fault

which appears at approximately the center of the study area

(Al-Amiri ). The most apparent geomorphological fea-

tures within the study area are: Najaf-Karbala plateau, Al-

Razzazah depression, rock cliff, and mesas and buttes. The

important lake in the study area is Milh Lake (also known

as Razzaza Lake). It is located a few kilometers west of



Table 1 | Literature review of applying EBF and FL in groundwater studies

Study Study purpose Thematic layers used Relevant findings

Nampak et al. () Investigate the applicability of an EBF model
for spatial delineation of groundwater
productivity at Langat basin, Malaysia
using GIS technique

12 groundwater conditioning factors including
elevation, slope, curvature, SPI, TWI, drainage
density, lithology, lineament density, land use,
normalized difference vegetation index
(NDVI), soil and rainfall

The output of the developed model proved
the efficiency of EBF in groundwater
potential mapping with success and
prediction rates of 78% and 72%,
respectively

Mogaji et al. () Explore the potential of a GIS-based EBF
model as a spatial prediction model to
groundwater productivity potential
mapping in the southern part of Perak,
Malaysia

7 groundwater factors including drainage
density, lineament density, lineament
intersection density, lithology, average annual
rainfall, slope, and soil type

The obtained results indicate the usefulness
of the EBF model in spatial mapping of
groundwater potential zones and the
capability of this model in managing
uncertainty associated with the developed
EBF model. The prediction accuracy of the
developed model was about 85%

Pourghasemi &
Beheshtirad ()

The objective was to produce groundwater
spring potential mapping and its
performance assessment using EBF model
in Koohrang Watershed, Chaharmahal-e-
Bakhtiari Province, Iran

12 factors including altitude, slope aspect, slope
degree, slope length (LS), TWI, plan
curvature, land use, lithology, distance from
rivers, drainage density, distance from faults,
and fault density

The prediction accuracy of the EBF model
was 82% and thus regarded as a very good
model to delineate groundwater
potentiality

Tahmassebipoor
et al. ()

The capability of using weights-of-evidence
(WOE) and EBF models for groundwater
potential mapping was tested and
compared in the Ilam Plain, Iran

11 factors including lithology, land use, distance
from river, soil texture, drainage density,
altitude, curvature, TWI, slope percent,
lineament density, and rainfall

The results showed the capability of WOE
and EBF as effective prediction models for
groundwater potential mapping. The
prediction accuracy of the EBF model was
83.7% and better than of the WOE model
with 78.2% prediction accuracy

Park et al. () The EBF model was applied and validated for
analysis of groundwater-productivity
potential in Boryeong and Pohang cities,
an agriculture region in Korea, using GIS

Spatial database related to topography,
lineament, geology, forest, soil and
groundwater were constructed

Results confirmed the higher capability of
EBF for delineating groundwater potential
mapping with 83.41% and 77.53%
accuracy in Boryeong and Pohang areas,
respectively

Rather & Andrabi
()

Develop a FL-based model for groundwater
potential in the Jhagrabaria Watershed of
Allahabad District, Uttar Pradesh, India

Geomorphology, geology, physiography,
lithology, lineament, contour, drainage, and
water body

Findings showed the high capability of FL
model to demarcate groundwater zones in
the study area

Aouragh et al. () A GIS-based FL was developed in this study
to delineate groundwater potential
boundaries in the Middle Atlas plateaus,
Morocco

Lithology, slope, karst degrees, land cover,
lineament, and drainage density

Results confirmed the high efficacy of FL
model to generate groundwater potential
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Figure 1 | Location of the study area.
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Karbala. The lake is listed as awetland of international impor-

tance. The lake is rather shallow and the water level changes

with the season. Two major aquifer groups exist within the
om http://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
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study area (Figure 4(a)). These are (i) limestone of the Palaeo-

gene Um-ErRdhuma, Jill and Dammam formation and (ii)

sands of the Quaternary Mesopotamian flood plain. The



Figure 2 | Elevation (m) in the study area with training and testing data sets.
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study area was considered a discharge area for the regional

aquifer according to the flow direction of the study area

(Figure 4(b)). The general groundwater flow is from south-

west to northeast and there are no approved studies to track

the piezometric levels in the study area; only an approximate

position is shown in Figure 4(b), after Sissakian (). There

are some factors affecting the movement and flow system of

groundwater in the study area: (i) the permeability and frac-

ture density of the rock units that contain groundwater, (ii)

the location of Abu Jir fault, (iii) the vertical movement of

groundwater from the underlying aquifers, and (iv) the

change in lateral facies and the thickness of water-bearing

beds.
://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
METHODOLOGY

A flow chart that describes the overall methodology in this

paper is shown in Figure 5. Basically, a study of the potential

of spatial groundwater of an area requires two main crucial

steps: the preparing of a groundwater borehole inventory

map and the identification of the influencing groundwater

occurrence factors. The inventory of flowing wells in the

study area was prepared through extensive field surveys in

2015. From these field surveys, 93 flowing wells were fixed

and an inventory map was prepared. For modeling pur-

poses, these wells were partitioned into two data sets using

a random algorithm: training and testing. Out of 93,



Table 2 | Mean monthly record of climatic variables at Karbala station for the period 1990–2014

Month

Climatic variables

Temperature (�C) Rainfall (mm) Relative humidity (%) Wind speed (m/s) Evaporation (mm)

October 26.83 2.93 46.52 1.9 203.12

November 17.94 9.08 60.66 1.73 101.78

December 12.7 12.67 71.57 1.76 62.15

January 10.81 17.43 74.57 2.03 59.19

February 13.4 14.16 61.4 2.54 91.56

March 17.84 10.33 50.25 2.3 170.15

April 24.31 12.86 43.4 3.13 235.52

May 30.3 1.94 34.4 3.1 326.05

Jun 34.65 0 29.14 4.01 408.42

July 36.9 0 30.75 4.23 437.20

August 36.6 0 32.2 3.21 391.90

September 32.58 0.45 37.2 2.4 232.28

Average 24.56 6.82 47.67 2.70 232.28
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approximately 65 (70%) wells were used for training, and

the remaining 28 (30%) wells were used for testing.

The type and number of groundwater condition factors

used in mapping groundwater potentiality differ in the litera-

ture and there is no standard way to select them. Local

conditions and data availability are the main constraints in

selecting groundwater factors from one study to another.

The factors related to geology, structural setting, soil, topo-

graphy related factors, and geomorphology are often

considered to be the factors most influencing groundwater

potentiality. In this study, and depending on the availability

of data in the first place, a total of 12 factors were considered

for the analysis. These factors are ground surface elevation,

slope angle, aspect, profile curvature, topographic wetness

index (TWI), stream power index (SPI), lithological units,

fault density, distance to faults, distance to lake, aquifer

major groups, and depth to groundwater. A brief description

of these factors and their importance in groundwater poten-

tial is given in Table 4. Raster maps of elevation (m), slope

angle in %, profile curvature, aspect, and secondary topo-

graphic indices such as TWI and SPI were generated from

a digital elevation model (DEM) of type ASTER-GDEM

with a spatial resolution of 1 arc-second after essential pre-

processing. Elevation was classified into three categories

(<30 m, 30–90 m, and >90 m; Figure 6(a)), slope angle
om http://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
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into four categories (<2%, 2–8%, 8–15%, and 15–30%;

Figure 6(b)), curvature into three categories (<0 concave,

0 flat, >0 convex; Figure 6(c)), and finally, aspect into nine

categories (flat, north, northeast, east, southeast, south,

southwest, west, and northwest; Figure 6(d)). The TWI and

SPI were constructed using DEM and ArcHydro tools in

ArcGIS 10.2™ and classified into five categories for both

factors after applying a focal statistic module (Figure 6(e)

and 6(f)).

The lithological units and faults raster maps were

derived from the 1.1,000,000 scale maps of the geological

survey of Iraq, respectively. The two hard copies of these

maps were first scanned, georeferenced, and manually digi-

tized in an ArcGIS environment. Three lithological units

were identified, namely, carbonate rocks of Euphrates for-

mation (Middle Miocene) and Quaternary deposits

(sedimentary rocks of alluvium and alluvial fans) (Figure

6(g)). The proximity to faults was constructed using the

Euclidean distance module and further classified into five

classes: (0–4.6 km, 4.6–9.3 km, 9.3–13.9 km, 13.9–18.6 km,

and >18.6 km) (Figure 6(h)). Raster layer of fault density

(km/km2) was generated using kernel density module and

classified into five categories: (0–0.17, 0.17–0.34, 0.34–

0.52, 0.52–0.70, and 0.67–0.87) (Figure 6(i)). In the case of

distance to the lake (Rezzaza Lake), five buffer categories



Figure 3 | (a) Geological map of the study area and (b) cross-section between borehole KH 1/7 and Kifl 2.
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(0–10.3 km, 10.3–20.5 km, 20.5–30.7 km, 30.7–40.9 km,

>40.9 km) were created using the Euclidian Distance

module in ArcGIS 10.2™ (Figure 6(j)). For the major aquifer
://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
groups, a hard copy of this map was acquired from the

General Commission of Groundwater office, scanned, geor-

eferenced, and digitized using the Editor tool in ArcGIS 10.2



Table 3 | Geological description of the formations in the study area (summarized after Jassim & Goff (2006))

Formation Age Deposition environment Description

Euphrates Middle Miocene Carbonate inner shelf Recrystallized and siliceous limestones with texture ranging from oolitic to
chalky, locally containing rocks and shale coquinas

Nfayil Middle Miocene Marl and limestone, claystone and limestone

Fatha Middle Miocene Shallow marine Anhydrite, mudstone, and thin limestone

Injana Upper Miocene Sub-marine Red or gray colored silty marl or clay stones and purple silt stones

Dibdibba Pliocene–Pleistocene Alluvial fans of the
stable shelf

Sand and gravel containing pebbles of igneous rocks (including pink
granite) and white quartz, often cemented into a hard grit

Zahra Pliocene–Pleistocene Fluvio-Lacustrine and
karstfill facies

Consists of 30 m of limestones (subsequently found to be reed-bearing
fresh water limestone), marls, and sandy marls. Locally, sandstone
occurs at the base of the formation

Quaternary Pleistocene–Holocene Continental Mixture of gravel, sand, silt, and clay
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(Figure 4). Finally, the groundwater depth data were

compiled from the work of Al-Jiburi & Al-Basrawi ().

The groundwater depth values are classified into four

categories (Figure 6(k)): (<10 m, 10–20 m, 20–30 m, and

30–40 m).

Before using the EBF and FL models to demarcate

groundwater potentiality in the study area, random forest
Figure 4 | (a) Major aquifer group map of the study area. (b) General groundwater flow and ap

Al-Basrawi 2015). (Continued.)
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(RF) algorithm was implemented in the free R package in

feature selection process. The grid cells of the flowing well

were assigned a value of 1, while the non-flowing well grid

cells were assigned a 0 code value. To get optimal modeling

results (Carranza & Laborte ), a total of 130 points (65

training flowing well locations and 65 non-flowing well

locations) were selected for applying the RF algorithm.
proximate position of piezometric level in selected sections in the study area (Al-Jiburi &



Figure 4 | Continued.
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The average nearest neighbor (ANN) spatial pattern analysis

was first applied to find the distance from any flowing well

points and estimated corresponding probability that there

was no flowing well location next to it (Carranza & Laborte
://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
). The results proved that the expected mean distance

was about 6 km. This distance represents the distance separ-

ating the non-random and random field in the area being

studied. Therefore, all training points with non-artesian



Figure 5 | Flow chart for delineating flowing wells boundary using EBF and FL models.
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condition were selected beyond this distance for every non-

flowing well location. For the 130 selected grid cells, the

values of groundwater factors were extracted using the

extract multi-values to points module in ArcGIS 10.2™.

The extracted values were stored as a comma delimited

file (*.csv) and passed to R package to execute the RF

algorithm.
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For applying EBF and FL predictive models, the train-

ing flowing well inventory map was overlaid on the

thematic layer of groundwater conditioning factors and

the number of training wells for classes of each factor

was determined. After that, the frequency ratio (FR) and

fuzzy memberships were determined via Equations (14)

and (15), respectively (Table 5). The mass functions of



Table 4 | Groundwater influential occurrence factors and their importance in the analysis of groundwater potential analysis (after Al-Abadi et al. (2016))

Factor Its importance in groundwater potential

Elevation Elevation is important in groundwater potential studies as climatic conditions vary at different
elevations and this caused differences in soil and vegetation

Slope Slope is a rise or fall of ground surface and it basically controls accumulation of water and thus
controls groundwater recharge process

Curvature Curvature is the second derivative of a surface and essentially affects the convergence and divergence
of flow across the surface and hence affects the groundwater recharge process

Aspect Aspect identifies the downslope direction of the maximum rate of change in value from each cell in a
raster to its neighbors. Aspect strongly affects hydrologic processes via evapotranspiration,
direction of frontal precipitation, and thus affects weathering process and vegetation and root
development, especially in drier environments

TWI and SPI These topographic indices have a basic role in the spatial variation of hydrological conditions such as
soil moisture and groundwater flow

Distance to lake Groundwater aquifers drain water to the river and lakes as a final destination, so this factor is
considered in this study

Lithology The hydraulic characteristics of the aquifer are strongly affected by variation in lithology. Therefore, it
is considered an important factor in groundwater studies

Distance to faults and fault density The rock fractures and other discontinuities promote groundwater movement and storage and thus
allow groundwater storage to accumulate

Groundwater depth and aquifer
major groups

These factors are directly related to aquifer storage and ground movement and play a significant role
in groundwater potential
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the EBF model were also computed for all classes of con-

ditioning factors using Equations (5)–(10).
MODELING TECHNIQUES

Evidential belief functions

The EBF is a generalization of the Bayesian theory of

subjective probability. Whereas a Bayesian accesses prob-

abilities directly for the answer to a question of interest, a

belief-function user assesses probabilities for related ques-

tions and then considers the implications of these

probabilities for the question of interest (Dempster

). A brief mathematical description of the EBF is sum-

marized here (An et al. ; Park ; Bui et al. ). Let

X be the universe (the set which represents all the poss-

ible states of a system under study), then the power set

2X is the set of all subsets of X including the empty set

∅. Now, if X ¼ a, bf g, then 2X ¼ ∅, af g, bf g, Xf g. Here,

the elements of the power set are taken for representing

propositions concerning the actual state of the system
://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
being considered. A belief mass to each element of the

power set is assigned using the theory of evidence as

m:2X ! 0, 1½ �. This equality is called a basic belief assign-

ment and it has the following two properties: (i) the mass

of the empty set is equal to zero m ∅ð Þ ¼ 0ð Þ; and (ii) the

masses of the remaining member of the power set

add up to a sum of 1
P

A⊆X m Að Þ ¼ 1
� �

. The upper and

lower bounds of a probability interval can be defined

according to the mass assignments. This interval is

bounded by two non-additive continuous measures

called belief and plausibility: Bel Að Þ � P Að Þ � PL Að Þ.
The Bel Að Þ for a set A is the total of all masses of subsets

of the interested set.

Bel Að Þ ¼
X

BjB⊆A

m Bð Þ (1)

In the same manner, the PL Að Þ is the aggregate of the

all masses of the set B that intersect the A:

PL Að Þ ¼
X

BjB∩A≠∅

m Bð Þ (2)



Figure 6 | Groundwater condition factors: (a) elevation (m), (b) slope (%), (c) slope aspect, (d) curvature, (e) TWI, (f) SPI, (g) lithological units, (h) distance to faults (km), (i) fault density (km/

km2), (j) distance to lake (km), and (k) groundwater depth (m). (Continued.)
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Figure 6 | Continued.
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Table 5 | Values of fuzzy membership and EBFs for classes of groundwater factors

Factor Classes ①

Class
pixels ②

Pixels% ③

(a)
No. of
wells ④

Wells% ⑤

(b) FR ⑥

Fuzzy
value ⑦

Mass functions ⑧

Bel Dis Unc Pls

Elevation (m) <30 857,997 0.191 6 0.092 0.484 0.302 0.202 0.400 0.398 0.600
30–90 2,131,730 0.474 59 0.908 1.916 0.900 0.798 0.063 0.139 0.937
>90 1,511,190 0.336 0 0.000 0.000 0.100 0.000 0.537 0.463 0.463

Distance to faults (km) 0–4.6 2,407,991 0.535 57 0.877 1.639 0.900 0.670 0.057 0.273 0.943
4.6–9.3 1,014,359 0.225 5 0.077 0.341 0.267 0.140 0.255 0.605 0.745
9.3–13.9 557,719 0.124 1 0.015 0.124 0.161 0.051 0.241 0.709 0.759
13.9–18.6 405,912 0.090 2 0.031 0.341 0.267 0.139 0.228 0.632 0.772
18.6–23.2 114,936 0.026 0 0.000 0.000 0.100 0.000 0.220 0.780 0.780

Distance to lake (km) 0–10.3 1,011,930 0.225 47 0.723 3.216 0.900 0.748 0.071 0.181 0.929
10.3–20.5 1,215,858 0.270 14 0.215 0.797 0.298 0.185 0.214 0.601 0.786
20.5–30.7 1,392,139 0.309 2 0.031 0.099 0.125 0.023 0.279 0.698 0.721
30.7–40.9 739,108 0.164 2 0.031 0.187 0.147 0.044 0.231 0.726 0.769
40.9–51.2 141,882 0.032 0 0.000 0.000 0.100 0.000 0.205 0.795 0.795

Lithological units Miocene rocks 1,667,149 0.370 57 0.877 2.367 0.900 0.879 0.064 0.056 0.936
Alluvium 761,079 0.169 1 0.015 0.091 0.100 0.034 0.391 0.576 0.609
Alluvial fan 2,072,612 0.460 7 0.108 0.234 0.150 0.087 0.545 0.368 0.455

Groundwater depth (m) 3.3–10 855,958 0.190 6 0.092 0.485 0.291 0.149 0.275 0.576 0.725
10–20 1,156,934 0.257 34 0.523 2.035 0.900 0.623 0.158 0.220 0.842
20–30 2,313,984 0.514 25 0.385 0.748 0.394 0.229 0.311 0.460 0.689
30–40 173,306 0.039 0 0.000 0.000 0.100 0.000 0.256 0.744 0.744

Aquifer group Group 4 2,550,831 0.567 58 0.892 1.574 0.900 0.863 0.137 0.000 0.863
Group 10 1,942,341 0.432 7 0.108 0.250 0.100 0.137 0.863 0.000 0.137

Notes: ① is the classes of each factor. ② is the number of pixels for each class (summation of these pixels gives the total number of pixels in the study area and equal to 4,500,917. (a)

percentage of pixels, for example, for the first class of slope factor, the number of pixels¼ 857,997 and divided by the total number of pixels (4,500,917) and thus the percentage of this

class is (857,997/4,500,917¼ 0.191). ④ is the number of wells for each class (the total number of training wells is 65). ⑤ percentage of wells (for example, for the first class of slope factor the

number of wells equals to 6 and divided by 65 gives 0.092, and so on. ⑥ is the ⑤/③ (b/a). ⑦ is obtained by applying Equation (14). ⑧ is obtained by applying Equations (5)–(10).
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The Bel Að Þ and PL Að Þ are mathematically related as:

PL Að Þ ¼ 1� Bel �A
� �

(3)

Once mass functions are calculated, Dempster’s rule of

combination is used to obtain the integrated mass functions

(Dempster ). This rule of combination is a generalized

scheme of Bayesian inference to aggregate evidence pro-

vided by disparate sources. Suppose that m1 and m2 are

the basic probability assignments based on entirely distinct

bodies of evidence D1 and D2. The belief functions Bel1
and Bel2 for the basic probability assignments m1 and m2,

can be combined to generate a new belief function. Thus,

for all A1, A2, . . .An ∈ 2Θ, Dempster’s rule produces a

new probability assignment defined by m ϕð Þ ¼ 0 and

m Hð Þ ¼ 1� kð Þ�1
X

i,j
Ai∩Bj¼H

m1 Aið Þm2 Bj
� �

(4)
om http://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
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where

k ¼
X

i,j
Ai∩Bj¼H

m1 Aið Þm2 Bj
� �

< 1

For all non-empty H ⊂ Θ. The quantity (1�k) is

a normalizing factor to compensate for the measure

of belief committed to the empty set (Carranza et al.

).

In GIS practical applications, the maps of spatial evi-

dences Ai i ¼ 1, 2, . . . , nð Þ each with a specified number of

variable classes Cij j ¼ 1, 2, . . . , mð Þ are given. If we

assume that N Tð Þ is the total number of pixels of a given

map (for example, elevation), N Fð Þ is the total number of

flowing wells, N Cij
� �

is the number of pixels in the variable

class Cij, and N Cij ∩ F
� �

is the number of flowing wells in

the class Cij. The belief mass function for class Cij is
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estimated as (Carranza et al. ):

BelCij ¼
WCijFPm
j¼1 WCijF

(5)

where

WCijF ¼ N Cij ∩ F
� �

=N Cij
� �

N Fð Þ �N Cij ∩ F
� �� �

= N Tð Þ �N Cij
� �� � (6)

The degree of disbelief mass function for the class Cij is:

DisCij ¼
WCij

�FPm
j¼1 WCij

�F
(7)

where

WCij
�F ¼

N Cij
� ��N Cij ∩F

� �� �
=N Cij

� �

N Tð Þ�N Fð Þ� N Cij
� ��N Cij ∩F

� �� �
= N Tð Þ�N Cij

� �� �

(8)

The uncertainty (UncCij ) and plausible (PlsCij ) mass func-

tions are calculated using Equations (9) and (10):

UncCij ¼ 1�DisCij � BelCij (9)

PlsCij ¼ 1�DisCij (10)

The values of BelCij and PlsCij are between 0 and 1.
Figure 7 | Fuzzy inference system diagram.
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Fuzzy logic

The FL is a cognitive artificial intelligence technique

initiated in 1965 by Professor Lotfi Zadeh at the University

of California, USA. In a broad sense, FL is viewed as a

system of concepts, principles, and methods for dealing

with modes of reasoning that are approximate rather than

exact. It provides a means of representing uncertainties

and vagueness that characterize human perception, judg-

mental reasoning, and decisions. Contrary to the crisp set,

the boundary of a fuzzy set is not precise. Crisp sets only

allow full membership, whereas fuzzy sets allow partial

membership which can take values ranging from 0 to 1:

μA xð Þ ¼ X ! 0, 1½ � (11)

where X is the universal set defined in a specific problem

and μA xð Þ is the grade of membership for elements x in

fuzzy set A (Yager & Zadeh ). The most important con-

cept in FL is the definition of the membership functions for

input and output data sets.

Fuzzy inference system (FIS) is the process of formulat-

ing from a given input space to an output space using FL.

Basically, the FIS consists of four interconnected com-

ponents (Figure 7): fuzzification module, knowledge base,

inference engine, and defuzzification module. In the fuzzifi-

cation step, the input space (crisp numbers) is transformed

into fuzzy sets through applying the fuzzification function.

In the knowledge base part, the IF-THEN rules provided

by experts are formulated and stored. The IF part of a rule

is its antecedent, and the THEN part of a rule is its
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consequent. The human reasoning process is simulated by

making fuzzy inference on the inputs and formulated IF-

THEN rules using an inference engine. Finally, the fuzzy

set obtained by the inference engine is transformed into a

crisp value through the defuzzification module.

Applying fuzzy principles in GIS-related groundwater

potential studies requires three main steps: (i) identification

of groundwater occurrence factors and their classes; (ii)

assigning fuzzy membership function values; and (iii) inte-

gration of the layer classes (modified after Bui et al.

()). Assigning fuzzy membership values is crucial to a

proper fuzzy model. In this context, various approaches

have been developed which can be either classified into

knowledge-based, data-driven, or a combination of both. In

the first method, values of fuzzy membership are mainly

determined using expert opinion, while in the second

method, fuzzy memberships are assigned through investi-

gating the relationship between groundwater borehole

locations and groundwater conditioning factors used in the

analysis. The most widely used approaches for assigning

fuzzy membership values in earth science are the cosine

amplitude (CA) method and the FR method. The CA

method formulates fuzzy membership values according to

the following equation:

CA ¼ N Cij ∩ F
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N Tð Þ �N Fð Þp (12)

In contrast, the FR is calculated as:

FRij ¼
N Cij ∩ F
� �

=N Fð Þ
N Cij
� �

=N Tð Þ (13)

Equation (12) gives values in the range of (0, 1), and thus

the output values do not have to be normalized. To trans-

form FR to membership values, the output of Equation

(13) is normalized into (0, 1) interval using the Max-Min

normalization process as:

μ Cij
� � ¼ FRij �Min FRij

� �

Max FRij
� ��Min FRij

� � max μ Cij
� �� ��min μ Cij

� �� �� �

þmin μ Cij
� �� �

(14)
om http://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf

023
where μ Cij
� �

is the fuzzy membership value; Max FRij
� �

and Min FRij
� �

are the upper and lower normalization

bounds. In this paper, the values of Max FRij
� �

and

Min FRij
� �

are taken as 0.9 and 0.1, respectively (Pradhan

). The FR method was selected here to calculate fuzzy

membership values because the CA method gives very

small values and thus is not regarded as suitable for

further analysis.

Once the fuzzy membership values are calculated for

the selected conditioning factors of groundwater occur-

rence, the next step is to integrate these layers to produce

a groundwater potential zoning map using the fuzzy com-

bining operators. There are different types of fuzzy

combining operators, for example, fuzzy AND, fuzzy OR,

fuzzy SUM, fuzzy PRODUCT, and fuzzy GAMMA can be

used for integrating layers in the GIS environment. The

fuzzy AND combines fuzzy membership values using the

minimum operators as:

μAND ¼ MIN μ Cij
� �� �

(15)

while fuzzy OR combines fuzzy membership value using the

fuzzy maximum operator as:

μOR ¼ MAX μ Cij
� �� �

(16)

Fuzzy SUM is complementary to the fuzzy product and

is defined as:

μSUM ¼ 1�
Yn

i¼1

1� μ Cij
� �� �

(17)

The output is always greater than the largest contribut-

ing fuzzy membership value. Fuzzy PRODUCT combines

fuzzy membership by multiplying their values according to

this formula:

μPRODUCT ¼
Yn

i¼1

μ Cij
� �

(18)

And finally, the fuzzy GAMMA is defined as:

μGAMMA ¼ Fuzzy SUMλ � Fuzzy PRODUCT1�λ (19)

The values of λ are chosen to be in the range of [0, 1].
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RF machine learning technique

RF is an ensemble machine learning technique to solve pro-

blems of both classification and regression types. It is a

model to estimate either the Bayes classifier or the

regression function. The RF algorithm handles random

binary trees which use a subset of the observations through

bootstrapping techniques; from the original data set a

random choice of the training data is sampled and used to

build the model (Breiman ). Data that are not included

in the model training are named as ‘out-of-bag’ (OOB)

(Catani et al. ). The most attractive aspect of the RF

model is the ability to estimate the importance of a variable

by looking for how much the prediction error increases

when the OOB error for that variable is permuted while

all other variables are fixed unchanged (Liaw & Wiener

). This capability is applied here to investigate the rela-

tive importance of the groundwater conditioning factors

used in the analysis of groundwater potentiality, a critically

important but often neglected aspect of groundwater poten-

tiality studies.

Relative operating characteristic for model validation

It is well known that any predictive model needs validation

(verification) before it can be effectively utilized for predic-

tion. The relative operating characteristic (ROC) curve was

used here to validate the developed models. The ROC is a

powerful plot for determining the predictive capability of

systems. The area under the ROC curve (AUC) characterizes

the quality of a forecast system by describing the system’s

ability to anticipate correctly the occurrence and non-occur-

rence of predefined events (Mason & Graham ). In the

ROC curve, the true positive rate (sensitivity) is plotted

against the false positive rate (1 – specificity). The AUC

ranges from 0.5 (random prediction represented by a diag-

onal straight line) to 1 (perfect prediction). More

specifically, the relation between AUC and model prediction

accuracy is as follows: poor (0.5–0.6); average (0.6–0.7);

good (0.7–0.8); very good (0.8–0.9); and excellent (0.9–1).

The AUC is often computed for both success and prediction

rates. The success rate explains how well the resulting pre-

diction map classified the area of existing flowing wells,

while the prediction rate is utilized as a measure for
://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
predictive capability of the model and only used the testing

data set (unseen data) to investigate the prediction perform-

ance. In this study, the AUC for prediction rate was only

demonstrated because it is more representative of model

performance.
MODEL SETUP, RESULTS, AND DISCUSSION

Selection of the most important factors using RF

algorithm

To execute the RF algorithm requires that two main par-

ameters should be determined: ntree and mtry. ntree is

the total number of growing trees, while mtry is the

number of factors that are randomly chosen at each split

node (Al-Abadi & Shahid ; Zabihi et al. ). To mini-

mize the generalization error and correlation among

growing decision trees, Breiman () suggested that

mtry should be less than log2(Mþ 1), in which M is the

number of predictors (groundwater conditioning factors)

used in the analysis. As the total number of predictors

used in the current research was 12, the mtry should be

less than 3 (int(log2(12þ 1)). In this study, ntree was

taken equal to 1,000 as this value gives more stable predic-

tion and a relatively low prediction error (Rodriguez-

Galiano & Chica-Olmo ). Two parameters were used

here to assess the importance of factors in the analysis of

groundwater potentiality: mean decrease accuracy (Mean-

DecreaseAccuracy) and mean decrease in Gini coefficient

(MeanDecreaseGini) (Naghibi et al. ). The first index

measures the decrease in model fit as the specified factor

is removed from the analysis, while Gini coefficient

measures how each variable contributes to the homogen-

eity of the nodes and leaves in the RF results. The plot of

these measures for the first run of the RF algorithm is

shown in Figure 8. This plot identified elevation, ground-

water depth, geology, distance to lake, aquifer groups,

and distance to faults as the most importance factors. The

Gini index also identified the previous factors as the most

important factors, but with a different rank. The less effec-

tive factors, i.e., slope angle, curvature, aspect, TWI, SPI,

and fault density were dropped from the analysis and the

RF model was rerun only with the most important factors.



Figure 8 | Mean decrease accuracy and mean decrease GINI.

Table 6 | Accuracy of RF models

Parameters

Developed RF models

All variables
The most
important variables

OOB error 0.0625 0.0547

Correctly classified instances 120 (92.96%) 123 (95.31%)

Incorrectly classified instances 10 (7.03%) 7 (4.68%)

Kappa statistic 0.86 0.91

Mean absolute error 0.13 0.09

Root mean square error 0.23 0.19
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The overall accuracy for the two runs is summarized in

Table 6. It is clear from Table 4 that excluding the less

important factors increases the FR model accuracy from

93% to 95%. All other error statistics support this con-

clusion. Therefore, the less important factors were

removed from the analysis and the rest of the factors

were used to build the EBF and FL models.
om http://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
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Groundwater potential mapping using EBF

A high value of Bel mass functions means a high probability

of existing artesian condition, while a low value means a low

probability. It can be seen from Table 5 that the elevation

range (30–90 m) has the highest value of Bel (0.798) and

the lowest values of Dis (0.064), indicating the highest prob-

ability of artesian potential. The elevation values <30 m

have a relatively low value of Bel (0.202) and a high value

of Dis (0.40), meaning that this class has a low probability

of artesian potential. The last class of elevation (>90) has a

Bel value equal to 0, indicating a low probability of ground-

water flowing wells conditions in this class (Park ). For

distance to fault, the only class having the highest probability

of groundwater potentiality is the first class (0–4.6 km), as this

class has a high Bel (0.670) and a low Dis (0.057). The rest of

the classes generally have relatively low values of Bel, thus

implying low probability of groundwater occurrence. This

result confirms the importance of a structural setting to con-

trol groundwater movement and occurrence in the study



Figure 9 | EBF mass functions: (a) belief, (b) disbelief, (c) uncertainty, and (d) plausibility.

515 A. M. Al-Abadi et al. | Groundwater potential using fuzzy logic and evidential belief functions Journal of Hydroinformatics | 20.2 | 2018

Downloaded from http
by guest
on 31 March 2023
area. In the case of distance to Rezzaza Lake, the only high

Bel value (0.748) is seen for the range (0–10.3 km), indicting

a high probability of groundwater artesian potentiality. The

remaining classes have low Bel values, indicating low prob-

ability of groundwater occurrence. In the case of lithology,

the Micocene rocks have high Bel values and thus high prob-

ability of artesian condition. In contrast, Quaternary

sediments have low Bel values that indicate low probability

of getting artesian conditions. For groundwater depth layer,

the high Bel and low Dis values for the range (10–20 m) indi-

cate a direct relationship with groundwater potential. The

remaining classes have low values of Bel, implying a low

probability of groundwater occurrence. For the last factor,
://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
aquifer group, the high probability of groundwater potential-

ity is associated with the major group 4 with Bel value

equal to 0.863. This group represents the karstified and

highly fractured limestone with high confining pressure con-

ditions and, therefore, there is a direct relationship with

artesian conditions between this group and Bel mass func-

tion. The major group 10 has a low Bel value (0.137) and,

therefore, a low probability of artesian potential condition.

Once the mass function of EBF was calculated, Demp-

ster’s rule of combination was utilized to get the EBF mass

functions. Combining the mass functions is an iterative pro-

cess. Therefore, the two mass functions of elevation and

distance to faults conditioning factors were first combined.
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The resulting mass functions of the first combining process

was combined with distance to lake mass function using

Dempster’s rule to produce the next integrated mass func-

tion, and so on. In total, five combining processes were

executed to obtain the final integrated mass functions

(Figure 9(a)–9(d)). Comparing between Bel (Figure 9(a))

and Dis (Figure 9(b)) showed that there is a negative

relationship between these mass functions. In areas with

high Bel, the Dis values are low and vice versa. On the

other hand, the Unc map (Figure 9(c)) reveals a lack of

information supporting uncertainty in producing a poten-

tial map (Nampak et al. ). From Figure 9(c) and

compared to the Bel map (Figure 9(a)), the Unc values

are high in areas with low values of Bel. The Pls map

(Figure 9(d)) is similar to the Bel map except that the con-

trast between lower and higher degrees was less apparent

than the Bel map.

The integrated Bel values were used to provide a

groundwater flowing well potential index (GFWPI) and

were classified into five classes ranging from very low to

very high using a natural break classification scheme

(Figure 10(a)). There are many different classification sys-

tems used in groundwater potential mapping such as the

natural breaks, quantiles, equal interval, standard deviation,

and manual methods. The most common method for a

reclassification system in groundwater potential studies is

natural breaks, which is used in this study.

Groundwater potential mapping using FL

In the case of the FL model, the relative importance of con-

dition factors in groundwater potentiality can be deduced

from the fuzzy membership values; high values mean high

groundwater potentiality and vice versa. From Table 5, the

high fuzzy membership values (equal to 0.9) are associated

with elevation in range (30–90), distance to faults in range

(0–4.6 km), distance to lake range (0–10.3 km), Miocene

rocks, groundwater depth range (10–20 m), and aquifer

group 4. The remaining fuzzy membership values are rela-

tively less than 0.5 and therefore are regarded as less

important in determining the artesian condition in the

study area. To generate the GFWPI using the FL technique,

the fuzzy membership values of six factors were integrated

using the FL overlay method in ArcGIS 10.2™ environment.
om http://iwaponline.com/jh/article-pdf/20/2/497/658379/jh0200497.pdf
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Five fuzzy combining operators were used in this study,

namely, fuzzy AND, fuzzy OR, fuzzy SUM, fuzzy PRO-

DUCT, and fuzzy GAMMA. For fuzzy GAMMA operator,

five lambda λ values were used. These are 0.1, 0.3, 0.5, 0.7,

and 0.9. For each fuzzy operator, GFWPI were generated

and classified into five zones in similar fashion as the EBF

model. A total of nine GFWPI maps were generated. For

visualization purposes, only the maps of the fuzzy AND,

fuzzy PRODUCT, and fuzzy GAMMA (λ¼ 0.3, 0.7, and

0.9) are presented in Figure 10(b)–10(f).

Validation of the results

The prediction rates of the developed models are shown in

Figure 11. According to the AUC values, all of the prediction

models built in this study have very good prediction accu-

racy. The results of validation tests revealed that the AND

fuzzy models perform the best with AUC equal to 0.860

and the fuzzy SUM showed the lowest prediction accuracy

(AUC¼ 0.831). The second highest capability model for

spatial predicting groundwater artesian zone boundary was

the EBF with AUC¼ 0.844.

Based on these results, the fuzzy AND was selected to

demarcate groundwater artesian zone boundary in the Kar-

bala Governorate. The fuzzy values of this model ranged

from 0.1 to 0.9 and were classified into five classes: very

low, low, moderate, high, and very high. The first two classes

(very low and low) cover an area of about 50% (2,041 km2)

of the total area. In contrast, the moderate zone encom-

passes only 25% (994 km2). The last two classes (high and

very high) encompass an area of about 25% (1,016 km2).

The high and very high zones are mainly distributed in the

northern part of the area of interest and close to Rezzaza

Lake, while the remaining zones cover the rest of the

study area.
CONCLUSIONS

In the study, the data-driven EBFs and data-knowledge FL

approaches were used for mapping groundwater flowing

well potential in the Karbala Governorate in central Iraq.

Twelve groundwater conditioning factors with flowing well

inventory maps were used to build the predictive models



Figure 10 | Groundwater flowing well potential index (GFWPI) using different predictive models: (a) EBF, (b) fuzzy AND, (c) fuzzy PRODUCT, and (d) to (f) fuzzy GAMMA (λ¼ 0.3, 0.5, and 0.9,

respectively).
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Figure 11 | Validation results of predictive models.
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in the GIS platform. The RF machine learning technique

was used to investigate the contribution of groundwater con-

ditioning factors in mapping groundwater flowing well

potentiality. Results of the RF algorithm confirmed that six

out of the twelve factors were most important and excluded

the less important factors, which contributed in increasing

the prediction accuracy from 92% to 95%. The FL and

EBF models were built using the most important factors.

The mass functions of EBFs were estimated through over-

lying a training flowing well inventory map with six

groundwater conditioning factors. The FR was utilized to

generate fuzzy membership values of each class in ground-

water factors. The validation results using a ROCs curve

showed that the best model was the AND fuzzy model fol-

lowed by EBFs. The lowest accuracy model was fuzzy

SUM (AUC¼ 0.431). Results also confirm that the inte-

gration of RF with EBFs and FL models contributes to

developing predictive models with high prediction accuracy.

Results also indicated that the northern part of the study

area is a more promising area to drill wells with a higher

probability of artesian conditions. The findings of this

study could be used by decision-makers and hydrogeologists

to develop groundwater and manage aquifer systems in a

more efficient manner.
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