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Abstract: Nowadays, the microgrid (MG) concept is regarded as an efficient approach to incorporat-
ing renewable generation resources into distribution networks. However, managing power flows
to distribute load power among distribution generators (DGs) remains a critical focus, particularly
during peak demand. The purpose of this paper is to control the adopted grid-tied MG performance
and manage the power flow from/to the parallel DGs and the main grid using discrete-time ac-
tive/reactive power (PQ) control based on digital proportional resonant (PR) controllers. The PR
controller is used to eliminate harmonics by acting as a digital infinite-impulse response (IIR) filter
with a high gain at the resonant frequency. Additionally, the applied PR controller has fast reference
signal tracking, responsiveness to grid frequency drift, and no steady-state error. Moreover, this
paper describes the application of robust nonlinear sliding mode control (SMC)-technique-based
buck–boost (BB) converters. The sliding adaptive control scheme is applied to prevent the output
voltage error that occurs during DG failure, load variations, or system parameter changes. This
paper deals with two distinct case studies. The first one focuses on applying the proposed control for
two parallel DGs with and without load-changing conditions. In the latter case, the MG is expanded
to include five DGs (with and without DG failure). The proposed control technique has been com-
pared with the droop control and model predictive control (MPC) techniques. As demonstrated by
the simulation results in MATLAB software, the proposed method outperformed the others in terms
of both performance analysis and the ability to properly share power between parallel DGs and the
utility grid.

Keywords: microgrids; PQ control; digital PR control; sliding mode control; parallel inverters; model
predictive control; distributed renewable resources

1. Introduction

The widespread use of fossil fuel, which may be exhausted by the end of the century,
has been linked to a host of problems, including low air quality indices, environmental
pollution, and a slew of others. In order to combat this, renewable, environmentally
friendly clean energy is used and converted into electrical energy, which not only in-
creases the diversity of energy usage but also reduces the consumption of fossil fuels for
power-generating reasons. This energy comes from a variety of long-term sources such
as solar, wind, and other distribution energy resources (DERs), all of which are being
increasingly adopted to build microgrid (MG) resources. Power electronics converters
are used to connect most DERs to the grid because of their controllability, flexibility, and
monitoring capabilities [1–3].

In a variety of grid-related and industrial applications, DC/DC converters are used
a lot to efficiently convert an unregulated voltage from the DERs to a regular one at the
desired level to supply the inverters and operate DC loads in MGs. DC/DC power convert-
ers (buck, boost, and buck–boost) are the three primary types of DC/DC converters. They

Electronics 2022, 11, 3917. https://doi.org/10.3390/electronics11233917 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11233917
https://doi.org/10.3390/electronics11233917
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2023-5387
https://orcid.org/0000-0002-1280-8918
https://orcid.org/0000-0002-8413-0317
https://doi.org/10.3390/electronics11233917
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11233917?type=check_update&version=3


Electronics 2022, 11, 3917 2 of 24

can be controlled in a variety of ways, beginning with complete linear control techniques
such as hysteretic, pulse width modulation (PWM) and progressing to nonlinear control
techniques such as SMC. Due to its robustness against disturbances and uncertainties, the
SMC technique has overcome the limitations of previous methods, and it has been adopted
in the proposed control technique of the MG in this paper [4].

One of the most pressing issues in MG research is how to design controllers that
ensure the MG operates reliably and stably in both grid-isolated and grid-connected modes.
Specifically, it is necessary to control the frequency and voltage of each power electronic
converter connected to each DG in the islanded mode, referred to as VF control, whereas
it is necessary to regulate the output active and reactive powers of each DG in the grid-
connected mode, referred to as PQ control. MGs are incorporated into the main grid
while operating in the grid-tied mode to inject electricity into the utility grid. In order
for the MG to function properly, the frequency and voltage of the main grid must be
maintained [5–7]. Additionally, a solution to the power-sharing issue and meeting the
load demand are the second challenges that necessitate the implementation of certain
high-level solutions. In order to meet the anticipated power demand, the DGs are expected
to distribute energy according to a predetermined power-sharing base. As explained
in [8,9], the energy capacities of individual DGs can be represented by power-sharing
bases. The challenge of power sharing has steadily risen to the top of the list of researcher
priorities. For a long period of time, advanced control strategies for inverters have been
investigated in power electronics topics. Additionally, with the growing number of inverter-
connected DERs in modern, high-tech power grids, inverter control is critical to achieving
improved DER performance. These DERs are connected to the MG’s shared AC bus in
parallel. Therefore, an analysis of power systems with parallel inverters is essential for
enhancing power quality and keeping the grid stable [10]. Studies have investigated
multiple contributions to the parallel configuration of grid-connected inverters [11–13].
In addition, many different strategies for controlling grid-connected inverters have been
studied with the goal of making power systems more efficient. From the perspective
of DERs, inverters should be monitored so that they can supply actual power to meet
demand and export any excess to the grid. Interfaces’ ability to supply reactive power to
the grid would boost its power quality and reliability. Therefore, cutting-edge methods of
DER control for optimizing power flow are to be anticipated [14]. Many state-of-the-art
manufacturing controls [15] use model predictive control (MPC) algorithms. There are
two types of MPC techniques used with inverters: (a) the finite control set MPC (FCS-MPC)
approach, which uses the limited number of switching possibilities offered by the converter
to address optimization problems, and (b) the continuous control set MPC (CCS-MPC)
approach, which calls for a modulator to produce switching states from the controller.
The FCS-MPC has a natural and efficient algorithm for controlling power converters
without the use of PI controllers and modulators [16]. To regulate parallel inverters in
numerous contexts, including DGs and MGs, the conventional droop control method is
a commonplace control scheme. This unique method of control involves monitoring the
system’s reference points, measuring active and reactive powers, and adjusting the terminal
voltage magnitude of each inverter locally and proportionally. Droop control methods
have the inherent weakness of a slow transient response [17] due to the computation
of instantaneous power and the low pass filter constraint. Additionally, numerous PQ
control techniques can be used for integrating inverter-based DGs with the power system,
including hysteresis, dead-beat (DB) controllers, proportional integral (PI) controllers,
and PR controllers [18–21]. While hysteresis control is easy and responsive, the output
current contains large ripples, resulting in poor current quality and making the output
filter design more challenging [18]. Because it performs well with current-controlled DGs,
DB predictive control is commonly employed. It is, nevertheless, exceedingly intricate
and highly dependent on system settings [19]. If the objective is to correct the many
harmonics behind sinusoidal signals and reduce steady-state error, the PR control technique
in the synchronous reference frame is popular, while PI controllers provide more steady-
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state error and are cohesive with the parameter setting problem [20]. To ensure optimal
performance, however, the resonant frequency and changing grid frequency should be
equal [21]. Typically, PQ controllers employ double-loop controls [22]. The outer power
loop generates the reference current based on the power target, while the current inner
loop serves as a fine-tuning circuit [22]. To the authors’ knowledge, the literature focuses
mostly on single-inverter systems, with only a few references devoted to parallel grid-
tied inverters that do not use fully digital PR controllers based on PQ control. In this
context, Bayo-Salas et al. [23] conducted a stability investigation of control interactions in
a two-parallel-inverters system. Li et al. [24] presented a control strategy for an AC-grid-
based multi-infeed inverter. Kammer et al. [25] introduced a frequency-domain current
control technique for parallel grid-connected inverters. A significant disadvantage of
these techniques is that the control design is reliant on the system’s global model. As
a result, conventional control systems cannot ensure the stability of the entire grid in
the event of a grid configuration change (e.g., when the inverter is disconnected). In a
rotating reference frame, the authors of [26] proposed a scalable control technique based
on dq-currents for parallel inverters. A decentralized multivariable PI current control
method underpins the control framework. Using a second-order generalized integrator, the
research in [27] examined the active and reactive power control problem in a grid-connected
single-phase fuel cell system using a boost inverter (the boost inverter was comprised of
two bidirectional boost converters with their respective outputs connected in series).The
authors of [28] suggested a PQ control approach for solar photovoltaics with maximum
power point tracking, also known as MPPT, and battery storage while connected to the
grid. A PQ control strategy for regulating the power produced by solar PVs and battery
storage was presented [29]. Reference [30] focused on a method for two parallel inverters
in microgrids to control power flow predictively. The microgrid in this case study was
grid-tied, with an appropriate capacity for power sharing between parallel distributed
generation and the main grid. Yixin Zhu et al. [31] proposed a precise technique for power
sharing, relying on a communication platform and a droop control mechanism. The MG
control center (MGCC) receives reactive power commands from the DG units and uploads
information about power output. Active power sharing, in this case, may lead to inefficient
reactive power flows between DG units. The voltages of such buses, connecting to the
loads, fluctuate in response to changes in the active component of the current consumed
by the loads, but because reactive power is not shared, the grid becomes unstable [32]. To
achieve successful reactive power sharing, methods based on droop control approaches
are adopted, such as enhanced droop control methods. They have high reliability but
require a sophisticated algorithm, are inappropriate for complex microgrids, and have high
communication line latency [33].

According to the authors’ knowledge, no prior research has addressed the control
of parallel inverters utilizing decentralized digital processing propelled by SMC-based
BB converters. This paper proposes a new discrete PQ control technique based on PR
controllers for grid-connected parallel DGs that utilize synchronous reference frames to
improve power flow transients, eliminate steady-state errors, and offer a quick transient
response. The following are the highlight points of the paper’s contributions:

1. The proposed control-technique-based parallel DGs are completely decentralized. It
is necessary that each DG be aware of its own power-sharing basis, which enables the
proposed method to function as a plug-and-play solution due to its plug-and-play capacity.

2. This paper proposes a robust discrete-time PQ control structure by designing digital PR
controllers for the power and current control loops of each DG to improve the accuracy
and load-sharing capability of the parallel inverters operating in an MG framework.

3. Parallel decentralized mode SMC-based BB converters have been adopted to avoid
voltage error and provide stable DC voltages for the related parallel inverters. SMC
enables the controlled converters to operate flawlessly in high-signal operating condi-
tions, allowing them to maintain efficient regulation and dynamic performance even
when there are significant changes in the line, load, and system parameters.
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4. The design process for digital power and current PR controller-based inverters is
discussed in this paper. The procedure explains how to calculate resonant and pro-
portional gains, as well as the resonant path coefficients, step by step. Its main
contribution is to make researchers’ jobs easier by facilitating and assisting them in
developing inverters that incorporate existing control strategies in a digital environ-
ment. A frequency-domain analysis of a digital PR controller will also be presented
in the paper. A fictitious w-domain was used in this study. The inverter’s efficacy
was demonstrated in the case study when it was used in conjunction with digital PR
power and current controllers designed using the proposed procedure.

5. The proposed technique is compared to MPC and droop control techniques. The
proposed technique outperforms the other techniques in terms of overall power flow
control performance.

Regarding the remainder of this paper, its format is as follows. In Section 2, we describe
a grid-tied parallel DG system. In the following section, we illustrate load-sharing power
flow control. Information regarding the proposed control technique is provided in Section 4.
Section 5 discusses power control based on MPC. In Section 6, we conduct extensive
simulation studies to analyze the effectiveness of the proposed controller. Section 7 is the
conclusion of the paper.

2. Grid-Tied Parallel DG System

Once the MG is connected to the main grid, the DGs provide the necessary power
to the loads in conjunction with the grid, allowing the MG to become self-sufficient. If
the generated power from DGs is less than the power required by the load, the grid will
inject the additional power required by the load. In contrast, if the power from the DGs is
more than the load requirements, the surplus energy will be returned to the grid. Multiple
grid-tied inverters can be connected in parallel to the grid so that the combined currents
from the grid and the loads are equal to the total current through the PCC of all the inverters.
This occurs in MGs when multiple DERs are connected to the utility grid by way of a shared
AC bus, as shown in Figure 1. Two parallel grid-tied DGs are used in the first case study
of the system topology in this paper. Each DG is equipped with a three-phase two-level
voltage source inverter (VSI) and a buck–boost DC/DC converter. The DC inverter input
(Vdc) can be supplied from the SMC-based BB converter.
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The grid-tied inverter’s topology is comprised of three complementary pairs of IGBT
power switches. For an n-phase i-level converter, the total number of possible switch-
ing states is defined as k = ni. Thus, eight possible switching states for a VSI can be
identified. Figure 2 shows the voltage vectors generated by each inverter, which are com-
posed of six active voltage vectors (numbered 1 through 6) and two zero voltage vectors
(numbered 0 and 7). The VSI’s eight voltage vectors are denoted by [30],

vk =

{ 2Vdc
3 ej(k−1) π

3 k = 1, . . . , 6.
0 k = 0, 7

(1)
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3. Load-Sharing Power Flow Control

The complicated power flow, denoted by [30,34], Sk = Pk + Qk, between the common
AC bus and the DGs, is represented by

Pk =
|Vk|(|Vk|cos δk − |E| cos(δk + θz))

|z| k = 1, 2 (2)

Qk =
|Vk|(|Vk|sin δk − |E| sin(δk + θz))

|z| k = 1, 2 (3)

where Vk and E are the voltage vectors of the k-th inverter output and the common AC bus,
Z = R + jX = |z|∠θz is the line impedance, and δk = θzk − θE is the power angle. The line
resistance is usually small and can be ignored, so the line impedance is Z = jX = |z|∠ 90◦.

Due to the fact that δi is typically small, we can assume sin(δk) = δk and cos(δk) = 1,
which result in modifications in expressions (2) and (3) being written as

Pk =
|Vk||E| sin(δk)

X
=
|Vk||E|δk

X
k = 1, 2 (4)

Qk =
|Vk|2 − |Vk||E| cos(δk)

X
=
|Vk|2 − |Vk||E|

X
k = 1, 2 (5)

As a result, the active and reactive power flows are proportional to the angle and
change in the amplitude of the voltage, respectively.

4. Proposed Control Technique

Figure 3 depicts the two-DGs-based adopted MG with the proposed control technique.
The first DG consists of an 850V solar PV array (a PV array of 38 parallel strings of
24 series-connected modules), an input filtering capacitance (CP), a BB converter, and an
inverter. The second is identical, but it operates on an 850V battery source. CP guarantees
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that the PV panel or battery functions as a DC voltage source. In the BB converter, silicon
carbide MOSFET conduction determines circuit operation. In the on-state: the inductor
current increases, placing the diode in a block state. In the off-state: the diode commutates
and conducts because the inductor current cannot abruptly change. The inductor current
decreases as energy is transferred to the capacitor. There are two operational limits for this
circuit. When the duty cycle (D) of a PWM signal is zero, the output voltage is also zero, and
when it is one, the output voltage grows to negative infinity. For operation in a continuous
conduction mode, the output voltage is defined as follows: output voltage = −D/(1 − D)
input voltage. As a result, the BB converter is utilized to generate a stable DC output voltage
that is either higher or lower than the DC input voltage using the SMC technique. SMC
methodology has been widely adopted due to its favorable robustness properties, which
allow it to successfully model parameter uncertainties and external disturbances while
still easily mathematically calculating the control parameters. For the first BB-based DG,
it precisely produces a DC voltage of 250 volts, and for the second, it generates 400 volts.
For testing the two SMC-based adopted BB converters, the input is set to different voltage
values for buck (850V input exceeds output), boost (output exceeds input), and one as
buck and one as boost. Following the stabilization of the DC bus by the SMC-based BB
converters to supply the inverter with a constant desired DC voltage, discrete-time PQ
control is proposed to control the load power sharing of the parallel inverters and achieve
a stable AC bus. The PQ control method utilized a PR controller for rapid reference signal
tracking, sensitivity to grid frequency drift, and absence of steady-state error. The utility
grid and adopted DGs power the load, making the MG self-sufficient. If the DGs’ power is
less than load power, the grid injects the shortage. If the DGs generate more power than
needed, the surplus will be returned to the grid. Detailed information about the proposed
system’s power circuit and control parameters are presented in Tables 1–4.
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Table 1. The adopted SMC parameters.

Description Symbol Nominal Value

Settling time of SMC TS 1.5 msec
SM damping coefficient ξ 1.34

Ratios of the SM coefficients ∝1 / ∝2 and ∝3 / ∝2 19,939 and 102,846,495
Beta of SM β 850/250 and 850/400

SM control gains KP1 and KP2 1 and 4.53

Table 2. The control parameters of the inverters.

Parameter Name Acronym Value

Bandwidth revolves around AC frequency ωo ωc 2 ∗ pi ∗ 3
AC nominal frequency ωr = ωo 2 ∗ pi ∗ 50

Proportional gain PR voltage compensator kPp 22
Integral gain PR voltage compensator kRp 22

Damping coefficient PR current and power compensators ζ 0.95
Proportional gain PR current compensator kPi 0.027

Integral gain PR current compensator kRi 4.38
Measured signal gain for DG1 and DG 2 Hi 1

Table 3. Power and current loops’ PR resonant filter parameters.

Parameter Name Acronym

b0 1.146039290275440 × 104

b1 0
b2 −1.146039290275440 × 104

a0 1
a1 −1.999976025486589
a2 0.999976124181453

4.1. SMC for BB-Converter-Based DC MG Control

The SMC process is depicted in Figure 4 as having two phases. The first phase is the
reaching phase, whereby the controlled system’s feedback trajectory S is forced to move
towards the sliding manifold via sliding control (Figure 4(1a)). This phase is completed
when the hitting condition is satisfied. To satisfy the hitting condition, a sequence of control
decisions is made to direct the controlled system’s feedback trajectory away from sliding
manifold = 0 (regardless of its current location, in other words, regardless of its initial
conditions) toward the sliding manifold within proximity, as illustrated in Figure 4(2).
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In the second phase, named the sliding phase, S moves on to the sliding plane (S = 0).
That is what happens in Phase 2. It makes sure that S stays on the sliding manifold and
moves toward the point of equilibrium, where it will eventually settle at “0”. This means
that the existence condition has been satisfied (to satisfy the existence condition, S must be
designed in a way that it fulfills the condition of hitting, which has already been met within
the neighboring regions ζ= 0 (0 < |S| < δ) of the sliding manifold). Figure 4(3) shows how
the trajectory is guaranteed to come back to the sliding manifold [35–37].

4.1.1. Control Gain Parameters of SMC

The schematic diagram in Figure 5 depicts a PID-based sliding mode voltage-controlled
BB converter [30], where L, C, and RL are the inductance, capacitance, and instantaneous
load resistance of the DC/DC converter. The instantaneous currents of the inductance,
capacitance, and load are denoted by iL, iC, and ir, respectively. The instantaneous input
voltage is denoted by vi, the reference voltage is represented by Vre f , and the sensed output
voltage is denoted by βvo, where β = R2

R2+R1
, and the switching state of the converter’s main

switch is denoted by u = 1 or u = 0. The state control variables are x1 = −
(

βvo −Vre f

)
(the voltage error), x2 =

.
x1 = d

dt

(
Vre f − βvo

)
= −β dvo

dt = −β dvC
dt = −β iC

C (changing the

voltage error equation as time passes), and x3 =
∫

x1dt = −
∫ (

βvo −Vre f

)
dt (integral of

the voltage error equation) [35].

(a) When MOSFET (switch SW) is ON, u = 1 and then

− iC = ir =
vo

RL
(6)

(b) When switch SW is OFF, u = 0 and then

− iC = −iL + ir =
∫ vo

L
dt− 1

RL
vo (7)
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Consequently, during the total commutation period T,

− iC =
1

RL
vo +

∫ vo u
L

dt , u = 1− u (8)
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by substituting Equation (8) in x2, obtaining new x2; thus, the state new variables are in vector
x, where x =

[
x1 x2 x3

]T. By differentiating x with respect to time, it is possible to obtain
the state-space description of the BB converter for the purpose of designing the controller.

.
x =

 .
x1.
x2.
x3

 =

 x2
− 1

RLC x2+

x1

βuvo

LC

 =

0 1 0
0 − 1

RLC 0
1 0 0

x1
x2
x3

+

 0
β

LC
0

vo

u = Ax + Bv + D (9)

where D = [000]T .
Consider the SMC law when designing the BB converter’s fixed-frequency PWM

SM controller

u =

{
0 when S < 0
1 when S > 0

(10)

where S stands for the feedback state variable’s trajectory,

S =
k

∑
i=1

αixi(t) (11)

where xi(t) ∈ X(t) and αi f or i = 1 to→ k are control parameters, also known as sliding
coefficients, and thus [35,38],

S =∝1 x1+ ∝2 x2+ ∝3 x3 = JTx (12)

where ∝1, ∝2, and ∝3 are the matrix′s embedded sliding coefficients JT =
[
∝1 ∝2 ∝3

]
.

As previously stated, the existence condition of the SMC sliding phase is satisfied
when the next condition is satisfied, i.e.,

lim
S→0

S·
.
S < 0 (13)

Hence, to satisfy Equation (13), when S→ 0+ then
.
S is negative (vS→0+ in Equation (13)),

but
.
S is positive for S→ 0− . From Equation (9), when S→ 0+ , vS→0+ = u = 0, and when

S→ 0− , vS→0− = u = 1, as well as by substituting JT =
[
∝1 ∝2 ∝3

]
, which gives,

0 < βL
(

∝1

∝2
− 1

RLC

)
iC − LC

∝3

∝2

(
Vre f − βvo

)
< βvo (14)

The invariance conditions are utilized in order to generate ueq, which is an equivalent
control signal for the fixed-frequency PWM-based SM controller of the BB converters,

.
S = 0:

.
S = JT Bueq + JT Ax = 0 (15)

ueq = −
[

JT B
]−1

JT Ax = −∝3 LC
∝2 β

(Vre f

vo
− β

)
+

βL
βvo

(
∝1

∝2
− 1

RLC

)
iC (16)

Because of that, ueq = 1− ueq, 0 < ueq < 1, and multiplying the result of the inequality by
βvo yields,

0 < u∗eq = LC
∝3

∝2

(
Vre f − βvo

)
− βL

(
∝1

∝2
− 1

RLC

)
iC + βvo < βvo (17)

The inequality relationship 0 < vc < v̂ramp can be found from the relation
0 < ueq = d = vc

v̂ramp
< 1. The control signal vc and ramp voltage v̂ramp (variable in mag-
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nitude) for the fixed-frequency PWM-based SM controller can then be obtained by
comparison to Equation (17), such that [35]

u∗eq = LC ∝3
∝2

(
Vre f − βvo

)
− βL

(
∝1
∝2
− 1

RLC

)
iC + βvo

= −KP1iC + KP2

(
Vre f − βvo

)
+ βvo

(18)

where KP1 is the constant gain of the signal from the capacitor current feedback, KP2
is the constant gain of the signal from the voltage error feedback, and v̂ramp = βvo, as
shown in Figure 3.

4.1.2. Sliding Coefficient Ratios

The magnitude of the output voltage of the BB may be less or greater than the magni-
tude of the input voltage and have the opposite polarity, depending on the arrangement of
the components used to implement the BB circuit. The output voltage can be varied linearly
between 0 and (+/−)V by adjusting the MOSFET’s duty cycle [39,40]. Figure 3 depicts the
graphical diagram of the fixed-frequency PWM-based SMC buck–boost converter.

It is understood that the controller’s robustness over time to variations in line and
load is the result of the nonlinear nature of the SMC, which has been built by additional
βvo components for BB converters, where βvo is the instantaneous output voltage.

The sliding coefficient ratios (∝1 / ∝2 and ∝3 / ∝2) must be calculated in order to compute
the constant control gains KP1 and KP2 of the SMC. The damping coefficient (ξ) value and
the desired settling time (Ts) can be used to calculate the sliding coefficients, which describe
the different types of system responses: under-damped response when 0 ≤ ξ < 1; critically
damped response when ξ = 1; and over-damped response when ξ > 1 [41].

Equation (12) will be rearranged and time differentiated to give,

∝3

∝2
x1 +

∝1

∝2

dx1

dt
+

d2x1

dt2 = wn
2x1 + 2ξwn

dx1

dt
+

d2x1

dt2 = 0 (19)

where wn =
√

α3
α2

is the undamped natural frequency, and ξ = 0.5α1√
α2α3

and ∝3
∝2

= 0.25
ξ2

(
∝1
∝2

)2
[42].

Table 4. The adopted parameters of a DC/DC BB converter.

Description Symbol Nominal Value Unit

Input voltage Vi 850 V
Output voltages Vo 250 (DG1) and 400 (DG2) V
Main capacitor C 1000 µF

Main capacitor-resistance rc 36 mΩ
Main inductor L 200 µH

Main inductor-resistance rL 0.12 Ω
Switching frequency [43,44] Fs 200 kHz

Load resistance
Input capacitor

RL
Cp

140
500

Ω
µF

ξwn denotes the rate of decay in the system response with an under-damped response;
therefore, the time constant is,

τ =
1

ξwn
= 2

∝2

∝1
(20)

Assume Ts = 5 s for all ξ values (0 ≤ ξ < 1, ξ = 1, and ξ > 1), which indicates that the
system requires 5 s to reach steady-state operation and, thus,

∝1

∝2
=

1
0.1TS

and
∝3

∝2
=

1
0.04ξ2T2

S
(21)
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However, in the case of critical-damped response systems,

τ =
1

wn
=

√
α2

α3
(22)

Using Equation (21) with ξ = 1 yields,

τ =
∝2

0.5 ∝1
(23)

∝1

∝2
=

1
0.1TS

and
∝3

∝2
=

1
0.04T2

S
(24)

and for over-damped response systems [35],

τ =
1

−
(√

ξ2 − 1− ξ
)

wn

=
2

1−
√

1− 1
ξ2

∝2

∝1
(25)

From Equations (21) and (25),

∝1

∝2
=

1

0.1
(

1−
√

1− 1
ξ2

)
TS

and
∝3

∝2
=

1

0.04
(
ξ−

√
ξ2 − 1

)
T2

S

(26)

As a result, the sliding coefficient ratios (∝1 / ∝2 and ∝3 / ∝2) can be calculated by
first determining the required settling time and damping coefficient value, which implicitly
specifies the response type. Table 4 shows the adopted DC/DC BB converter’s power
circuit parameters, while Table 1 shows the SMC parameters.

4.2. Decentralized PQ Control Based on Digital PR Controllers

The PQ control method of each inverter employs double control loops, as shown in
Figure 6. The outer power loop generates the reference current in accordance with the
power reference, whereas the current inner loop acts as a fine-tuning circuit. Due to the fact
that the synchronous frame controller eliminates steady-state error and provides a rapid
transient response, current control is accomplished in the synchronous dq reference frame.

Suppose that the reference active power is positive. The DG currents will flow between
the inverters and the grid, indicating phase alignment with the voltage at the PCC. The
grid current is a 180◦ phase with voltage and is equal to the sum of DG inverter currents.
Altering the reactive power’s reference value results in corresponding changes. Once the
active power reference becomes negative, the newly generated energy is consumed by the
power grid and converted into electricity. A 180◦ phase difference will be created between
the two currents and voltages at the PCC point during the transfer of the current from the
grid to the DG inverters during this process. A phase-locked grid current will be generated
in response to a voltage change, with a magnitude equal to the sum of the inverter currents
generated by the DGs. There will be no reactive power in this case, and the amount of
reactive power can be adjusted by changing the reference point.

In Figure 6, once a periodic set of three-phase voltages and currents is applied, the
active and reactive power calculation block computes the three-phase instantaneous active
power P (in Watts) and reactive power Q (in VAR) [45]. The following formulae can be
employed in order to carry out the calculations:

P = Ia·Va + Ib·Vb + Ic·Vc (27)

Q =
1√
3
[(Vb −Va)·Ia + (Vc −Va)·Ib + (Va −Vb)·Ic] (28)

where Va, Vb, and Vc are the PCC voltages; Ia, Ib, and Ic are the inverter output currents.
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Then, the outer power loop creates the reference currents in accordance with the power
target using two digital PR controllers for active and reactive power. The inner current loop
compares the reference currents in the synchronous reference frame against their measured
values to generate two error signals (for the d- and q-axes) that are applied to the two PR
controllers in order to generate the reference voltage. The transfer function of the ideal PR
controller is given as follows [46]:

GPRv(s) = kP + kR
s

s2 + ω2
o

(29)

where kP represents the controller’s proportional gain, kR represents the controller’s reso-
nant gain, and ωo represents the resonant frequency, which is actually the grid frequency.

The ideal PR controller is difficult to implement because it acts like an infinite quality
factor system. As a result, a non-ideal PR controller transfer function is as follows [46]:

GPRv(s) = kP + kR
2ωcs

s2 + 2ζωcs + ω2
o

(30)

where ωc denotes the bandwidth centers around ac frequency ωo and ζ denotes the
damping factor.
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Analog controller discretization can be investigated using Tustin’s method [47]. This
relationship replaces each S-domain in analog controllers with a Z-domain, according to
the relationship (31).

s =
z− 1

T
2 (z + 1)

(31)

where T is the sampling period.

GPRv

(
z−1

T
2 (z+1)

)
= kP + kR

2ωc

(
z−1

T
2 (z+1)

)
(

z−1
T
2 (z+1)

)2
+2ζωc

(
z−1

T
2 (z+1)

)
+ω2

o

= kP + kRGR(z)

(32)

The Z-domain defines the resonant path, which is coherent with the gain kR and the
resonant IIR filter function GP(z) given in Equation (33) [48,49].

GP(z) =
b0 + b1z−1 + b2z−2

a0 + a1z−1 + a2z−2 (33)

where b0, b1, b2 denote the feedback route parameters of the filter and a0, a1, a2 denote the
feedforward route parameters. In Equation (33), the value of a0 is deliberately set to 1 so
that the difference equation can be written as follows:

y(n) = −a1y(n− 1)− a2y(n− 2) + b0u(n) + b1u(n− 1) + b2u(n− 2) (34)

where y(n) represents the resonance filter output and u(n) represents the resonance filter input.
This is one of the most significant contributions of this work. Using the resonant

frequency, the controller can determine the frequency at which it should act in order to
attain zero steady-state error. When only the preferred filter frequency response in the
S-domain is known, the designer can use this information to compute the resonant filter
coefficients using Tustin’s method or by using Equations (35)–(43) [48,50].

kp =

(√
2ζ + 1

)
(2ζ + 1)ωrLo − R0

Vdc

1
Hi

(35)

kR =

[
(2ζ + 1)2 − 1

]
ωr

2Lo

2Vdc

1
Hi

(36)

where Hi denotes the measured signal gain, R0 and L0 are the line resistor and inductor of
the inverter, and Vdc is the DC input voltage of the inverter.

b0 = krBrTa (37)

b1 = Ta

[
−krBre−0.5BrTa cos

(
Ta

√
ω2

r −
1
4

B2
r

)
− C

]
(38)

where C is a constant with the following definition:

C =
0.5krB2

r√
ω2

r − 1
4 B2

r

e−0.5BrTa cos

(
Ta

√
ω2

r −
1
4

B2
r

)
(39)

b2 = 0 (40)

a0 = 1 (41)

a1 = −2e−0.5BrTa cos

(
Ta

√
ω2

r −
1
4

B2
r

)
(42)
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a2 = e−BrTa (43)

where ωr denotes the angular frequency of the resonance, bandwidth Br is the angular
resonant frequency, Ta denotes the sampling time, and kr denotes the resonance gain.

The outputs of the current control subsystem are the voltage signals in the synchronous
reference frame (Vd and Vq), which have been used to generate the three-phase reference
signal of the inverter output voltage. The dq0 to abc frame transformation is required to
transfer the (dq) frame voltage signals into the related three phases (abc) using Equation
(44); the inverse of this transformation is given in Equation (45) [51],a

b
c

 =

 cos(θ) − sin(θ) 1
cos
(
θ − 2π

3
)
− sin

(
θ − 2π

3
)

1
cos
(
θ + 2π

3
)
− sin

(
θ + 2π

3
)

1

d
q
0

 (44)

d
q
0

 =

 cos(θ) cos
(
θ − 2π

3
)

cos
(
θ + 2π

3
)

− sin(θ) − sin
(
θ − 2π

3
)
−sine

(
θ + 2π

3
)

0.5 0.5 0.5

a
b
c

 (45)

Usually, the reference angle θ is measured by phase-locked loop (PLL) and written
as θ = ωt, where ω is the frequency of the common AC bus, which must equal (2π(50))
when the grid frequency is 50 Hz.

The final block subsystem is the PWM pulse generator, which converts three-phase
signals into pulses for the inverter’s six power electronic switches. Table 2 shows the
control parameters of the adopted inverters. The coefficients of the resonant filter part of
both PR controllers for power and current loops are listed in Table 3.

The magnitude response of the adopted designed resonant filter in the frequency
domain is shown in Figure 7a. The gain at 50 Hz only is 0 dB, demonstrating the resonant
filter’s effectiveness. In this case, just the component of the error at 50 Hz is multiplied
by one. All other components’ power is significantly reduced. Additionally, Figure 7a
shows the phase response of the resonant filter in the frequency plane, which is shown
at the bottom of Figure 7a. At the resonance, the phase shifts 180 degrees as a result of
the poles of the transfer function being in phase. The magnitude response of the designed
PR controller is illustrated in Figure 7b. The greatest amount of amplification occurs at a
frequency of 50 Hz. The phase response of the designed PR controller is shown in the same
figure. When low and high frequencies are used, they have up to a zero phase.
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5. Power Flow Control Based on MPC

Adaptable active and reactive power control is required to improve power quality and
system stability. Hence, the FCS-MPC can be used for active and reactive power regulation.
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The MPC selects the optimal voltage vector sequence for each inverter to meet load demand
while maintaining power flow between the MG and the main grid. The FCS-MPC uses the
discrete nature of power converters to speed up MPC calculations. Because each inverter
has a limited number of switching states, the prediction procedure involves reducing the
cost function.

5.1. System Modeling

Direct power control (DPC) is a strategy that uses a predictive model of instantaneous
power evolution to control the power output. The following equations can be used to
calculate the instantaneous active and reactive power of grid-connected inverters in the
stationary reference frame (αβ) and for a three-phase symmetrical power system [30].

ikαβ(i + 1) = iiαβ(k) +
Ts

L

[
V(lk)

iαβ (i)−Vgαβ(i)− Rikαβ(i)
]

k = 1, 2 and lk = 0, . . . , 7 (46)

where lk denotes the k-th inverter’s possible switching state. The predicted grid current
can be expressed as:

ioαβ(i + 1) = i(l1)kαβ (i + 1) + i(l1)kαβ (i + 1)− iLαβ(i + 1) (47)

The available grid’s active and reactive powers are defined as [30],

P(i) = 1.5
{

Vgαioα(i) + Vgβioβ(i)
}

(48)

Q(i) = 1.5
{
−Vgβioα(i) + Vgαioβ(i)

}
(49)

5.2. Cost Function

The power produced by the DGs is called PDG, and the power demanded by the loads is
called PDemand. The net power supplied to the utility grid (Pnet) can be calculated as follows:

Pnet = PDG − PDemand (50)

PDG = P1 + P2 (51)

where the P1 and P2 are the active power for the first and second DGs.
Thus, the predicted grid power can be obtained as the following [30]:

Pnet(i + 1) = 1.5
{

Vgαioα(i + 1) + Vgβioβ(i + 1)
}

(52)

Qnet(i + 1) = 1.5
{
−Vgβioα(i + 1) + Vgαioβ(i + 1)

}
(53)

The grid voltage and current are measured at the current sampling time, and we apply
Equations (46)–(53) to compute Pnet and Qnet for all switching states of each inverter at the
next sampling time. The cost function is defined as the following:

J =
[

Pre f − Pnet(i + 1)
]2

+
[

Qnet −Qre f (i + 1)
]2

(54)

By minimizing the cost function, the optimal power flow between the two parallel
DGs can be achieved, allowing for transmitted power to the utility grid at the scheduled
reference levels (Pre f and Qre f ) and demanded power. Figure 8 shows the representation
block diagram scheme and the flowchart of the MPC in (a) and (b), respectively.
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 Figure 8. (a) The representation block diagram scheme of MPC and (b) the MPC flowchart.

6. Simulation Results and Discussion

In this paper, the first case study includes two parallel three-phase DGs operating in
a grid-tied mode, which is simulated in an MG application using MATLAB/Simulink, as
shown in Figure 3. The MG parameters for this case study are listed in Table 5, which is
based on reference [30].

Table 5. The MG parameters.

Description Symbol Nominal Value

Grid voltage Vg 100 V
Active power of the load PL 3 kW

Power frequency f 50 Hz
Sampling time Ts 50 µs

DG1

Line resistance Ro 0.51 Ω
Line inductance Lo 4.8 mH

DC input of BB converter Vdcs 850 V
DC output of BB converter Vdco 250 V

DG2

Line resistance Ro 1 Ω
Line inductance Lo 10 mH

DC input of BB converter Vdcs 850 V
DC output of BB converter Vdco 400 V

The description of the used reference power signals to be tracked by each inverter is
as follows: at the start, both the reference active and reference reactive power are set to
zero. The active power is varied from 0 to −4 kW at 0.05 s, 0 W at 0.06 s, 3 kW at 0.07 s, and
0 W at 0.08 s and remains constant at 0 kW, whereas the reactive power reference is varied
from 0 to −3 kVAR at 0.02 s, then returned to 0 at 0.04 s, becoming 1 kVAR at 0.09 s.

Figure 9 shows the output voltages of the BB converters of DG1 and DG2 utilizing
the SMC as a control strategy. The figure shows that the DC bus voltages are steady at
the reference points (250 V for DG1 and 400 V for DG2), and they are unaffected by rapid
changes in load or input. For testing the two SMC-based BB converters, the input voltage
is set to different values for the buck converter (input exceeds output; Figure 9a), boost
converter (output exceeds input; Figure 9b), and one as a buck converter and one as a boost
converter (Figure 9c). Since the input voltage is set to be greater than the first converter and
less than the latter, the first converter behaves as a buck converter to reduce the voltage
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to 250 V, and the second converter acts as a boost converter to increase the voltage to
400 V. In the presented case study, solar PVs and a storage device serve as inputs to the
BB converters, which are used to generate 850 V for the adopted BB converters. Parallel
DGs can make appropriate decisions in response to changes in power reference points. The
controllers track the reference points in order to maintain the scheduled level of active and
reactive power flows. Figure 10 shows the performance of the MPC technique for each
individual DG [30], whereas Figure 11 illustrates the proposed technique’s performance for
each DG. Figure 12 shows the performance of power flow tracking in the case of parallel
DGs. Because the load is only 3 kW, the reactive power to the grid is equal to the sum of
the reactive power of both distribution generators (no reactive power load). In the time
duration between 0.07 to 0.08 s, the total power from DGs is 6 kW, but only 3 kW is sent to
the main grid because the load consumes 3 kW. Between 0.05 and 0.06 s, the total power
from the main grid is equal to 11 kW, which is the sum of the DGs’ total power (−8 kW) and
the load power (3 kW). The PCC frequency is exactly 50 Hz, as shown in Figure 13. Figure 14
illustrates the PCC or common AC bus current and voltage in (a) and (b), respectively. The
current and voltage can be seen, indicating that the performance of the system is stable. The
proposed system performance is demonstrated by comparing the above AC bus voltage
and power flow of each DG with the results of the MPC and droop control techniques
presented in [30]. The results of the proposed discrete PR-based PQ technique are shown to
be superior. It is proven that using the proposed method results in vastly improved power
flow tracking.
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Figure 14. AC common bus current and voltage using the proposed technique: (a) current and (b)
voltage signal.

Figures 15–17 show the active and reactive power of each DG, utility grid power,
and PCC frequency, respectively, under changing load conditions, as follows: load at
start = 3kW; then, it is increased to 6 kW (200%) at 0.4 s; then, it is increased to 300% at 0.8 s;
then, it is decreased to 200% at 1.2 s; finally, it is returned to 100% at 1.6 s. The load current
and voltage under this scenario are shown in Figure 18a,b, respectively. Clearly, each DG
follows its reference power. Since the load is entirely active, the total reactive power on the
grid is 8000 VAR, which is equal to the reference reactive power of two DGs added together.
In spite of fluctuating loads, the voltage and frequency remain stable.
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Figure 18. AC common bus current and voltage using the proposed technique under changing load
conditions: (a) current and (b) voltage signal.

The second case study extends the adopted MG into five parallel DGs. As depicted in
Figure 19, the active and reactive power of each DG corresponds to its reference. As shown
in Figure 20, if the third DG has outages within the time interval of [0.02 0.06] seconds, the
other DGs can track the reference power signals correctly. Figure 21 illustrates the grid
powers without or with the third DG failure.
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7. Conclusions

In this paper, a digital PQ-control-based PR controller is proposed to solve the power-
sharing dilemma of parallel DGs in grid-tied MGs and to accomplish the stability objective.
A PR controller is employed to get rid of harmonics by creating a high-gain digital IIR filter
at the resonant frequency. The used PR controller can quickly track the reference signal,
is sensitive to frequency changes on the grid, and produces no steady-state error. This
paper discusses a power and current PR-controller-based inverter design. Step-by-step
procedures are provided for calculating resonant and proportional gains and resonant
path coefficients. A PR controller’s frequency-domain analysis has also been discussed in
this study. The PR controller’s gain was 0 dB only at 50 Hz, proving the effectiveness of
the resonant filter. In this case, only the frequency at 50 Hz is multiplied by one. Other
components’ power is greatly reduced. The resonance phase shifts 180 degrees because
the transfer function poles are in phase. In addition, the nonlinear SMC control of the BB
converter was utilized to avoid errors in inverter input voltage and provide each DG’s
inverter with the desired stable DC voltage (250 and 400 V for the first and second inverters,
respectively). In high-signal operating conditions, SMC allows the controlled converters to
operate flawlessly while maintaining efficient regulation and dynamic performance despite
significant changes in the line, load, and parameters. The proposed PQ-based inverters
operate following the stabilization of the DC buses. The proposed inverter control method
is efficient and ensures that each inverter follows its reference active and reactive power.
Furthermore, the DGs are capable of responding appropriately to changes in load and the
failure of DGs, ensuring that the power flow to the main grid remains at the scheduled
level at all times. By comparing with the results of the MPC and droop control techniques
presented in [30], it can be said that the results of the proposed discrete PR-based PQ
technique are superior to others in terms of improved system performance.

Author Contributions: Authors: A.M.J.: original draft, software, methodology, and validation;
B.H.J.: supervisor, formal analysis, research resources, investigation, and editing and writing; B.H.J.:
validation; B.-C.N.: visualization, project administration, and funding acquisition. All authors have
read and agreed to the published version of the manuscript.
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