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ABSTRACT. In this work, a new approximate method is proposed to enhance the accuracy and convergence 
of solutions for differential equations. This method uses the Taylors' series in its derivation. The proposed 
method has used for solving different types of linear and nonlinear differential equation systems with the initial 
conditions. Four examples have presented to check the effectiveness, accuracy, and convergence of the method. 
The solutions of the proposed method also compared with those obtained by the Adomian decomposition 
method (ADM), and the Homotopy analysis method (HAM). The results of the proposed method outperformed 
the other methods in terms of accuracy and convergence. 
Keywords: Differential Equations System, Taylors' Series, Approximate Solution, Accuracy, Non-Linear 
Operator. 

INTRODUCTION 

It is very rare that a real-life phenomenon can be modeled by a single partial differential equation. Different systems 
of ODEs and PDEs have applied to describe these phenomena. There are a lot of numerical and approximation 
methods that use to solve these systems.  
Recently, several numerical methods have been developed to solve ODEs and PDEs systems, which can be found in 
[1], [2], [3], [4], [5], [6], [7], [8]. These techniques consider a necessitate as computational resources to solve some 
problems that appear in other sciences such as in image processing [9]. Still, these techniques perhaps complicated 
and require a high computational cost for solving different linear and nonlinear systems of ODEs and PDEs. To avoid 
these defects, analytic approximate methods have used to solve the linear and nonlinear systems of differential 
equations.  
There are many used approximate methods to find the exact solution, such as nonlinear self-adjointness and 
conservation method [10], multiplication generating method [11], a generalization of the overdetermined method 
[12], etc. Also, there are other types of approximate techniques that combine the exact and approximate methods, 
which can be found in [13], [14], [15], [16], [17], [18], [19], [20]. 

One of these methods which has received much concern is the Adomian decomposition method (ADM) 
[13]. The ADM has been employed to solve various linear and nonlinear models. The ADM yields a rapidly 
convergent series solution with much less computational work [21]. The ADM is unlike the traditional numerical 
methods, where ADM  is used extensively to solve nonlinear differential equations because it works based on 
calculation Adomian polynomials for non-linear terms [22] and [23]. 

While, the approximate solutions of differential transform method (DTM) [15], are as a polynomial form 
which is different from the traditional higher-order Taylor series method because the Taylor series method needs 
huge computational for large orders. So, the DTM uses a different procedure to obtain an analytic Taylor series 
solution of the PDE [24]. 
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On the other hand, many complicated problems in different applied sciences have been successfully solved 
by the homotopy analysis method (HAM) [19], and [25]. Homotopy perturbation method (HPM) [26] which has been 
handled successfully to solve many linear and non-linear partial differential equations systems.  

Whereas, the variational iteration method (VIM) [27], can be applied to solve all types of linear or nonlinear 
differential equations systems, constant or variable coefficients with homogeneous or inhomogeneous [28] because 
it effectively used to solve these nonlinear equations with a good convergent to the exact solutions. 

This study aimed to find approximate solutions for the linear and nonlinear systems of Differential equations 
with initial conditions by using a proposed approximate method, which is considered as extending and developing to 
that in [29]. This method is based on the Taylor series, which is efficient to solve linear and nonlinear systems of 
ODEs and PDEs. Several test problems are given, and their results are compared with the solutions obtained by ADM 
[13], and HAM [19] to confirm the excellent accuracy and small absolute errors of the proposed method.  

GENERATING AN APPROXIMATE METHOD 

In this section, the basic ideas for constructing a proposed approximate method will be discussed. Let us consider the 
initial value problems: ( , ) = ( , , , , , , , , … ) 

                     ( , ) = ( , , , , , , , , … )                  (1) 
with initial condition ( , 0) = ( ) 

                                             ( , 0) = ( )                                           (2) 
By using the integral for the two sides of  Eq.(1) from 0 to t ,we obtain ( , ) − ( , 0) = [ . ]  ( , ) − ( ) = [ , ]                                    ( , ) = ( ) + [ , ]                               (3) ( , ) − ( , 0) = [ , ]  ( , ) − ( ) = [ , ]                                   ( , ) = ( ) + [ , ]                               (4) 

           where [ , ] = ( , , , , , , , , … ) 
and [ , ] = ( , , , , , , , , … ) 
The expand Taylor series for [ , ] about = 0 is [ , ] = [ , ] + [ , ] + [ , ] ! + [ , ] ! + ⋯+ ( )[ , ] ! + ⋯   
                                                                                     (5) 
By substituting Eq.(5)  in Eq.(3) we get  ( , ) = ( ) + [ , ] + ′[ , ] ! + ′[ , ] ! + ⋯+ ( )[ , ] ! + ⋯              = + + ! + ! + ⋯+ ! + ⋯                                       (6) 
Where = ( )             
 = [ , ] 
 = ′[ , ]           
 = ′′[ , ] 
 = ( )[ , ] 
The formal in Eq.(6) is expand Taylor’s series for  about t=0  which mean = ( , 0)  
 = ( , 0) 
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 = ( , 0)           

 = ( , 0) 

 = ( , 0) 
In the same way we find the approximate solution of   

TEST PROBLEMS 

Problem 1. Solve the following system of nonlinear ordinary differential equations [30]: + − = 1                                        + − = 1                               (7) 
with initial condition  (0) = (0) = (0) = 1  , (0) = −1  
and the exact solution for equations are: ( ) =  , ( ) =   
Solution: 
By the following equation (1), we can note after rewrite equation (7):  [ , ] = 1 − −   [ , ] = 1 − −   = ( ) = 1  = ( ) = 1   = ( ) = 1  = ( ) = −1  = [ , ] = 1  = [ , ] = 1  = [ , ] = 1  = [ , ] = −1  
From Eq.(6) ( ) = + + ! + ! + ⋯+ ! + ⋯              = 1 + + ! + ! + ⋯              =   ( ) = + + ! + ! + ⋯+ ! + ⋯              = 1 − + ! − ! + ⋯              =   
Problem 1 for   
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TABLE 1. Comparison of absolute errors among different methods and present method, for problem 1   with  = 1, 
Method x n=5 n=6 n=7 n=8 n=9 n=10 

Proposed method 

0.2 

2.53E-09 2.53E-09 6.32E-12 6.32E-12 4.90E-12 4.90E-12 

ADE method 2.44E-07 2.87E-07 3.24E-11 4.42E-10 2.71E-09 2.16E-11 

HAM method 1.54E-07 3.51E-06 1.92E-10 2.90E-11 3.84E-11 6.47E-11 

Proposed method 

0.4 

3.24E-07 3.24E-07 7.23E-10 7.23E-10 6.33E-13 6.33E-13 

ADE method 2.23E-06 6.14E-05 6.11E-08 4.76E-09 7.66E-11 2.16E-11 

HAM method 3.54E-05 4.27E-06 1.53E-09 5.33E-07 3.27E-12 3.83E-11 

Proposed method 

0.6 

5.53E-06 5.53E-06 2.77E-08 2.77E-08 8.57E-11 8.57E-11 

ADE method 5.11E-05 6.03E-05 6.03E-06 3.88E-07 6.56E-09 4.11E-10 

HAM method 3.03E-04 3.62E-04 4.16E-07 7.36E-06 2.45E-10 2.74E-08 

Proposed method 

0.8 

4.12E-05 4.12E-05 3.68E-07 3.68E-07 2.14E-09 2.14E-09 

ADE method 6.54E-04 2.82E-04 7.15E-05 4.11E-06 5.78E-07 4.33E-08 

HAM method 4.76E-03 5.67E-04 5.44E-06 7.54E-05 2.14E-08 2.54E-07 

Proposed method 

1 

1.96E-04 1.96E-04 2.73E-06 2.73E-06 2.49E-08 2.49E-08 

ADE method 6.23E-03 4.65E-03 7.73E-05 5.22E-04 6.25E-07 6.15E-06 

HAM method 3.90E-02 3.32E-03 4.51E-04 3.12E-05 5.32E-06 3.41E-07 

   Problem 1 for  

TABLE 2. Comparison of absolute errors among different methods and present method, for problem 1 with  = 1, 
Method x n=5 n=6 n=7 n=8 n=9 n=10 

Proposed method 

0.2 

8.64E-08 2.48E-09 6.41E-11 6.01E-13 2.01E-12 1.98E-12 

ADE method 1.46E-05 2.05E-08 2.52E-09 2.77E-10 2.74E-11 2.48E-10 

HAM method 1.32E-06 1.85E-07 2.28E-10 2.50E-11 2.48E-10 2.23E-11 

Proposed method 

0.4 

5.38E-06 3.10E-07 1.56E-08 6.90E-10 3.25E-11 3.64E-12 

ADE method 1.20E-03 1.68E-06 2.06E-06 2.27E-09 2.24E-10 2.02E-11 

HAM method 1.08E-04 1.52E-05 1.87E-07 2.05E-08 2.03E-10 1.83E-11 

Proposed method 

0.6 

5.96E-05 5.16E-06 3.90E-07 2.62E-08 1.58E-09 9.06E-11 

ADE method 9.80E-04 1.37E-04 1.69E-06 1.86E-06 1.84E-07 1.66E-09 

HAM method 8.86E-03 1.24E-05 1.53E-05 1.68E-07 1.66E-08 1.50E-10 

Proposed method 

0.8 

3.26E-04 3.78E-05 3.82E-06 3.42E-07 2.76E-08 2.01E-09 

ADE method 8.02E-03 1.12E-04 1.38E-05 1.52E-05 1.50E-07 1.36E-08 

HAM method 7.26E-03 1.02E-03 1.25E-04 1.37E-06 1.36E-07 1.23E-07 

Proposed method 

1 

1.21E-03 1.76E-04 2.23E-05 2.50E-06 2.52E-07 2.31E-08 

ADE method 6.57E-02 9.20E-02 1.13E-04 1.24E-04 1.23E-05 1.11E-07 

HAM method 5.94E-02 8.32E-03 1.02E-04 1.13E-05 1.11E-06 1.01E-07 
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When the value of  increases the closeness between the exact solution and the approximate solution increases and 
the absolute error decreases.  

 
 

 

(a) (b) 
FIGURE 1. (a) Exact solution, (b) Approximate solution and Absolute error for problem 1. 

 
Therefore, the graph of exact, analytical solutions, and absolute errors of Problem 1 for  = 1 are given in Error! 
Reference source not found. and 2. Tables 1 and 2 show the absolute error using the proposed technique, ADM, and 
HAM of Problem 1 with  =  1,  =  0.001. When the value of  increases, the approximate solution gradually 
approaches the exact solution and the absolute error will decrease.  
Problem 2. Solve the following system of nonlinear ordinary differential equations [30]: + − + + 2 (  ) = 1                                     + − + + 2 (  ) = 1                              (8) 
with initial condition  (0) = (0) = 0, (0) = 1, (0) = −1  (0) = (0) = 0 , (0) = 1, (0) = −1 
and the exact solution for equations are: ( ) = sin ( ) , ( ) = ( )  
Solution: 
By the following equation (1), we can note after rewrite equation (8):  [ , ] = 1 − − + + 2 (  )   [ , ] = 1 − − + + 2 (  )   = ( ) = 0  = ( ) = 1   = ( ) = 1  = ( ) = 0  = ( ) = 0  = ( ) = −1  = ( ) = −1  = ( ) = 0  = [ , ] = 0  = [ , ] = 1  = ′[ , ] = 1  = ′[ , ] = 0  
From Eq.(6) ( ) = + + ! + ! + ⋯+ ! + ⋯  
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            = − ! + ! − ! + ⋯              = sin ( )  ( ) = + + ! + ! + ⋯+ ! + ⋯              = 1 − ! + ! − ! + ⋯              = cos ( )  
Problem 2 for x  
 

TABLE 3. Comparison of absolute errors among different methods and present method, for problem 2 with  = 1, 
Method x n=5 n=6 n=7 n=8 n=9 n=10 

Proposed method 

0.2 

2.53E-09 2.53E-09 6.32E-12 6.32E-12 4.90E-12 4.90E-12 

ADE method 1.37E-07 1.56E-07 4.29E-10 4.04E-10 4.04E-11 4.04E-10 

HAM method 8.64E-06 2.48E-07 6.41E-09 6.01E-10 2.01E-10 1.98E-11 

Proposed method 

0.4 

3.24E-07 3.24E-07 7.23E-10 7.23E-10 6.33E-13 6.33E-13 

ADE method 9.71E-06 4.18E-07 1.57E-09 5.44E-08 1.34E-11 1.76E-12 

HAM method 5.38E-06 3.10E-06 1.56E-08 6.90E-09 3.25E-11 3.64E-11 

Proposed method 

0.6 

5.53E-06 5.53E-06 2.77E-08 2.77E-08 8.57E-11 8.57E-11 

ADE method 2.02E-04 1.46E-05 9.18E-06 5.13E-06 2.54E-10 1.47E-09 

HAM method 5.96E-05 5.16E-05 3.90E-07 2.62E-07 1.58E-09 9.06E-10 

Proposed method 

0.8 

4.12E-05 4.12E-05 3.68E-07 3.68E-07 2.14E-09 2.14E-09 

ADE method 1.48E-04 1.50E-03 1.33E-06 1.04E-06 7.31E-08 4.69E-08 

HAM method 3.26E-04 3.78E-04 3.82E-06 3.42E-06 2.76E-08 2.01E-08 

Proposed method 

1 

1.96E-04 1.96E-04 2.73E-06 2.73E-06 2.49E-08 2.49E-08 

ADE method 6.53E-03 8.52E-03 9.70E-04 9.79E-05 8.88E-06 7.31E-06 

HAM method 1.21E-03 1.76E-03 2.23E-05 2.50E-05 2.52E-07 2.31E-07 
 

   Problem 2 for y 

TABLE 4. Comparison of absolute errors among different methods and present method, for problem 2 with = 1, 
Method x n=5 n=6 n=7 n=8 n=9 n=10 

Proposed method 

0.2 

8.88E-08 6.22E-11 6.22E-11 1.27E-12 1.27E-12 1.24E-12 

ADE method 1.43E-06 4.44E-08 2.46E-09 2.44E-11 2.43E-10 2.43E-11 

HAM method 9.15E-07 2.64E-09 1.05E-10 4.13E-10 3.99E-11 3.99E-11 

Proposed method 

0.4 

5.67E-06 1.62E-08 1.62E-08 3.18E-11 3.18E-11 2.88E-12 

ADE method 1.06E-05 4.51E-06 1.71E-07 7.99E-10 2.57E-10 2.40E-11 

HAM method 6.03E-04 3.42E-07 1.70E-06 7.11E-10 1.17E-09 4.05E-10 

Proposed method 

0.6 

6.44E-05 4.15E-07 4.15E-07 1.66E-09 1.66E-09 4.86E-12 

ADE method 2.34E-04 1.65E-05 1.03E-05 5.66E-07 2.82E-07 1.29E-11 

HAM method 7.08E-03 6.00E-06 4.46E-05 2.95E-08 1.77E-07 1.05E-10 

Proposed method 0.8 3.60E-04 4.13E-06 4.13E-06 2.94E-08 2.94E-08 1.45E-10 
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Method x n=5 n=6 n=7 n=8 n=9 n=10 

ADE method 
0.8 

1.81E-02 1.79E-05 1.55E-05 1.20E-07 8.34E-07 5.55E-08 

HAM method 4.10E-03 4.62E-04 4.56E-05 4.02E-07 3.19E-06 2.31E-09 

Proposed method 

1 

1.36E-03 2.45E-05 2.45E-05 2.73E-07 2.73E-07 2.08E-09 

ADE method 8.45E-02 1.07E-04 1.18E-03 1.17E-06 1.05E-06 8.54E-07 

HAM method 1.62E-02 2.26E-03 2.79E-04 3.06E-05 3.03E-05 2.73E-06 

 

When the value of  increases the closeness between the exact solution and the approximate solution increases and 
the absolute error decreases.  

 

 
 

 

 

(a) (b) 
FIGURE 2.  (a) Exact solution, (b) Approximate solution and Absolute error for Problem 2. 
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(a) (b) 
FIGURE 3.  (a) Exact solution, (b) Approximate solution and Absolute error for Problem 3. 

Therefore, the graph of exact, analytical solutions, and absolute errors of Problem 2 for  = 1 are given in Figures 3 
and 4. Tables 3 and 4 show the absolute error using the proposed technique, ADM, and HAM of Problem 2 with  = 1,  =  0.001. When the value of  increases, the approximate solution gradually approaches the exact solution and 
the absolute error will decrease.  
Problem 3. Solve the following system of linear partial differential equations [31]: + + = 1                                                  + − = 1                                          (9) 
with initial condition  ( , 0) =  , ( , 0) =   
and the exact solution for equations are: ( , ) =  , ( , ) =   
Solution: 
By the following equation (1), we can note after rewrite equation (9):  [ , ] = 1 − +   [ , ] = 1 − −   = ( ) =   = ( ) =    = [ , ] = −   = [ , ] =   = ′[ , ] =   = ′[ , ] =   = ′′[ , ] = −   = ′′[ , ] =    
From Eq.(6) ( , ) = + + ! + ! + ⋯+ ! + ⋯              = 1 − + ! − ! + ⋯               =   ( , ) = + + ! + ! + ⋯+ ! + ⋯  
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            = 1 + + ! + ! + ⋯               =   
Problem 3 for  when  = 1 

 

TABLE 5. Comparison of absolute errors among different methods and present method, for problem 3  with = 1, 
Method x n=5 n=6 n=7 n=8 n=9 n=10 

Proposed method 

0.2 

1.48E-03 2.15E-04 2.72E-05 3.06E-06 3.08E-07 2.82E-08 

ADE method 9.38E-02 9.38E-03 1.06E-03 1.06E-03 7.82E-05 7.82E-07 

HAM method 1.96E-02 1.96E-02 2.73E-04 2.73E-04 2.49E-06 2.49E-06 

Proposed method 

0.4 

1.81E-03 2.63E-04 3.33E-05 3.73E-06 3.77E-07 3.45E-08 

ADE method 1.62E-02 1.62E-03 1.11E-04 1.11E-05 4.91E-05 4.91E-07 

HAM method 4.12E-02 4.12E-02 3.68E-04 3.68E-04 2.14E-06 2.14E-06 

Proposed method 

0.6 

2.21E-03 3.21E-04 4.06E-05 4.56E-06 4.60E-07 4.22E-08 

ADE method 1.54E-02 1.54E-03 5.37E-03 5.37E-04 1.68E-05 1.68E-06 

HAM method 5.53E-02 5.53E-02 2.77E-04 2.77E-05 8.57E-06 8.57E-07 

Proposed method 

0.8 

2.70E-03 3.92E-04 4.96E-05 5.57E-06 5.62E-07 5.14E-08 

ADE method 4.33E-02 4.33E-03 5.29E-04 5.29E-05 1.38E-06 1.38E-07 

HAM method 3.24E-02 3.24E-03 7.23E-04 7.23E-04 6.33E-05 6.33E-06 

Proposed method 

1 

3.30E-03 4.79E-04 6.06E-05 6.80E-06 6.86E-07 6.28E-08 

ADE method 1.97E-02 1.97E-02 1.78E-03 1.78E-04 1.75E-06 1.75E-06 

HAM method 2.53E-02 2.53E-03 6.32E-04 6.32E-05 4.90E-06 4.90E-07 
 
Problem 3  for  when  = 1 

 

TABLE 6. Comparison of absolute errors among different methods and present method, for problem 3 with = 1, 
Method x n=5 n=6 n=7 n=8 n=9 n=10 

Proposed method 

0.2 

1.32E-03 1.85E-04 2.28E-05 2.50E-06 2.48E-07 2.23E-08 

ADE method 7.28E-03 1.06E-03 1.06E-04 9.55E-04 9.55E-05 5.86E-07 

HAM method 1.36E-02 2.45E-04 2.45E-03 2.73E-04 2.73E-06 2.08E-06 

Proposed method 

0.4 

1.08E-03 1.52E-04 1.87E-05 2.05E-06 2.03E-07 1.83E-08 

ADE method 1.62E-02 1.42E-03 1.42E-03 7.76E-05 7.76E-06 2.40E-06 

HAM method 3.60E-02 4.13E-03 4.13E-04 2.94E-04 2.94E-06 1.45E-05 

Proposed method 

0.6 

8.86E-04 1.24E-04 1.53E-05 1.68E-06 1.66E-07 1.50E-08 

ADE method 2.16E-03 9.66E-02 9.66E-03 2.69E-04 2.69E-05 1.03E-07 

HAM method 6.44E-03 4.15E-03 4.15E-04 1.66E-05 1.66E-06 4.86E-06 

Proposed method 

0.8 

7.26E-04 1.02E-04 1.25E-05 1.37E-06 1.36E-07 1.23E-08 

ADE method 1.01E-03 1.63E-03 1.63E-04 2.77E-05 2.77E-06 4.40E-06 

HAM method 5.67E-03 1.62E-03 1.62E-03 3.18E-04 3.18E-05 2.88E-07 

060082-9



Method x n=5 n=6 n=7 n=8 n=9 n=10 

Proposed method 

1 

5.94E-04 8.32E-05 1.02E-05 1.13E-06 1.11E-07 1.01E-08 

ADE method 1.39E-03 2.22E-03 2.22E-04 1.97E-04 1.97E-06 1.97E-04 

HAM method 8.88E-02 6.22E-04 6.22E-04 1.27E-05 1.27E-05 1.24E-06 

 

When the value of  increases the closeness between the exact solution and the approximate solution increases and 
the absolute error decreases. 

 
(a) 

 
(b) 

 
(c) 

 

FIGURE 4. (a) Exact solution of u, (b) Approximate solution of u (c) Absolute errors of u for Problem 3. 
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(a) 

 
(b) 

 
(c) 

 
FIGURE 5. (a) Exact solution of v, (b) Approximate solution of v (c) Absolute errors of v for Problem 3. 

 
Therefore, the graph of exact, analytical solutions, and absolute errors of Problem 3 for  = 1 are given in Figures 5 
and 6. Tables 5 and 6 show the absolute error using the proposed technique, ADM, and HAM of Problem 3 with  = 1,  =  0.001. When the value of  increases, the approximate solution gradually approaches the exact solution and 
the absolute error will decrease.  
                                                 = +                                        (10) 

with initial condition  ( , , 0) = ( , , 0) = +   
and the exact solution for equations are: ( , , ) =  ( , , ) =   
Solution: 
By the following equation (1), we can note after rewrite equation (10):  [ , ] = +   [ , ] = +   = ( ) = +   = ( ) = +    
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= [ , ] = 2 + 2   = [ , ] = 2 + 2   = ′[ , ] = 8 + 8   = ′[ , ] = 8 + 8   = ′′[ , ] = 48 + 48   = ′′[ , ] = 48 + 48    
From Eq.(5) ( , ) = + + ! + ! + ⋯+ ! + ⋯              = ( + ) + (2 + 2 ) + (8 + 8 ) ! + (48 + 48 ) ! + ⋯              =   ( , ) = + + ! + ! + ⋯+ ! + ⋯              = ( + ) + (2 + 2 ) + (8 + 8 ) ! + (48 + 48 ) ! + ⋯              =   
Problem 4  for  and  when t =0.1 
 
TABLE 7. Comparison of absolute errors among different methods and present method, for problem 4    with = 1, 

Method x y n=5 n=6 n=7 n=8 n=9 n=10 

Proposed method 

0.1 0.5 

1.48E-03 2.15E-04 2.72E-05 3.06E-06 3.08E-07 2.82E-08 

ADE method 1.46E-03 2.05E-03 2.52E-04 2.77E-04 2.74E-05 2.48E-08 

HAM method 1.08E-02 1.52E-02 1.87E-04 2.05E-04 2.03E-04 1.83E-08 

Proposed method 

0.5 0.1 

1.81E-03 2.63E-04 3.33E-05 3.73E-06 3.77E-07 3.45E-08 

ADE method 1.32E-02 1.85E-03 2.28E-04 2.50E-05 2.48E-05 2.23E-06 

HAM method 1.08E-02 1.52E-03 1.87E-03 2.05E-04 2.03E-04 1.83E-06 

Proposed method 

0.5 0.9 

2.21E-03 3.21E-04 4.06E-05 4.56E-06 4.60E-07 4.22E-08 

ADE method 7.26E-02 1.02E-03 1.25E-03 1.37E-04 1.36E-05 1.23E-06 

HAM method 8.86E-02 1.24E-02 1.53E-04 1.68E-05 1.66E-04 1.50E-05 

Proposed method 

0.9 0.5 

2.70E-03 3.92E-04 4.96E-05 5.57E-06 5.62E-07 5.14E-08 

ADE method 6.57E-01 9.20E-02 1.13E-04 1.24E-05 1.23E-06 1.11E-06 

HAM method 7.26E-02 1.02E-03 1.25E-03 1.37E-04 1.36E-06 1.23E-06 

Proposed method 

0.9 0.9 

3.30E-03 4.79E-04 6.06E-05 6.80E-06 6.86E-07 6.28E-08 

ADE method 6.57E-02 9.20E-02 1.13E-03 1.24E-04 1.23E-05 1.11E-06 

HAM method 5.94E-02 8.32E-03 1.02E-04 1.13E-03 1.11E-05 1.01E-05 

 
When the value of n increases the closeness between the exact solution and the approximate solution increases and 
the absolute error decreases. 
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(a) 

 
(b) 

 
(c) 

 

FIGURE 6. (a) Exact solution of u and v, (b) Approximate solution of u and v (c) Absolute errors of u and v for Problem 4. 

 
Therefore, the graph of exact, analytical solutions, and absolute errors of Problem 4 for  = 1 are given in Figure 7. 
Table 7 show the absolute error using the proposed technique, ADM, and HAM of Problem 4 with  =  1,  =  0.001. 
When the value of  increases, the approximate solution gradually approaches the exact solution and the absolute 
error will decrease.  
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CONVERGENCE ANALYSIS 
Consider the system of equation in the following form: = ( , ),                                        = ( , ),                             (11) 
where ,  are a non-linear operator. The solution by the present approach is equivalent to the following 
sequence:  = = ( )! = = ( )! 
Theorem (Convergence of System Equations) 
Let ,  be an operator from a Hilbert space  into  and ,  be the exact solution of equation (11). The 
approximate solutions = t( )! 
and = ( )! 
are convergence to exact solutions ,  respectively when ∃ 0 ≤ < 1, 
 ‖ ‖ ≤   ‖ ‖ ,∀ ∈ ℕ ∪ {0}and∃ 0 ≤ < 1,‖ ‖ ≤  ‖ ‖ ,∀ ∈ ℕ ∪ {0}. 
Proof : We want to show that { }  is a Cauchy sequence, ‖ − ‖ = ‖ ‖ ≤ ‖ ‖ ≤ ‖ ‖ ≤ ⋯ ≤  ‖ ‖ ≤ ‖ ‖.  
Now for , ∈ ℕ , ≥  ‖ − ‖ = ‖( − ) + ( − ) + ⋯+ ( − )‖  
                   ≤ ‖ − ‖ + ‖ − ‖ + ⋯+ ‖ − ‖  
                   ≤ ‖ ‖ + ‖ ‖ + ⋯+ ‖ ‖  
                   ≤ ( + + ⋯+ )‖ ‖ =‖ ‖ 
 
  
Hence, lim, → ‖ − ‖ = 0 that is mean { }  is a Cauchy sequence in the Hilbert space  then there 

exist ∈  such that lim→ = , where = . 

In the same way we prove  that ∑ ( )!  is convergence to exact solution  just replace  by  and  by 
. 

Definition 4.2: For every ∈ ℕ ∪ {0}, we define 

= 
‖ ‖‖ ‖  , ‖ ‖ ≠ 00 ,     ℎ  

Corollary 4.3: From the theorem above ∑ = ∑ ( )! convergence to exact solution  when 0 ≤< 1, = 0,1,2, … 
Now, To illustrate the convergence of analytical approximate solutions for the four examples we applied 
Corollary  as follows; 
In first problem, where t ∈ (0,1) we get for  = ‖ ‖‖ ‖ = 0.57735026919 < 1  = ‖ ‖‖ ‖ = 0.38729833463 < 1, = ‖ ‖‖ ‖ = 0.28171808490 < 1, = ‖ ‖‖ ‖ = 0.22047927593 < 1, 
and for  
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= ‖ ‖‖ ‖ = 0.57735026919 < 1, = ‖ ‖‖ ‖ = 0.38729833463 < 1, = ‖ ‖‖ ‖ = 0.28171808490 < 1, = ‖ ‖‖ ‖ = 0.22047927593 < 1,  
In second problem, where t ∈ (0,1) we get for  = ‖ ‖‖ ‖ = 0.10910894512 < 1  = ‖ ‖‖ ‖ = 0.039886201759 < 1, = ‖ ‖‖ ‖ = 0.020389258062 < 1, = ‖ ‖‖ ‖ = 0.012340601620 < 1, = ‖ ‖‖ ‖ = 0.0082626659921 < 1, 
and for  = ‖ ‖‖ ‖ = 0.22360679775 < 1, = ‖ ‖‖ ‖ = 0.062112999376 < 1, = ‖ ‖‖ ‖ = 0.027735009811 < 1, = ‖ ‖‖ ‖ = 0.015615618431 < 1,  = ‖ ‖‖ ‖ = 0.0099970601201 < 1,  
In third problem, where ( , t) ∈ (0,1)  we get for  = ‖ ‖‖ ‖ = 0.57735026917 < 1  = ‖ ‖‖ ‖ = 0.38729833464 < 1, = ‖ ‖‖ ‖ = 0.28171808492 < 1, = ‖ ‖‖ ‖ = 0.22047927592 < 1, 
and for  = ‖ ‖‖ ‖ = 0.57735026921 < 1, = ‖ ‖‖ ‖ = 0.38729833462 < 1, = ‖ ‖‖ ‖ = 0.28171808490 < 1, = ‖ ‖‖ ‖ = 0.22047927593 < 1,  
In four problem, where ( , y) ∈ (0,1)  and t=0.1we get for  = ‖ ‖‖ ‖ = 0.2 < 1  = ‖ ‖‖ ‖ = 0.2 < 1, = ‖ ‖‖ ‖ = 0.2 < 1, = ‖ ‖‖ ‖ = 0.2 < 1, 
and for  = ‖ ‖‖ ‖ = 0.2 < 1, = ‖ ‖‖ ‖ = 0.2 < 1, = ‖ ‖‖ ‖ = 0.2 < 1, = ‖ ‖‖ ‖ = 0.2 < 1,  
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DISCUSSION AND CONCLUSIONS 

The proposed technique is an efficient methodology with good accuracy and convergence and a powerful tool to find 
approximate analytic solutions for the linear and nonlinear differential equation systems. Four test problems are 
introduced for confirming the validity of the novel proposed technique, which used to find the solutions of linear and 
nonlinear systems of ODEs and PDEs. Figures (1-7) showed that the exact solution, approximate solution, and absolute 
errors at  =  1,  =  0.001. Also, the approximate solutions obtained by a proposed method have been compared 
with the solutions obtained by ADM [13], and HAM [19] in these four test problems, which are given in Tables (1-
7). The approximate solutions obtained by a proposed method are more identical to the exact solutions than those 
obtained using other methods.  Therefore, the absolute errors of the proposed method are smaller than ADM and 
HAM, as introduced in Tables (1-7). These test problems confirm the validity of a proposed approximate method to 
handle current linear and nonlinear systems of ODEs and PDEs. In the future, this research can be extended to the 
investigation by applying this method for more complicated problems such as systems of high-order nonlinear PDEs. 
More precisely, the measurement of absolute errors for these examples guarantees the ability of the proposed method 
and its accuracy in finding the approximate solutions of linear and nonlinear systems of ODEs and PDEs.  
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