

Applications of the Operator $_{r}\Phi_{s}$ in *q*-identities

Husam L. Saad^{*}, Hassan J. Hassan

Department of Mathematics, College of Science, Basrah University, Basrah, Iraq

* Corrsponding Author Husam L. Saad, E-mail: <u>hus6274@hotmail.com</u>

Doi:10.29072/basjs.202112

Abstract

In this paper, we set up the general operator ${}_{r}\Phi_{s}$, and then we find some of its operator identities that will be used to generalize some well-known *q*-identities, such as Cauchy identity, Heine's transformation formula and the *q*-Pfaff-Saalschütz summation formula. By giving special values to the parameters in the obtained identities, some new results are achieved and/or others are recovered.

Article inf.

Received: 1/2/2021 Accepted 29/2/2021 Published 1/4/2021

Keywords:

q-operators, Cauchy identity, Heine's transformation formula, the *q*-Pfaff-Saalsc hütz summation formula.

20

1. Introduction

We adopt the following notations and terminology in [8]. We assume that 0 < q < 1. The *q*-shifted factorial is given by

$$(a;q)_0 = 1, \ (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \ (a;q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k).$$

and the multiple q-shifted factorials is given by

$$(a_1, a_2, \dots, a_r; q)_m = (a_1; q)_m (a_2; q)_m \cdots (a_r; q)_m$$

where $m \in Z$ or ∞ .

The basic hypergeometric series $r\phi_s$ is defined as follows [8]:

$${}_{r}\phi_{s}\begin{pmatrix}a_{1},\ldots,a_{r}\\b_{1},\ldots,b_{s};q,x\end{pmatrix} = \sum_{k=0}^{\infty}\frac{(a_{1},\ldots,a_{r};q)_{k}}{(q,b_{1},\ldots,b_{s};q)_{k}}\left[(-1)^{k}q^{\binom{k}{2}}\right]^{1+s-r}x^{k}$$

where $r, s \in \mathbb{N}$; $a_1, ..., a_r, b_1, ..., b_s \in \mathbb{C}$; and none of the denominator factors evaluate to zero. The above series is absolutely convergent for all $x \in \mathbb{C}$ if r < s + 1, for |x| < 1 if r = s + 1and for x = 0 if r > s + 1.

The *q*-binomial coefficient is presented as follows [8]:

where n, k are nonnegative integers.

In this paper, we will repeatedly use the following equations [8]: (k)

$$(b;q)_{-k} = \frac{(-1)^k q^{\binom{n}{2}} (q/b)^k}{(q/b;q)_k} \quad . \tag{1.1}$$

$$(b;q)_{n-k} = \frac{(b;q)_n}{(q^{1-n}/b;q)_k} \ (-1)^k q^{\binom{k}{2}-nk} \ (\frac{q}{b})^k \ . \tag{1.2}$$

$$(q^{-n};q)_k = \frac{(q;q)_n}{(q;q)_{n-k}} (-1)^k q^{\binom{k}{2}-nk} .$$
(1.3)

$$(bq^{-n};q)_{\infty} = (-1)^n \ b^n \ q^{-\binom{n+1}{2}} \ (q/b;q)_n \ (b;q)_{\infty} \ . \tag{1.4}$$

The Cauchy identity is given by:

$$\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} x^n = \frac{(ax;q)_{\infty}}{(x;q)_{\infty}}, \quad |x| < 1.$$
(1.5)

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

21

The special case of the Cauchy identity (1.5), given by Euler, is [8]

$$\sum_{n=0}^{\infty} \frac{(-1)^n q^{\binom{n}{2}}}{(q;q)_n} x^n = (x;q)_{\infty}.$$
(1.6)

q-Chu-Vandermonde's identities are [8]

$${}_{2}\phi_{1}\begin{pmatrix}q^{-n},b\\c&;q,cq^{n}/b\end{pmatrix} = \frac{(c/b;q)_{n}}{(c;q)_{n}}, \quad |c/b| < 1.$$
(1.7)

$${}_{2}\phi_{1}\begin{pmatrix} q^{-n}, b\\ c & ; q, q \end{pmatrix} = \frac{(c/b; q)_{n}}{(c; q)_{n}} b^{n}.$$
(1.8)

The *q*-Pfaff-Saalschütz sum is given by [8]

$${}_{3}\phi_{2}\begin{pmatrix}q^{-n}, a, b\\c, q^{1-n}ab/c; q, q\end{pmatrix} = \frac{(c/a, c/b; q)_{n}}{(c, c/ab; q)_{n}}.$$
(1.9)

The q-Gauss summation formula is given by [8]

$${}_{2}\phi_{1}\begin{pmatrix}a,b\\c\\;q,c/ab\end{pmatrix} = \frac{(c/a,c/b;q)_{\infty}}{(c,c/ab;q)_{\infty}}, \quad \left|\frac{c}{ab}\right| < 1.$$
(1.10)

Heine's transformation formula is given by [8]

$${}_{2}\phi_{1}\begin{pmatrix}a,b\\c, ; q,z\end{pmatrix} = \frac{(c/b,zb;q)_{\infty}}{(c,z;q)_{\infty}} {}_{2}\phi_{1}\begin{pmatrix}abz/c,b\\zb ; q,\frac{c}{b}\end{pmatrix},$$
(1.11)

where $\max\{|x|, |c/b|\} < 1$.

The transformation formula [8, Appendix III, equation (III.9)] is given by:

$${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e ; q,de/abc\end{pmatrix} = \frac{(e/a,de/bc;q)_{\infty}}{(e,de/abc;q)_{\infty}} {}_{3}\phi_{2}\begin{pmatrix}a,d/b,d/c\\d,de/bc ; q,e/a\end{pmatrix}.$$
 (1.12)

Definition 1.1 ([2], [3], [10]). The D_q operator or the q-derivative is defined as follows:

$$D_q\{f(a)\} = \frac{f(a) - f(aq)}{a}.$$
(1.13)

Theorem 1.2 ([2], [10]). *For* $n \ge 0$, we have

$$D_q^n\{f(a)g(a)\} = \sum_{k=0}^n {n \brack k} q^{k(k-n)} D_q^k\{f(a)\} D_q^{n-k}\{g(aq^k)\}.$$
 (1.14)

Theorem 1.3 ([2], [16]). Let D_q be defined as in (1.13), then

$$D_{q}^{k}\left\{\frac{(av;q)_{\infty}}{(at;q)_{\infty}}\right\} = t^{k}(v/t;q)_{k}\frac{(avq^{k};q)_{\infty}}{(at;q)_{\infty}}, \quad |at| < 1.$$
(1.15)

In 2010, Fang [5] defined the finite operator as follows:

Definition 1.4 [5]. The q-exponential operator
$${}_{1}\Phi_{0}\begin{pmatrix}q^{-M}\\-&;q,cD_{q}\end{pmatrix}$$
 is defined by:
 ${}_{1}\Phi_{0}\begin{pmatrix}q^{-M}\\-&;q,cD_{q}\end{pmatrix} = \sum_{k=0}^{M} \frac{(q^{-M};q)_{k}}{(q;q)_{k}} (cD_{q})^{k}.$ (1.16)
Easy used the *q*-exponential operator ${}_{2}\Phi_{0}\begin{pmatrix}q^{-M}\\-&;q,cD_{q}\end{pmatrix}$ to prove the following result:

Fang used the *q*-exponential operator ${}_{1}\Phi_{0}\left(\begin{array}{c} r \\ - \end{array}; q, cD_{q}\right)$ to prove the following result:

Theorem 1.5 [5]. Let
$$_{1}\phi_{0}\begin{pmatrix}q^{-M}\\-&;q,cD_{q}\end{pmatrix}$$
 be defined as in (1.16), then
 $_{3}\phi_{2}\begin{pmatrix}q^{-M},\frac{c_{1}}{d_{2}},xd_{1}\\cd_{1}q^{-M},xc_{1};q,cd_{2}\end{pmatrix}$
 $=\frac{(cd_{2},q)_{M}}{(cd_{1},q)_{M}}(\frac{d_{2}}{d_{1}})^{M} _{3}\phi_{2}\begin{pmatrix}q^{-M},\frac{c_{1}}{d_{1}},xd_{2}\\cd_{2}q^{-M},xc_{1};q,cd_{1}\end{pmatrix}.$

In 2010, Zhang and Yang [15] constructed the finite *q*-Exponential Operator $_{2}\mathcal{E}_{1}\begin{bmatrix}q^{-N}, W\\v\end{bmatrix}; q, cD_{q}\end{bmatrix}$ with two parameters as follows:

Definition 1.6 [15]. The finite q-Exponential Operator $_{2}\mathcal{E}_{1}\left[q^{-N}, w; q, cD_{q}\right]$ is defined by

$${}_{2}\mathcal{E}_{1}\left[\begin{matrix} q^{-N}, w \\ v \end{matrix}; q, cD_{q} \end{matrix} \right] = \sum_{n=0}^{N} \frac{(q^{-N}, w; q)_{n}}{(q, v; q)_{n}} (cD_{q})^{n}.$$
(1.18)

Zhang and Yang used the operator $_2\mathcal{E}_1\begin{bmatrix}q^{-n},w\\v\end{bmatrix}$; $q, cD_q\end{bmatrix}$ to get a generalization of q-Chu-Vandermond formula (1.8) as follows:

Theorem 1.7 [15]. Let
$$_{2}\mathcal{E}_{1}\left[\substack{q^{-N}, w \\ v}; q, cD_{q}\right]$$
 be defined as in (1.18), then

$$\sum_{m=0}^{n} \sum_{k=0}^{N} \frac{(q^{-n}, a; q)_{m}}{(q, c; q)_{m}} \frac{(q^{-N}, w; q)_{k}}{(q, v; q)_{k}} c^{k} q^{m+mk}$$

$$= a^{n} w^{N} \frac{(c/a; q)_{n}}{(c; q)_{n}} \frac{(v/w; q)_{N}}{(v; q)_{N}} {}_{4}\phi_{2} \left(\begin{array}{c} q^{-N}, w, \frac{q^{1-n}}{c}, \frac{aq}{c} \\ \frac{aq^{1-n}}{c}, \frac{wq^{1-N}}{v}; q, \frac{c}{v} \end{array} \right).$$
(1.19)

Also, by using the operator $_{2}\mathcal{E}_{1}\left[\frac{q^{-N}, w}{v}; q, cD_{q}\right]$, they obtained the following result:

$${}_{2}\phi_{1}\begin{pmatrix}q^{-N},w\\v\\;q,c\end{pmatrix} = w^{N}\frac{(v/w;q)_{N}}{(v;q)_{N}} {}_{3}\phi_{1}\begin{pmatrix}q^{-N},w,\frac{q}{c}\\\frac{wq^{1-N}}{v};q,\frac{c}{v}\end{pmatrix}$$
(1.20)

In 2016, Li-Tan [9] constructed the generalized *q*-exponential operator $\mathbb{T}\begin{bmatrix} u, v \\ w & |q; cD_q \end{bmatrix}$ with three parameters as follows:

Definition 1.8 [9]. The generalized q-exponential operator $\mathbb{T}\begin{bmatrix} u, v \\ w \end{bmatrix} q; cD_q$ is defined by

$$\mathbb{T}\begin{bmatrix} u, v\\ w \end{bmatrix} q; cD_q \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(u, v; q)_n}{(q, w; q)_n} (cD_q)^n.$$
(1.21)

Li and Tan used the generalized *q*-exponential operator $\mathbb{T}\begin{bmatrix} u, v \\ w \end{bmatrix} |q; cD_q \end{bmatrix}$ to get a generalization for *q*-Chu-Vandermonde sum (1.8), as follows:

Theorem 1.9 [9]. Let
$$\mathbb{T} \begin{bmatrix} u, v \\ w \end{bmatrix} (q; cD_q]$$
 be defined as in (1.21), then

$$\sum_{k=0}^{n} \frac{(q^{-n}, x; q)_k}{(q, c; q)_k} q^k {}_2 \phi_1 \begin{bmatrix} u, v \\ w \end{bmatrix} = x^n \frac{(c/x; q)_n}{(c; q)_n} \sum_{i,k \ge 0} \frac{(u, v; q)_{i+k}}{(q; q)_i (w; q)_{i+k}} \frac{(q^{1-n}/c, qx/c; q)_k}{(q, q^{1-n}x/c; q)_k} t^{i+k} {\binom{q}{c}}^i.$$
(1.22)

The Cauchy polynomials $P_n(x, y)$ is defined by [7]

$$P_n(x,y) = \begin{cases} (x-y)(x-qy)(x-q^2y)\cdots(x-q^{n-1}y), & \text{if } n > 0; \\ 1, & \text{if } n = 0. \end{cases}$$
(1.23)

In 1983, Goulden and Jackson [7] gave the following identity:

$$P_n(x,y) = \sum_{k=0}^{n} {n \choose k} (-1)^k q^{\binom{k}{2}} y^k x^{n-k}.$$

The generating function for Cauchy polynomials $P_n(x, y)$ [1] is

$$\sum_{k=0} P_n(x,y) \frac{t^n}{(q;q)_n} = \frac{(yt;q)_\infty}{(xt;q)_\infty}, \quad |xt| < 1.$$
(1.24)

In 2003, Chen et al [1] introduced the bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ as:

$$h_n(x, y|q) = \sum_{k=0}^n {n \brack k} P_k(x, y)$$

where $P_k(x, y)$ is defined as in (1.23). In 2010, Saad and Sukhi [11] gave another formula for the bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ as:

$$h_n(x, y|q) = \sum_{k=0}^n {n \brack k} (y; q)_k x^{n-k}.$$

The generating function for the bivariate Rogers-Szegö polynomials $h_n(x, y|q)$ is [1]

$$\sum_{k=0}^{\infty} h_n(x, y|q) \frac{t^n}{(q;q)_n} = \frac{(yt;q)_{\infty}}{(t, xt;q)_{\infty}}, \quad \max\{|t|, |xt|\} < 1.$$
(1.25)

The generalized Al-Salam–Carlitz q-polynomials $\phi_n^{(a,b)}(x,y)$ was introduced in 2020 by Srivastava and Arjika [14] as

$$\phi_n^{(a,b)}(x,y) = \sum_{k=0}^n {n \brack k} \frac{(a_1, a_2, \dots, a_{s+1}; q)_k}{(b_1, b_2, \dots, b_s; q)_k} x^k y^{n-k},$$

which has the following generating function:

$$\sum_{n=0}^{\infty} \phi_n^{(a,b)}(x,y) \frac{t^n}{(q;q)_n} = \frac{1}{(yt;q)_{\infty}} \int_{s+1}^{s+1} \phi_s \begin{pmatrix} a_1, a_2, \dots, a_{s+1} \\ b_1, b_2, \dots, b_s \end{pmatrix},$$
(1.26)

where $\max\{|xt|, |yt|\} < 1$.

The paper is organized as follows. In section 2, we built the general operator $_{r}\Phi_{s}\begin{pmatrix}a_{1}, \cdots, a_{r}\\b_{1}, \cdots, b_{s}; q, cD_{q}\end{pmatrix}$. We also provide some operator identities, which will be used in section

3. In section 3, we generalize some well-known q-identities, such as Cauchy identity, Heine's transformation formula and the q-Pfaff-Saalschütz summation formula. Then, in these generalizations, we may assign the parameters unique values, we get several results.

2. The General Operator $_{r}\Phi_{s}$ and its Identities

In this section, we establish the general operator ${}_{r}\Phi_{s}\begin{pmatrix}a_{1}, \cdots, a_{r}\\b_{1}, \cdots, b_{s}; q, cD_{q}\end{pmatrix}$. We also give some identities to this operator, which will be used in the next section.

Definition 2.1 We define the generalized *q*-operator ${}_{r}\Phi_{s}$ as follows:

$${}_{r}\Phi_{s}\binom{a_{1},\cdots,a_{r}}{b_{1},\cdots,b_{s}};q,cD_{q} = \sum_{n=0}^{\infty} \frac{W_{n}}{(q;q)_{n}} \left[(-1)^{n} q^{\binom{n}{2}} \right]^{1+s-r} (cD_{q})^{n},$$
(2.1)

where $W_n = \frac{(a_1, \dots, a_r; q)_n}{(b_1, \dots, b_s; q)_n}$.

Some special values may be given to the general q-operator ${}_{r}\Phi_{s}$ to obtain several previously specified operators, as follows:

• Setting r = 1, s = 0, $a_1 = 0$ and c = b, we get on the exponential operator $T(bD_q)$ defined by Chen and Liu [2] in 1997.

• If r = 1, s = 0 and $a_1 = b$, we get on the Cauchy operator ${}_1\Phi_0\begin{pmatrix}b\\-;q,cD_q\end{pmatrix}$ which was defined by Fang[4] in 2008.

was defined by I ang[+] in 2000.

• If
$$r = 1, s = 0$$
 and $a_1 = q^{-M}$, we get on the finite operator ${}_1\Phi_0\begin{pmatrix} q^{-M} \\ - & ; q, cD_q \end{pmatrix}$ described by Fang[5] in 2010.

• If r = 2, s = 1, $a_1 = q^- N$, $a_2 = w$ and $b_1 = v$, we get on the finite exponential operator ${}_2\mathcal{E}_1\begin{bmatrix}q^{-N}, w\\v\end{bmatrix}$; $q, cD_q\end{bmatrix}$ with two parameters specified by Zhang and Yang[15] in 2010.

• If r = s = 0, we get on the *q*-exponential operator R(bDq) which is defined by Saad and Sukhi [12] in 2013.

• Setting r = s + 1, we get the generalized *q*-operator $F(a_0, ..., a_s; b_1, ..., b_s; cD_q)$ described by Fang [6] in 2014 and the homogeneous *q*-difference operator $\mathbb{T}(a, b, cD_q)$ specified by Srivastava and Arjika [14] in 2020.

• If r = 2, s = 1, $a_1 = u, a_2 = v$ and $b_1 = w$, we get on the generalized exponential operator $\mathbb{T}\begin{bmatrix} u, v \\ w \end{bmatrix} q; cD_q$ with three parameters constructed by Li and Tan [9] in 2016.

• Setting r = 3, s = 2, $a_1 = a$, $a_2 = b$, $a_3 = c$, $b_1 = d$, $b_2 = e$ and c = f, we get the operator $\phi\begin{pmatrix}a, b, c\\d, e & ; q, fD_q\end{pmatrix}$ with five parameters defined by Saad and Jaber [13] in 2020.

The following operator identities will be derived using q-Leibniz formula (1.14):

Theorem 2.2 Let
$$_{r}\phi_{s}\begin{pmatrix}a_{1}, ..., a_{r}\\b_{1}, ..., b_{s}; q, cD_{q}\end{pmatrix}$$
 be defined as in (2.1), then
 $_{r}\phi_{s}\begin{pmatrix}a_{1}, ..., a_{r}\\b_{1}, ..., b_{s}; q, cD_{q}\end{pmatrix}\{\frac{(av, au; q)_{\infty}}{(at, aw; q)_{\infty}}\} = \frac{(av, au; q)_{\infty}}{(at, aw; q)_{\infty}}$
 $\times \sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\frac{W_{n+k}}{(q; q)_{n}}\frac{(v/t, aw; q)_{k}}{(q, av; q)_{k}}\frac{(u/w; q)_{n}}{(au; q)_{n+k}}\Big[(-1)^{n+k}q^{\binom{n+k}{2}}\Big]^{1+s-r} (cw)^{n} (ct)^{k},$ (2.2)

provided that $\max\{|at|, |aw|\} < 1$.

$$\sum_{r=0}^{\infty} \frac{W_{n}}{(q;q)_{n}} \left[(-1)^{n} q^{\binom{n}{2}} \right]^{1+s-r} c^{n} D_{q}^{n} \left\{ \frac{(av;q)_{\infty}}{(at;q)_{\infty}} \frac{(au;q)_{\infty}}{(aw;q)_{\infty}} \right\}$$

$$= \sum_{n=0}^{\infty} \frac{W_{n}}{(q;q)_{n}} \left[(-1)^{n} q^{\binom{n}{2}} \right]^{1+s-r} c^{n} D_{q}^{n} \left\{ \frac{(av;q)_{\infty}}{(at;q)_{\infty}} \frac{(au;q)_{\infty}}{(aw;q)_{\infty}} \right\}$$

$$= \sum_{n=0}^{\infty} \frac{W_{n}}{(q;q)_{n}} \left[(-1)^{n} q^{\binom{n}{2}} \right]^{1+s-r} c^{n}$$

$$\times \sum_{k=0}^{n} {n \brack k} q^{k^{2}-nk} D_{q}^{k} \left\{ \frac{(av;q)_{\infty}}{(at;q)_{\infty}} \right\} D_{q}^{n-k} \left\{ \frac{(au;q)_{\infty}}{(aw;q)_{\infty}} \right\} \qquad (by \ using \ (1.14))$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{W_{n}}{(q;q)_{n}} \left[(-1)^{n} q^{\binom{n}{2}} \right]^{1+s-r} c^{n} {n \brack k} q^{k^{2}-nk}$$

$$\times t^{k} \frac{(v/t;q)_{k}(avq^{k};q)_{\infty}}{(at;q)_{\infty}} (wq^{k})^{n-k} \frac{(u/w;q)_{n-k}(auq^{n};q)_{\infty}}{(awq^{k};q)_{\infty}} \qquad (by \ using \ (1.15)) \quad (2.3)$$

$$= \frac{(av,au;q)_{\infty}}{(at,aw;q)_{\infty}} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{W_{n+k}}{(q;q)_{n}} \frac{(v/t,aw;q)_{k}}{(q,av;q)_{k}} \frac{(u/w;q)_{n+k}}{(au;q)_{n+k}} \left[(-1)^{n+k} q^{\binom{n+k}{2}} \right]^{1+s-r} (cw)^{n} (ct)^{k}.$$

Setting
$$u = 0$$
 in equation (2.2), we get the following corollary:

$$\begin{aligned} \text{Corollary 2.2.1 Let} & _{r} \Phi_{s} \begin{pmatrix} a_{1}, \dots, a_{r} \\ b_{1}, \dots, b_{s}; q, cD_{q} \end{pmatrix} \text{ be defined as in (2.1), then} \\ & _{r} \Phi_{s} \begin{pmatrix} a_{1}, \dots, a_{r} \\ b_{1}, \dots, b_{s}; q, cD_{q} \end{pmatrix} \Big\{ \frac{(av; q)_{\infty}}{(at, aw; q)_{\infty}} \Big\} = \frac{(av; q)_{\infty}}{(at, aw; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{W_{n+k}}{(q; q)_{n}} \frac{(v/t, aw; q)_{k}}{(q, av; q)_{k}} \\ & \times \left[(-1)^{n+k} q^{\binom{n+k}{2}} \right]^{1+s-r} (cw)^{n} (ct)^{k}, \end{aligned}$$
(2.4)
where max{ $|at|, |aw|} < 1.$

In view of symmetry of t and w on the left hand side of equation (2.4), we get the following formula:

Theorem 2.3

$$\sum_{n,k\geq 0} \frac{W_{n+k}}{(q;q)_n} \left[(-1)^{n+k} q^{\binom{n+k}{2}} \right]^{1+s-r} \frac{(v/t,aw;q)_k}{(q,av;q)_k} (cw)^n (ct)^k \\ = \sum_{n,k\geq 0} \frac{W_{n+k}}{(q;q)_n} \left[(-1)^{n+k} q^{\binom{n+k}{2}} \right]^{1+s-r} \frac{(v/w,at;q)_k}{(q,av;q)_k} (ct)^n (cw)^k .$$
(2.5)

• If r = 1, s = 0 in equation (2.5) and then using (1.5), we get Hall's transformation (1.12).

• If r = 1, s = 0 and $a_1 = q^{-N}$ in equation (2.5), then using equations (1.4) and (1.5), we get Theorem 3.5. obtained by Fang [5] (equation (1.17)).

Theorem 2.4 Let
$$_{r}\Phi_{s}\begin{pmatrix}a_{1}, \dots, a_{r}\\b_{1}, \dots, b_{s}; q, cD_{q}\end{pmatrix}$$
 be defined as in (2.1), then
 $_{r}\Phi_{s}\begin{pmatrix}a_{1}, \dots, a_{r}\\b_{1}, \dots, b_{s}; q, cD_{q}\end{pmatrix}\left\{a^{n}\frac{(ax; q)_{\infty}}{(ay; q)_{\infty}}\right\} = a^{n}\frac{(ax; q)_{\infty}}{(ay; q)_{\infty}}$

$$\times \sum_{i,j=0}^{\infty} \frac{W_{i+j}}{(q;q)_i} \frac{(x/y;q)_i}{(axq^j;q)_i} \frac{(ay;q)_j}{(ax;q)_j} \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} {n \brack j} (cy)^i (\frac{c}{a})^j, \quad |ay| < 1.$$
(2.6)

Proof.

$$\begin{split} {}_{r}\Phi_{s} \begin{pmatrix} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}; q, cD_{q} \end{pmatrix} \Big\{ a^{n} \frac{(ax; q)_{\infty}}{(ay; q)_{\infty}} \Big\} \\ &= \sum_{i=0}^{\infty} \frac{W_{i}}{(q; q)_{i}} \Big[(-1)^{i} q^{\binom{i}{2}} \Big]^{1+s-r} c^{i} D_{q}^{i} \Big\{ a^{n} \frac{(ax; q)_{\infty}}{(ay; q)_{\infty}} \Big\} \quad (by \ using \ (2.1)) \\ &= \sum_{i=0}^{\infty} \frac{W_{i}}{(q; q)_{i}} \times \Big[(-1)^{i} q^{\binom{i}{2}} \Big]^{1+s-r} c^{i} \\ &\times \sum_{j=0}^{i} q^{j^{2}-ij} \begin{bmatrix} i \\ j \end{bmatrix} D_{q}^{j} a^{n} D_{q}^{i-j} \Big\{ \frac{(axq^{j}; q)_{\infty}}{(ayq^{j}; q)_{\infty}} \Big\} \quad (by \ using \ (1.14)) \\ &= \sum_{j=0}^{\infty} \sum_{i=j}^{\infty} \frac{W_{i} c^{i}}{(q; q)_{i-j}} \Big[(-1)^{i} q^{\binom{i}{2}} \Big]^{1+s-r} q^{j^{2}-ij} \begin{bmatrix} n \\ j \end{bmatrix} a^{n-j} D_{q}^{i-j} \Big\{ \frac{(axq^{j}; q)_{\infty}}{(ayq^{j}; q)_{\infty}} \Big\} \\ &= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{W_{i+j} c^{i+j}}{(q; q)_{i}} \Big[(-1)^{i+j} q^{\binom{i+j}{2}} \Big]^{1+s-r} q^{-ij} \begin{bmatrix} n \\ j \end{bmatrix} a^{n-j} \\ &\times D_{q}^{i} \Big\{ \frac{(axq^{i}; q)_{\infty}}{(ayq^{i}; q)_{\infty}} \Big\} \\ &= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{W_{i+j} c^{i+j}}{(q; q)_{i}} \Big[(-1)^{i+j} q^{\binom{i+j}{2}} \Big]^{1+s-r} \Big[n \\ j \Big] a^{n-j} y^{i} \Big\{ \frac{(x/y; q)_{i} (axq^{i+j}; q)_{\infty}}{(ayq^{j}; q)_{\infty}} \Big\} \\ &= a^{n} \frac{(ax; q)_{\infty}}{(ay; q)_{\infty}} \sum_{i,j=0}^{\infty} \frac{W_{i+j} (x/y; q)_{i} (axq^{j}; q)_{i}}{(axq^{j}; q)_{i} (axq^{j}; q)_{j}} \Big[(-1)^{i+j} q^{\binom{i+j}{2}} \Big]^{1+s-r} \Big[n \\ j \Big] (cy)^{i} (\frac{c}{a})^{j} \end{split}$$

Setting x = 0 in equation (2.6), we get the following corollary:

$$\begin{aligned} \text{Corollary 2 Let }_{r} \Phi_{s} \begin{pmatrix} a_{1}, \dots, a_{r} \\ b_{1}, \dots, b_{s}; q, cD_{q} \end{pmatrix} \text{ be defined as in (2.1), then} \\ {}_{r} \Phi_{s} \begin{pmatrix} a_{1}, \dots, a_{r} \\ b_{1}, \dots, b_{s}; q, cD_{q} \end{pmatrix} \Big\{ \frac{a^{n}}{(ay; q)_{\infty}} \Big\} \\ &= \frac{a^{n}}{(ay; q)_{\infty}} \sum_{i,j \ge 0}^{\infty} \frac{W_{i+j}}{(q; q)_{i}} \Big[(-1)^{i+j} q^{\binom{i+j}{2}} \Big]^{1+s-r} (cy)^{i} (ay; q)_{j} \begin{bmatrix} n \\ j \end{bmatrix} (\frac{c}{a})^{j}, \quad |ay| < 1. \end{aligned}$$
(2.7)

3. Applications in *q*-Identities

In this section, we aim to generalize some well-known q-identities such as Cauchy identity,

28

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

Heine's transformation of $_2\phi_1$ series and *q*-Pfaff-Saalschütz sum by using the general operator $_r\Phi_s$. Then, some special results are obtained from these generalizations, some new ones and others are known.

3.1 Generalization of Cauchy Identity

Theorem 3.1 (Generalization of Cauchy identity). Let Cauchy identity be defined as in (1.5), then

$$\sum_{k=0}^{\infty} \frac{(a;q)_{k}}{(q;q)_{k}} x^{k} \sum_{i,j\geq 0} \frac{W_{i+j}}{(q;q)_{i}} \frac{(b/c;q)_{i}}{(xb;q)_{i+j}} \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} (xc;q)_{j} {k \choose j} (dc)^{i} (\frac{d}{x})^{j}$$
$$= \frac{(xa;q)_{\infty}}{(x;q)_{\infty}} \sum_{i,j\geq 0} \frac{W_{i+j}}{(q;q)_{i}} \frac{(b/c;q)_{i}}{(xb;q)_{i+j}} \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} \frac{(a,xc;q)_{j}}{(q,xa;q)_{j}} (dc)^{i} d^{j} .$$
(3.1)

Proof. Multiply Cauchy identity المرجع. العثور على مصدر المرجع by $\frac{(xb;q)_{\infty}}{(xc;q)_{\infty}}$,

$$\sum_{k=0}^{\infty} \frac{(a;q)_k}{(q;q)_k} x^k \frac{(xb;q)_{\infty}}{(xc;q)_{\infty}} = \frac{(ax,xb;q)_{\infty}}{(x,xc;q)_{\infty}}.$$
(3.2)

Applying the operator ${}_{r}\Phi_{s}\left(b_{1}, \cdots, b_{s}; q, dD_{q}\right)$ on both sides of (3.2), we get

$$\sum_{k=0}^{\infty} \frac{(a;q)_k}{(q;q)_k} {}_r \Phi_s \begin{pmatrix} a_1, \cdots, a_r \\ b_1, \cdots, b_s; q, dD_q \end{pmatrix} \left\{ x^k \frac{(xb;q)_\infty}{(xc;q)_\infty} \right\}$$
$$= {}_r \Phi_s \begin{pmatrix} a_1, \cdots, a_r \\ b_1, \cdots, b_s; q, dD_q \end{pmatrix} \left\{ \frac{(ax, xb;q)_\infty}{(x, xc;q)_\infty} \right\} .$$
(3.3)

By using (2.4), we get

$$\sum_{k=0}^{\infty} \frac{(a;q)_{k}}{(q;q)_{k}} {}_{r} \Phi_{s} \left(\begin{matrix} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}; q, dD_{q} \end{matrix} \right) \left\{ x^{k} \frac{(xb;q)_{\infty}}{(xc;q)_{\infty}} \right\}$$
$$= x^{k} \frac{(xb;q)_{\infty}}{(xc;q)_{\infty}} \sum_{i,j \ge 0} \frac{W_{i+j}}{(q;q)_{i}} \frac{(b/c;q)_{i}}{(xb;q)_{i+j}} \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} (xc;q)_{j} \left[\begin{matrix} k \\ j \end{matrix}] (dc)^{i} (\frac{d}{x})^{j} \quad (3.4)$$

and using (2.2), we get

$${}_{r}\Phi_{s}\binom{a_{1},\cdots,a_{r}}{b_{1},\cdots,b_{s};q,dD_{q}}\left\{\frac{(ax,xb;q)_{\infty}}{(x,xc;q)_{\infty}}\right\}$$
$$=\frac{(xa;q)_{\infty}}{(x;q)_{\infty}}\sum_{i,j\geq0}\frac{W_{i+j}}{(q;q)_{i}}\frac{(b/c;q)_{i}}{(xb;q)_{i+j}}\left[(-1)^{i+j}q^{\binom{i+j}{2}}\right]^{1+s-r}\frac{(a,xc;q)_{j}}{(q,xa;q)_{j}}(dc)^{i}d^{j}.$$
(3.5)

Substituting (3.4) and (3.5) into (3.3) the proof completed.

- If d = 0 in equation (3.1), we obtain Cauchy identity.
- This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

• If b = 0 and then c = 0 in equation (3.1), we obtain the following formula:

Corollary 3.1.3

$$\sum_{k=0}^{\infty} \frac{(a;q)_k}{(q;q)_k} \sum_{j=0}^{\infty} W_j {k \brack j} \left[(-1)^j q^{\binom{j}{2}} \right]^{1+s-r} d^j x^{k-j} = \frac{(xa;q)_{\infty}}{(x;q)_{\infty}} \sum_{j=0}^{\infty} \frac{W_j}{(q;q)_j} \frac{(a;q)_j}{(xa;q)_j} \left[(-1)^j q^{\binom{j}{2}} \right]^{1+s-r} d^j .$$
(3.6)

• If r = s = 0, a = 0, $x \to xt$ and $d \to yt$ in equation (3.6), we get the generating function for Cauchy polynomials $P_k(x, y)$ (1.26).

• If r = 1, s = 0 and a = 0 then replacing x, a_1 , d by xt, y, t respectively, in equation (3.6), we get on the generating function for bivariate Rogers-Szegö polynomials $h_k(x, y|q)$ (1.25).

• If r = s + 1, a = 0, $x \to yt$ and then $d \to xt$ in equation (3.6), we get the generating function for the generalized Al-Salam–Carlitz *q*-polynomials $\phi_n^{(a,b)}(x,y)$ (1.26).

3.2 Generalization of Heine's Transformation of $_2\phi_1$ Series

Theorem 3.2 (Generalization of Heine's transformation of $_2\phi_1$ series). Let Heine's identity be defined as in (1.11), then

$$\sum_{k=0}^{\infty} \frac{(a,b;q)_{k}}{(q,c;q)_{k}} z^{k} \sum_{n,i\geq 0} \frac{W_{n+i}}{(q;q)_{n}} {k \brack i} (zbq^{k};q)_{i} \left[(-1)^{n+i}q^{\binom{n+i}{2}} \right]^{1+s-r} (dbq^{k})^{n} (d/z)^{i}$$

$$= \frac{(c/b,zb;q)_{\infty}}{(c,z;q)_{\infty}} \sum_{k=0}^{\infty} \frac{(abz/c,b;q)_{k}}{(q,zb;q)_{k}} (c/b)^{k} \sum_{n,i\geq 0} \frac{W_{n+i}}{(q;q)_{n}} \frac{(q^{-k},z;q)_{i}}{(q,abz/c;q)_{i}}$$

$$\times \left[(-1)^{n+i}q^{\binom{n+i}{2}} \right]^{1+s-r} d^{n} (dabq^{k}/c)^{i}.$$
(3.7)

Proof. Rewrite Heine's formula as follows.

$$\sum_{k=0}^{\infty} \frac{(a,b;q)_k}{(q,c;q)_k} \frac{z^k}{(zbq^k;q)_{\infty}} = \frac{(c/b;q)_{\infty}}{(c;q)_{\infty}} \sum_{k=0}^{\infty} \frac{(b;q)_k}{(q;q)_k} (c/b)^k \frac{(abz/c;q)_{\infty}}{(zbq^k,z;q)_{\infty}} .$$
(3.8)

Applying the general operator ${}_{r}\Phi_{s}\begin{pmatrix}a_{1}, \cdots, a_{r}\\b_{1}, \cdots, b_{s}; q, dD_{q}\end{pmatrix}$ to both sides of the equation (3.8)

gives:

$$\sum_{k=0}^{\infty} \frac{(a,b;q)_k}{(q,c;q)_k} \ _r \Phi_s \begin{pmatrix} a_1, \cdots, a_r \\ b_1, \cdots, b_s; q, dD_q \end{pmatrix} \left\{ \frac{z^k}{(zbq^k;q)_{\infty}} \right\}$$

$$= \frac{(c/b;q)_{\infty}}{(c;q)_{\infty}} \sum_{k=0}^{\infty} \frac{(b;q)_{k}}{(q;q)_{k}} (c/b)^{k} {}_{r} \Phi_{s} \begin{pmatrix} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}; q, dD_{q} \end{pmatrix} \left\{ \frac{(abz/c;q)_{k}}{(zbq^{k}, z;q)_{k}} \right\} .$$
(3.9)

Using (2.7), we get

$$= \frac{z^{k}}{(zbq^{k};q)_{\infty}} \sum_{n,i\geq 0} \frac{W_{n+i}}{(q;q)_{n}} \begin{bmatrix} k \\ i \end{bmatrix} (zbq^{k};q)_{i} \begin{bmatrix} (-1)^{n+i}q^{\binom{n+i}{2}} \end{bmatrix}^{1+s-r} (dbq^{k})^{n} (\frac{d}{z})^{i} .$$
(3.10)

and using (2.4), we get

$${}_{r}\Phi_{s} \begin{pmatrix} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}; q, dD_{q} \end{pmatrix} \left\{ \frac{(abz/c; q)_{k}}{(zbq^{k}, z; q)_{k}} \right\}$$

$$= \frac{(abz/c; q)_{k}}{(zbq^{k}, z; q)_{k}} \sum_{n,i \ge 0} \frac{W_{n+i}}{(q; q)_{n}} \frac{(q^{-k}, z; q)_{i}}{(q, abz/c; q)_{i}} \left[(-1)^{n+i} q^{\binom{n+i}{2}} \right]^{1+s-r} d^{n} (\frac{dab}{c} q^{k})^{i} . \quad (3.11)$$

Substituting (3.10) and (3.11) in equation (3.9) the proof is completed.

• If r = s + 1, a = 0, $z \to yt$, $d \to xt$, $c \to cb$ and then b = 0 in equation (3.7), we get the generating function for the generalized Al-Salam–Carlitz *q*-polynomials $\phi_n^{(a,b)}(x, y)$ (1.26).

• If r = 1, s = 0 in equation (3.7), we get the following identity:

Corollary 3.2.4

$$\sum_{k=0}^{\infty} \frac{(a,b,db;q)_{k}}{(q,c,a_{1}db;q)_{k}} z^{k} {}_{3}\phi_{1} \begin{pmatrix} q^{-k},a_{1},zbq^{k} \\ a_{1}dbq^{k} ; q,dq^{k}/z \end{pmatrix}$$
$$= \frac{(a_{1}d,db,c/b,zb;q)_{\infty}}{(d,a_{1}db,c,z;q)_{\infty}} \sum_{k=0}^{\infty} \frac{(abz/c,b;q)_{k}}{(q,zb;q)_{k}} (c/b)^{k} {}_{3}\phi_{2} \begin{pmatrix} q^{-k},a_{1},z \\ abz/c,a_{1}d;q,dabq^{k}/c \end{pmatrix}.$$

3.3 Generalization of *q*-Pfaff-Saalschütz Sum

Theorem 3.3 (Generalization of *q*-Pfaff-Saalschütz sum). Let *q*-Pfaff-Saalschütz sum be defined as in (1.9), then

$$\sum_{k=0}^{n} \frac{(q^{-n}, a, b; q)_{k}}{(q, c, abq^{1-n}/c; q)_{k}} q^{k} \sum_{i,j\geq 0}^{\infty} \frac{W_{i+j}}{(q; q)_{i}} \frac{(q^{-n+k}; q)_{i}}{(abq^{1-n+k}/c; q)_{i+j}} \frac{(yq^{-k}, abq/c; q)_{j}}{(q, ay; q)_{j}} \times \left[(-1)^{i+j} q^{i+j} \right]^{1+s-r} (dbq/c)^{i} (dq^{k})^{j}$$

$$= \frac{(c/a, c/b; q)_n}{(c, c/ab; q)_n} \sum_{i=0}^{\infty} \frac{W_{i+j}}{(q; q)_i} \frac{(yc/q; q)_i}{(ay; q)_{i+j}} \frac{(q^{1-n}/c, aq/c; q)_j}{(aq^{1-n}/c; q)_j} \times \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} (dq/c)^i d^j .$$
(3.12)

Proof. Multiplaying q-Saalschütz identity (1.9) by $(ay; q)_{\infty}$, we have

$$\sum_{k=0}^{\infty} \frac{(q^{-n}, b; q)_k}{(q, c; q)_k} q^k \frac{(ay, abq^{1-n+k}/c; q)_{\infty}}{(aq^k, abq/c; q)_{\infty}} = \frac{b^n (c/b; q)_n}{(c, ; q)_n} \frac{(aq^{1-n}/c, ay; q)_{\infty}}{(a, aq/c; q)_{\infty}}.$$
 (3.13)

Applying the general operator ${}_{r}\Phi_{s}\left(b_{1}, \cdots, b_{s}; q, dD_{q}\right)$ to both sides of equation (3.13) gives:

$$\sum_{k=0}^{n} \frac{(q^{-n};q)_{k}q^{k}}{(q,c;q)_{k}} {}_{r} \Phi_{s} \begin{pmatrix} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}; q, dD_{q} \end{pmatrix} \left\{ \frac{(ay, abq^{1-n+k}/c;q)_{\infty}}{(aq^{k}, abq/c;q)_{\infty}} \right\}$$
$$= \frac{(-c)^{n}q^{\binom{n}{2}}}{(c;q)_{n}} {}_{r} \Phi_{s} \begin{pmatrix} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}; q, dD_{q} \end{pmatrix} \left\{ \frac{(aq^{1-n}/c, ay;q)_{\infty}}{(a, aq/c;q)_{\infty}} \right\}$$
(3.14)

Using (2.2), we get

$${}_{r}\Phi_{s} \begin{pmatrix} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}; q, dD_{q} \end{pmatrix} \left\{ \frac{(ay, abq^{1-n+k}/c; q)_{\infty}}{(aq^{k}, abq/c; q)_{\infty}} \right\}$$

$$= \frac{(ay, abq^{1-n+k}/c; q)_{\infty}}{(aq^{k}, abq/c; q)_{\infty}} \sum_{i,j \ge 0}^{\infty} \frac{W_{i+j}}{(q; q)_{i}} \frac{(q^{-n+k}; q)_{i}}{(abq^{1-n+k}/c; q)_{i+j}} \frac{(yq^{-k}, abq/c; q)_{j}}{(q, ay; q)_{j}}$$

$$\times \left[(-1)^{i+j}q^{\binom{i+j}{2}} \right]^{1+s-r} (dbq/c)^{i}(dq^{k})^{j}. \qquad (3.15)$$

$${}_{r}\Phi_{s} \begin{pmatrix} a_{1}, \cdots, a_{r} \\ b_{1}, \cdots, b_{s}; q, dD_{q} \end{pmatrix} \left\{ \frac{(aq^{1-n}/c, ay; q)_{\infty}}{(a, aq/c; q)_{\infty}} \right\}$$

$$= \frac{(aq^{1-n}/c, ay; q)_{\infty}}{(a, aq/c; q)_{\infty}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{W_{i+j}}{(q; q)_{i}} \frac{(yc/q; q)_{i}}{(ay; q)_{i+j}} \frac{(q^{-n}; q)_{j}}{(aq^{1-n}/c; q)_{j}}$$

$$\times \left[(-1)^{i+j}q^{\binom{i+j}{2}} \right]^{1+s-r} (dq/c)^{i}(d)^{j}. \qquad (3.16)$$
insting (3.15) and (3.16) in equation (3.14), the proof is completed

Substituting (3.15) and (3.16) in equation (3.14), the proof is completed.

• If $n = \infty$ in equation (3.12), we get a generalization for *q*-Gauss sum (1.10) as follows:

Corollary 3.3.5 (Generalization of q-Gauss sum). Let q-Gauss sum be defined as in (1.10), then

$$\sum_{k=0}^{\infty} \frac{(a,b;q)_k}{(q,c;q)_k} (c/ab)^k {}_r \phi_s \begin{pmatrix} a_1, \cdots, a_r \\ b_1, \cdots, b_s; q, d/a \end{pmatrix}$$

$$= \frac{(c/a, c/b; q)_{\infty}}{(c, c/ab; q)_{\infty}} \sum_{i,j \ge 0} \frac{W_{i+j}}{(q; q)_i} \frac{(yc/q; q)_i}{(ay; q)_{i+j}} \frac{(aq/c; q)_j}{(q; q)_j} \\ \times \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} (dq/c)^i (d/a)^j .$$

• If $b = \infty$ in equation (3.12), we get a generalization for *q*-Chu-Vandermonde sum (1.7) as follows:

Corollary 3.3.6 (Generalization to q-Chu-Vandermonde sum(1.7)). Let q-Chu-Vandermonde sum be defined as in (1.7), then

$$\sum_{k=0}^{n} \frac{(q^{-n}, a; q)_{k}}{(q, c; q)_{k}} (cq^{n}/a)^{k} \sum_{i,j \ge 0} W_{i+j} \frac{(q^{-n+k}; q)_{i}}{(q; q)_{i}} \frac{(yq^{-k}; q)_{j}}{(q, ay; q)_{j}}$$

$$\times \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} (-1)^{i} q^{\binom{i}{2}} (\frac{dq^{n}}{aq^{k+j}})^{i} (dq^{n})^{j}$$

$$= \frac{(c/a; q)_{n}}{(c; q)_{n}} \sum_{i=0}^{\infty} \sum_{i,j \ge 0}^{\infty} \frac{W_{i+j}}{(q; q)_{i}} \frac{(yc/q; q)_{i}}{(ay; q)_{i+j}} \frac{(q^{1-n}/c, aq/c; q)_{j}}{(q, aq^{1-n}/c; q)_{j}}$$

$$\times \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} (dq/c)^{i} (d)^{j}.$$

• If b = 0 in equation (3.12), we get a generalization for *q*-Chu-Vandermonde sum (1.8) as follows:

Corollary 3.3.7 (Generalization to *q*-Chu-Vandermonde sum (1.8)). Let *q*-Chu-Vandermonde sum be defined as in (1.8), then

$$\sum_{k=0}^{n} \frac{(q^{-n}, a; q)_{k}}{(q, c; q)_{k}} q^{k} {}_{r+1} \phi_{s+1} \begin{pmatrix} a_{1}, \cdots, a_{r}, yq^{-k} \\ b_{1}, \cdots, b_{s}, ay \\ \vdots q, dq^{k} \end{pmatrix}$$

$$= \frac{(c/a; q)_{n}}{(c; q)_{n}} a^{n} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{W_{i+j}}{(q; q)_{i}} \frac{(yc/q; q)_{i}}{(ay; q)_{i+j}} \frac{(q^{1-n}/c, aq/c; q)_{j}}{(q, aq^{1-n}/c; q)_{j}}$$

$$\times \left[(-1)^{i+j} q^{\binom{i+j}{2}} \right]^{1+s-r} (dq/c)^{i} d^{j} .$$
(3.17)

• If r = s = 0 and y = 0 in equation (3.17) then using (1.6), we get the following identity:

Corollary 3.3.8

$${}_{3}\phi_{2}\begin{pmatrix}q^{-n}, a, 0\\ c, d \\ ; q, q\end{pmatrix} = \frac{(dq/c; q)_{\infty}}{(d; q)_{\infty}} \frac{(c/a; q)_{n}}{(c; q)_{n}} a^{n} {}_{2}\phi_{2}\begin{pmatrix}q^{1-n}/c, aq/c\\ aq^{1-n}/c, dq/c; q, d\end{pmatrix}$$

• If r = 2, s = 1 and y = 0 in equation (3.17), we get Theorem 17 obtained by Li and Tan [9] (equation (1.22)).

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

• If r = 2, s = 1, y = 0 and setting $a_1 = q^{-N}$ in equation ??, then using equations (1.1) and (1.7), we get Theorem 3.1 obtained by Zhang and Yang [15] (equation (1.19)).

• If r = 2, s = 1, y = 0, $a_1 = q^{-N}$ and a = 1 in equation (3.17), we get Corollary 3.2 obtained by Fang [5] (equation (1.20)).

Conclusions

- 1. Many operators can be obtained by assigning some special values to the generalized *q*-operator ${}_{r}\Phi_{s}\begin{pmatrix}a_{1}, \cdots, a_{r}\\b_{1}, \cdots, b_{s}; q, cD_{q}\end{pmatrix}$
- 2. We generalized some well-known *q*-identities, such as Cauchy identity, Heine's transformation formula and the *q*-Pfaff-Saalschütz summation formula.

References

- [1] W.Y.C. Chen, A.M. Fu and B.Y. Zhang, The homogeneous *q*-difference operator, *Adv. Appl. Math.*, **31** (2003) 659–668.
- [2] W.Y.C. Chen and Z.G. Liu, Parameter augmenting for basic hypergeometric series, II, J. *Combin. Theory, Ser. A*, **80** (1997) 175–195.
- [3] W.Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series, I, Mathematical Essays in Honor of Gian-Carlo Rota, Eds., B.E. Sagan and R.P. Stanley, Birkhäuser, Boston, (1998) 111–129.
- [4] Fang, J-P, Extensions of *q*-Chu-Vandermonde's identity, *J. Math. Anal. Appl.*, **339** (2008) 845–852.
- [5] Fang, J-P, Applications of a generalized *q*-difference equation, *J. Korean Math. Soc.*, **47** (2010) 223–233.
- [6] Fang, J-P, Some applications of *q*-differential operator, *Advances in Difference Equations, Springer open journal*, **267** (2014) 2014–267.
- [7] I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, John Wiley, New York, 1983.
- [8] G. Gasper and M. Rahman, *Basic Hypergeometric Series*, 2nd ed., Cambridge University Press, Cambridge, MA, 2004.
- [9] N.N. Li and W. Tan, Two generalized *q*-exponential operators and their applications, *Adv. Difference Equ.*, **53** (2016) 1–14.
- [10] S. Roman, More on the umbral calculus, with emphasis on the *q*-umbral caculus, *J. Math. Anal. Appl.*, **107** (1985) 222–254.
- [11] H.L. Saad and A.A. Sukhi, Another homogeneous *q*-difference operator, *J. Appl. Math. Comput.*, **12** (2010) 4332–4339.
- [12] H.L. Saad and A.A. Sukhi, The *q*-Exponential Operator, *Appl. Math. Sci.*, **7** (128) (2013) 6369–6380.
- [13] H.L. Saad and R.H. Jaber, Application of the Operator $\phi\begin{pmatrix} a, b, c \\ d, e \\ ; q, fD_q \end{pmatrix}$ for the Polynomials $Y_n(a, b, c; d, e; x, y|q)$, *TWMS J. App. and Eng. Math.*, (2020), accepted.
- [14] H.M. Srivastava and S. Arjika, Generating functions for some families of the generalized Al-Salam–Carlitz *q*-polynomials, *Adv. Difference Equ.*, **498** (2020) 1–17.
- [15] Z. Z. Zhang and J. Z. Yang, Finite *q*-exponential operators with two parameters and their applications, *Acta Math. Sinica*, Chinese Series, **53** (2010) 1007–1018.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

[16] Z.Z. Zhang and J. Wang, Two operator identities and their applications to terminating basic hypergeometric series and *q*-integrals, *J. Math. Anal. Appl.*, **312** (2005) 653–665.

q-تطبيقات المؤثر $r \Phi_{
m s}$ في المتطابقات

حسام لوتي سعد حسن حميل حسن

قسم الرياضيات ، كلية العلوم ، جامعة البصرة ، البصرة ، العراق

المستخلص:

في هذا البحث، أنشأنا المؤثر العام ₆ م. ثم وجدنا بعض متطابقاته التي سيتم استخدامها لتعميم بعض متطابقات-q المعروفة ، مثل متطابقة كوشي ، وصيغة تحويل هاين ، وصيغة جمع بفاف- سلشوتس. من خلال إعطاء قيم خاصة للمعلمات في المتطابقات التي حصلنا عليها ، تم الحصول على بعض النتائج الجديدة و/اوتم اعادة بر هان البعض الأخر .