# Applications of the Operator ${ }_{r} \Phi_{s}$ in $\boldsymbol{q}$-identities 

Husam L. Saad*, Hassan J. Hassan<br>Department of Mathematics, College of Science, Basrah University, Basrah, Iraq<br>* Corrsponding Author Husam L. Saad, E-mail: hus6274@hotmail.com

## Doi:10.29072/basjs. 202112


#### Abstract

In this paper, we set up the general operator ${ }_{r} \Phi_{s}$, and then we find some of its operator identities that will be used to generalize some well-known $q$-identities, such as Cauchy identity, Heine's transformation formula and the $q$-Pfaff-Saalschütz summation formula. By giving special values to the parameters in the obtained identities, some new results are achieved and/or others are recovered.


> Article inf.
> Received:
> l/2/2021
> Accepted
> 29/2/2021
> Published
> l/4/2021

## Keywords:

$q$-operators, Cauchy identity, Heine's transformation formula, the $q$-Pfaff-Saalsc hütz summation formula.

## 1. Introduction

We adopt the following notations and terminology in [8]. We assume that $0<q<1$. The $q$-shifted factorial is given by

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

and the multiple $q$-shifted factorials is given by

$$
\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{m}=\left(a_{1} ; q\right)_{m}\left(a_{2} ; q\right)_{m} \cdots\left(a_{r} ; q\right)_{m}
$$

where $m \in Z$ or $\infty$.
The basic hypergeometric series ${ }_{r} \phi_{s}$ is defined as follows [8]:

$$
{ }_{r} \phi_{s}\binom{a_{1}, \ldots, a_{r}}{b_{1}, \ldots, b_{s} ; q, x}=\sum_{k=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{k}}{\left(q, b_{1}, \ldots, b_{s} ; q\right)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} x^{k},
$$

where $r, s \in \mathbb{N} ; a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s} \in \mathbb{C}$; and none of the denominator factors evaluate to zero. The above series is absolutely convergent for all $x \in \mathbb{C}$ if $r<s+1$, for $|x|<1$ if $r=s+1$ and for $x=0$ if $r>s+1$.

The $q$-binomial coefficient is presented as follows [8]:

$$
\left[\begin{array}{ll}
n \\
k
\end{array}\right]= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, & \text { if } 0 \leq k \leq n \\
0, & \text { otherwise }\end{cases}
$$

where $n, k$ are nonnegative integers.
In this paper, we will repeatedly use the following equations [8]:

$$
\begin{align*}
(b ; q)_{-k} & =\frac{(-1)^{k} q^{\binom{k}{2}}(q / b)^{k}}{(q / b ; q)_{k}} .  \tag{1.1}\\
(b ; q)_{n-k} & =\frac{(b ; q)_{n}}{\left(q^{1-n} / b ; q\right)_{k}}(-1)^{k} q^{\binom{k}{2}-n k}\left(\frac{q}{b}\right)^{k} .  \tag{1.2}\\
\left(q^{-n} ; q\right)_{k} & =\frac{(q ; q)_{n}}{(q ; q)_{n-k}}(-1)^{k} q^{\binom{k}{2}-n k} .  \tag{1.3}\\
\left(b q^{-n} ; q\right)_{\infty} & =(-1)^{n} b^{n} q^{-\binom{n+1}{2}}(q / b ; q)_{n}(b ; q)_{\infty} \tag{1.4}
\end{align*}
$$

The Cauchy identity is given by:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} x^{n}=\frac{(a x ; q)_{\infty}}{(x ; q)_{\infty}}, \quad|x|<1 \tag{1.5}
\end{equation*}
$$

The special case of the Cauchy identity (1.5), given by Euler, is [8]

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} x^{n}=(x ; q)_{\infty} \tag{1.6}
\end{equation*}
$$

$q$-Chu-Vandermonde's identities are [8]

$$
\begin{align*}
{ }_{2} \phi_{1}\left(\begin{array}{l}
q^{-n}, b \\
c
\end{array} q, c q^{n} / b\right) & =\frac{(c / b ; q)_{n}}{(c ; q)_{n}}, \quad|c / b|<1 .  \tag{1.7}\\
{ }_{2} \phi_{1}\left(\begin{array}{l}
q^{-n}, b \\
c
\end{array}, q, q\right) & =\frac{(c / b ; q)_{n}}{(c ; q)_{n}} b^{n} . \tag{1.8}
\end{align*}
$$

The $q$-Pfaff-Saalschütz sum is given by [8]

$$
\begin{equation*}
{ }_{3} \phi_{2}\binom{q^{-n}, a, b}{c, q^{1-n} a b / c ; q, q}=\frac{(c / a, c / b ; q)_{n}}{(c, c / a b ; q)_{n}} . \tag{1.9}
\end{equation*}
$$

The $q$-Gauss summation formula is given by [8]

$$
\begin{equation*}
{ }_{2} \phi_{1}\binom{a, b}{c \quad ; q, c / a b}=\frac{(c / a, c / b ; q)_{\infty}}{(c, c / a b ; q)_{\infty}}, \quad\left|\frac{c}{a b}\right|<1 \tag{1.10}
\end{equation*}
$$

Heine's transformation formula is given by [8]

$$
{ }_{2} \phi_{1}\binom{a, b}{c, \quad ; q, z}=\frac{(c / b, z b ; q)_{\infty}}{(c, z ; q)_{\infty}}{ }_{2} \phi_{1}\left(\begin{array}{cc}
a b z / c, b  \tag{1.11}\\
z b & ; q, \frac{c}{b}
\end{array}\right),
$$

where $\max \{|x|,|c / b|\}<1$.
The transformation formula [8, Appendix III, equation (III.9)] is given by:

$$
\begin{equation*}
{ }_{3} \phi_{2}\binom{a, b, c}{d, e \quad ; q, d e / a b c}=\frac{(e / a, d e / b c ; q)_{\infty}}{(e, d e / a b c ; q)_{\infty}}{ }_{3} \phi_{2}\binom{a, d / b, d / c}{d, d e / b c \quad ; q, \mathrm{e} / \mathrm{a}} . \tag{1.12}
\end{equation*}
$$

Definition 1.1 ([2], [3], [10]). The $D_{q}$ operator or the $q$-derivative is defined as follows:

$$
\begin{equation*}
D_{q}\{f(a)\}=\frac{f(a)-f(a q)}{a} \tag{1.13}
\end{equation*}
$$

Theorem 1.2 ([2], [10]). For $n \geq 0$, we have

$$
D_{q}^{n}\{f(a) g(a)\}=\sum_{k=0}^{n}\left[\begin{array}{l}
n  \tag{1.14}\\
k
\end{array}\right] q^{k(k-n)} D_{q}^{k}\{f(a)\} D_{q}^{n-k}\left\{g\left(a q^{k}\right)\right\}
$$

Theorem 1.3 ([2], [16]). Let $D_{q}$ be defined as in (1.13), then

$$
\begin{equation*}
D_{q}^{k}\left\{\frac{(a v ; q)_{\infty}}{(a t ; q)_{\infty}}\right\}=t^{k}(v / t ; q)_{k} \frac{\left(a v q^{k} ; q\right)_{\infty}}{(a t ; q)_{\infty}}, \quad|a t|<1 \tag{1.15}
\end{equation*}
$$

In 2010, Fang [5] defined the finite operator as follows:
Definition 1.4 [5]. The q-exponential operator ${ }_{1} \Phi_{0}\left(\begin{array}{ll}q^{-M} \\ - & \left.q, c D_{q}\right)\end{array}\right)$ is defined by:

$$
\begin{equation*}
{ }_{1} \Phi_{0}\left(\underline{q}^{-M} ; q, c D_{q}\right)=\sum_{k=0}^{M} \frac{\left(q^{-M} ; q\right)_{k}}{(q ; q)_{k}}\left(c D_{q}\right)^{k} \tag{1.16}
\end{equation*}
$$

Fang used the $q$-exponential operator ${ }_{1} \Phi_{0}\left(\begin{array}{l}q^{-M} \\ -\end{array} q, c D_{q}\right)$ to prove the following result:
Theorem 1.5 [5]. Let $\quad{ }_{1} \Phi_{0}\left(\begin{array}{l}q^{-M} \\ -\end{array} q, c D_{q}\right)$ be defined as in (1.16), then

$$
\left.\begin{array}{l}
{ }_{3} \phi_{2}\left(\begin{array}{l}
q^{-M}, \frac{c_{1}}{d_{2}}, x d_{1} \\
c d_{1} q^{-M}, x c_{1}
\end{array} q, c d_{2}\right.
\end{array}\right) .
$$

In 2010, Zhang and Yang [15] constructed the finite $q$-Exponential Operator ${ }_{2} \varepsilon_{1}\left[\begin{array}{c}q^{-N}, w \\ v\end{array} ; q, c D_{q}\right]$ with two parameters as follows:
Definition 1.6 [15]. The finite $q$-Exponential Operator ${ }_{2} \varepsilon_{1}\left[\begin{array}{c}q^{-N}, w \\ v\end{array} ; q, c D_{q}\right]$ is defined by

$$
{ }_{2} \varepsilon_{1}\left[\begin{array}{c}
q^{-N}, w  \tag{1.18}\\
v
\end{array} ; q, c D_{q}\right]=\sum_{n=0}^{N} \frac{\left(q^{-N}, w ; q\right)_{n}}{(q, v ; q)_{n}}\left(c D_{q}\right)^{n}
$$

Zhang and Yang used the operator ${ }_{2} \varepsilon_{1}\left[\begin{array}{c}q^{-N}, w \\ v\end{array}, q, c D_{q}\right]$ to get a generalization of $q$-Chu-Vandermond formula (1.8) as follows:

Theorem 1.7 [15]. Let ${ }_{2} \varepsilon_{1}\left[\begin{array}{c}q^{-N}, w \\ v\end{array}, q, c D_{q}\right]$ be defined as in (1.18), then

$$
\begin{align*}
& \sum_{m=0}^{n} \sum_{k=0}^{N} \frac{\left(q^{-n}, a ; q\right)_{m}}{(q, c ; q)_{m}} \frac{\left(q^{-N}, w ; q\right)_{k}}{(q, v ; q)_{k}} c^{k} q^{m+m k} \\
& \quad=a^{n} w^{N} \frac{(c / a ; q)_{n}}{(c ; q)_{n}} \frac{(v / w ; q)_{N}}{(v ; q)_{N}}{ }_{4} \phi_{2}\binom{q^{-N}, w, \frac{q^{1-n}}{c}, \frac{a q}{c}}{\frac{a q^{1-n}}{c}, \frac{w q^{1-N}}{v} ; q, \frac{c}{v}} . \tag{1.19}
\end{align*}
$$

Also, by using the operator ${ }_{2} \varepsilon_{1}\left[\begin{array}{c}q^{-N}, w \\ v\end{array}, q, c D_{q}\right]$, they obtained the following result:

$$
\begin{equation*}
{ }_{2} \phi_{1}\left(q^{q^{-N}, w} ; q, c\right)=w^{N} \frac{(v / w ; q)_{N}}{(v ; q)_{N}}{ }_{3} \phi_{1}\binom{q^{-N}, w, \frac{q}{c}}{\left.\frac{w q^{1-N}}{v} ; q, \frac{c}{v}\right)} \tag{1.20}
\end{equation*}
$$

In 2016, Li-Tan [9] constructed the generalized $q$-exponential operator $\mathbb{T}\left[\left.\begin{array}{c}u, v \\ { }_{w}\end{array} \right\rvert\, q ; c D_{q}\right]$ with three parameters as follows:
Definition 1.8 [9]. The generalized $q$-exponential operator $\mathbb{T}\left[\left.\begin{array}{c}u, v \\ { }_{w}^{v}\end{array} \right\rvert\, q ; c D_{q}\right]$ is defined by

$$
\mathbb{T}\left[\left.\begin{array}{c}
u, v  \tag{1.21}\\
w
\end{array} \right\rvert\, q ; c D_{q}\right]=\sum_{n=0}^{\infty} \frac{(u, v ; q)_{n}}{(q, w ; q)_{n}}\left(c D_{q}\right)^{n}
$$

Li and Tan used the generalized $q$-exponential operator $\mathbb{T}\left[\left.\begin{array}{c}u, v \\ w\end{array} \right\rvert\, q ; c D_{q}\right]$ to get a generalization for $q$-Chu-Vandermonde sum (1.8), as follows:

Theorem 1.9 [9]. Let $\mathbb{T}\left[\left.\begin{array}{c}u, v \\ w\end{array} \right\rvert\, q ; c D_{q}\right]$ be defined as in (1.21), then

$$
\begin{align*}
& \sum_{k=0}^{n} \frac{\left(q^{-n}, x ; q\right)_{k}}{(q, c ; q)_{k}} q^{k}{ }_{2} \phi_{1}\left[\begin{array}{l}
u, v \\
w ; q, t q^{k}
\end{array}\right] \\
& \quad=x^{n} \frac{(c / x ; q)_{n}}{(c ; q)_{n}} \sum_{i, k \geq 0} \frac{(u, v ; q)_{i+k}}{(q ; q)_{i}(w ; q)_{i+k}} \frac{\left(q^{1-n} / c, q x / c ; q\right)_{k}}{\left(q, q^{1-n} x / c ; q\right)_{k}} t^{i+k}(q / c)^{i} \tag{1.22}
\end{align*}
$$

The Cauchy polynomials $P_{n}(x, y)$ is defined by [7]

$$
P_{n}(x, y)= \begin{cases}(x-y)(x-q y)\left(x-q^{2} y\right) \cdots\left(x-q^{n-1} y\right), & \text { if } n>0  \tag{1.23}\\ 1, & \text { if } n=0\end{cases}
$$

In 1983, Goulden and Jackson [7] gave the following identity:

$$
P_{n}(x, y)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{k} q^{\binom{k}{2}} y^{k} x^{n-k}
$$

The generating function for Cauchy polynomials $P_{n}(x, y)$ [1] is

$$
\begin{equation*}
\sum_{k=0}^{\infty} P_{n}(x, y) \frac{t^{n}}{(q ; q)_{n}}=\frac{(y t ; q)_{\infty}}{(x t ; q)_{\infty}}, \quad|x t|<1 \tag{1.24}
\end{equation*}
$$

In 2003, Chen et al [1] introduced the bivariate Rogers-Szegö polynomials $h_{n}(x, y \mid q)$ as:

$$
h_{n}(x, y \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] P_{k}(x, y)
$$

where $P_{k}(x, y)$ is defined as in (1.23). In 2010, Saad and Sukhi [11] gave another formula for the bivariate Rogers-Szegö polynomials $h_{n}(x, y \mid q)$ as:

$$
h_{n}(x, y \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right](y ; q)_{k} x^{n-k}
$$

The generating function for the bivariate Rogers-Szegö polynomials $h_{n}(x, y \mid q)$ is [1]

$$
\begin{equation*}
\sum_{k=0}^{\infty} h_{n}(x, y \mid q) \frac{t^{n}}{(q ; q)_{n}}=\frac{(y t ; q)_{\infty}}{(t, x t ; q)_{\infty}}, \quad \max \{|t|,|x t|\}<1 . \tag{1.25}
\end{equation*}
$$

The generalized Al-Salam-Carlitz $q$-polynomials $\phi_{n}^{(a, b)}(x, y)$ was introduced in 2020 by Srivastava and Arjika [14] as

$$
\phi_{n}^{(a, b)}(x, y)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{\left(a_{1}, a_{2}, \ldots, a_{s+1} ; q\right)_{k}}{\left(b_{1}, b_{2}, \ldots, b_{s} ; q\right)_{k}} x^{k} y^{n-k}
$$

which has the following generating function:

$$
\sum_{n=0}^{\infty} \phi_{n}^{(a, b)}(x, y) \frac{t^{n}}{(q ; q)_{n}}=\frac{1}{(y t ; q)_{\infty}} s_{s+1} \phi_{s}\left(\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{s+1}  \tag{1.26}\\
\left.b_{1}, b_{2}, \ldots, b_{s} \quad ; q, x t\right)
\end{array}\right.
$$

where $\max \{|x t|,|y t|\}<1$.
The paper is organized as follows. In section 2, we built the general operator
${ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, c D_{q}}$. We also provide some operator identities, which will be used in section 3. In section 3, we generalize some well-known $q$-identities, such as Cauchy identity, Heine's transformation formula and the $q$-Pfaff-Saalschütz summation formula. Then, in these generalizations, we may assign the parameters unique values, we get several results.

## 2. The General Operator $\boldsymbol{r}_{\boldsymbol{S}} \boldsymbol{\Phi}_{\boldsymbol{s}}$ and its Identities

In this section, we establish the general operator ${ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{\left.b_{1}, \cdots, b_{s} ; q, c D_{q}\right)}$. We also give some identities to this operator, which will be used in the next section.

Definition 2.1 We define the generalized $q$-operator $r_{r} \Phi_{s}$ as follows:

$$
\begin{equation*}
{ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, c D_{q}}=\sum_{n=0}^{\infty} \frac{W_{n}}{(q ; q)_{n}}\left[(-1)^{n} q^{\left.\binom{n}{2}\right]^{1+s-r}\left(c D_{q}\right)^{n},}\right. \tag{2.1}
\end{equation*}
$$

where $W_{n}=\frac{\left(a_{1}, \cdots, a_{r} ; q\right)_{n}}{\left(b_{1}, \ldots, b_{s} ; q\right)_{n}}$.
Some special values may be given to the general $q$-operator ${ }_{r} \Phi_{s}$ to obtain several previously specified operators, as follows:

- Setting $r=1, s=0, a_{1}=0$ and $c=b$, we get on the exponential operator $T\left(b D_{q}\right)$ defined by Chen and Liu [2] in 1997.
- If $r=1, s=0$ and $a_{1}=b$, we get on the Cauchy operator ${ }_{1} \Phi_{0}\binom{b}{\left.-; q, c D_{q}\right)}$ which was defined by Fang[4] in 2008.
- If $r=1, s=0$ and $a_{1}=q^{-M}$, we get on the finite operator ${ }_{1} \Phi_{0}\left(\begin{array}{ll}q^{-M} & \left.; q, c D_{q}\right)\end{array}\right.$ described by Fang[5] in 2010.
- If $r=2, s=1, a_{1}=q^{-} N, a_{2}=w$ and $b_{1}=v$, we get on the finite exponential operator ${ }_{2} \mathcal{E}_{1}\left[\begin{array}{c}q^{-N}, w \\ v\end{array}, q, c D_{q}\right]$ with two parameters specified by Zhang and Yang[15] in 2010.
- If $r=s=0$, we get on the $q$-exponential operator $R(b D q)$ which is defined by Saad and Sukhi [12] in 2013.
- Setting $r=s+1$, we get the generalized $q$-operator $F\left(a_{0}, \ldots, a_{s} ; b_{1}, \ldots, b_{s} ; c D_{q}\right)$ described by Fang [6] in 2014 and the homogeneous $q$-difference operator $\mathbb{T}\left(a, b, c D_{q}\right)$ specified by Srivastava and Arjika [14] in 2020.
- If $r=2, s=1, a_{1}=u, a_{2}=v$ and $b_{1}=w$, we get on the generalized exponential operator $\mathbb{T}\left[{ }_{w}^{u, v} \mid q ; c D_{q}\right]$ with three parameters constructed by Li and Tan [9] in 2016.
- Setting $r=3, s=2, a_{1}=a, a_{2}=b, a_{3}=c, b_{1}=d, b_{2}=e$ and $c=f$, we get the operator $\phi\left(\begin{array}{l}a, b, c \\ d, e\end{array} ; q, f D_{q}\right)$ with five parameters defined by Saad and Jaber [13] in 2020.
The following operator identities will be derived using $q$-Leibniz formula (1.14):
Theorem 2.2 Let ${ }_{r} \Phi_{s}\binom{a_{1}, \ldots, a_{r}}{b_{1}, \ldots, b_{s} ; q, c D_{q}}$ be defined as in (2.1), then

$$
\begin{align*}
& { }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, c D_{q}}\left\{\frac{(a v, a u ; q)_{\infty}}{(a t, a w ; q)_{\infty}}\right\}=\frac{(a v, a u ; q)_{\infty}}{(a t, a w ; q)_{\infty}} \\
& \times \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{W_{n+k}}{(q ; q)_{n}} \frac{(v / t, a w ; q)_{k}}{(q, a v ; q)_{k}} \frac{(u / w ; q)_{n}}{(a u ; q)_{n+k}}\left[(-1)^{n+k} q^{n+k} c^{1+s-r}\right]^{(c w)^{n}(c t)^{k},} \tag{2.2}
\end{align*}
$$

provided that $\max \{|a t|,|a w|\}<1$.

## Proof.

$$
\begin{aligned}
& { }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{\left.b_{1}, \cdots, b_{s} ; q, c D_{q}\right)}\left\{\frac{(a v, a u ; q)_{\infty}}{(a t, a w ; q)_{\infty}}\right\} \\
& =\sum_{n=0}^{\infty} \frac{W_{n}}{(q ; q)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} c^{n} D_{q}^{n}\left\{\frac{(a v ; q)_{\infty}}{(a t ; q)_{\infty}} \frac{(a u ; q)_{\infty}}{(a w ; q)_{\infty}}\right\} \\
& =\sum_{n=0}^{\infty} \frac{W_{n}}{(q ; q)_{n}}\left[(-1)^{n} q^{\left.\binom{n}{2}\right]^{1+s-r} c^{n}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \times \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{k^{2}-n k} D_{q}^{k}\left\{\frac{(a v ; q)_{\infty}}{(a t ; q)_{\infty}}\right\} D_{q}^{n-k}\left\{\frac{(a u ; q)_{\infty}}{(a w ; q)_{\infty}}\right\} \quad \text { (by using (1.14)) } \\
= & \left.\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{W_{n}}{(q ; q)_{n}}\left[(-1)^{n} q^{n} \begin{array}{l}
n \\
2
\end{array}\right)\right]^{1+s-r} c^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{k^{2}-n k} \\
& \times t^{k} \frac{(v / t ; q)_{k}\left(a v q^{k} ; q\right)_{\infty}}{(a t ; q)_{\infty}}\left(w q^{k}\right)^{n-k} \frac{(u / w ; q)_{n-k}\left(a u q^{n} ; q\right)_{\infty}}{\left(a w q^{k} ; q\right)_{\infty}} \quad(b y u \operatorname{sing} \text { (1.15)) } \\
= & \frac{(a v, a u ; q)_{\infty}}{(a t, a w ; q)_{\infty}} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{W_{n+k}}{(q ; q)_{n}} \frac{(v / t, a w ; q)_{k}}{(q, a v ; q)_{k}} \frac{(u / w ; q)_{n}}{(a u ; q)_{n+k}}\left[(-1)^{n+k} q^{n+k} \begin{array}{c}
n+k
\end{array}\right]^{1+s-r}(c w)^{n}(c t)^{k} .
\end{aligned}
$$

Setting $u=0$ in equation (2.2), we get the following corollary:
Corollary 2.2.1 Let ${ }_{r} \Phi_{s}\binom{a_{1}, \ldots, a_{r}}{\left.b_{1}, \ldots, b_{s} ; q, c D_{q}\right)}$ be defined as in (2.1), then

$$
\begin{align*}
& { }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, c D_{q}}\left\{\frac{(a v ; q)_{\infty}}{(a t, a w ; q)_{\infty}}\right\}=\frac{(a v ; q)_{\infty}}{(a t, a w ; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{W_{n+k}}{(q ; q)_{n}} \frac{(v / t, a w ; q)_{k}}{(q, a v ; q)_{k}} \\
& \quad \times\left[(-1)^{n+k} q^{\binom{n+k}{2}}\right]^{1+s-r}(c w)^{n}(c t)^{k}, \tag{2.4}
\end{align*}
$$

where $\max \{|a t|,|a w|\}<1$.

In view of symmetry of $t$ and $w$ on the left hand side of equation (2.4), we get the following formula:

## Theorem 2.3

$$
\begin{align*}
& \sum_{n, k \geq 0} \frac{W_{n+k}}{(q ; q)_{n}}\left[(-1)^{n+k} q^{\binom{n+k}{2}}\right]^{1+s-r} \frac{(v / t, a w ; q)_{k}}{(q, a v ; q)_{k}}(c w)^{n}(c t)^{k} \\
& \left.\quad=\sum_{n, k \geq 0} \frac{W_{n+k}}{(q ; q)_{n}}\left[(-1)^{n+k} q^{n+k} \begin{array}{c}
n+k
\end{array}\right)\right]^{1+s-r} \frac{(v / w, a t ; q)_{k}}{(q, a v ; q)_{k}}(c t)^{n}(c w)^{k} \tag{2.5}
\end{align*}
$$

- If $r=1, s=0$ in equation (2.5) and then using (1.5), we get Hall's transformation (1.12).
- If $r=1, s=0$ and $a_{1}=q^{-N}$ in equation (2.5), then using equations (1.4) and (1.5), we get Theorem 3.5. obtained by Fang [5] (equation (1.17)).

Theorem 2.4 Let ${ }_{r} \Phi_{s}\binom{a_{1}, \ldots, a_{r}}{b_{1}, \ldots, b_{s} ; q, c D_{q}}$ be defined as in (2.1), then

$$
{ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, c D_{q}}\left\{a^{n} \frac{(a x ; q)_{\infty}}{(a y ; q)_{\infty}}\right\}=a^{n} \frac{(a x ; q)_{\infty}}{(a y ; q)_{\infty}}
$$

$$
\times \sum_{i, j=0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(x / y ; q)_{i}}{\left(a x q^{j} ; q\right)_{i}} \frac{(a y ; q)_{j}}{(a x ; q)_{j}}\left[(-1)^{i+j} q^{i+j} 2^{i+s-r}\right]^{1+s-r}\left[\begin{array}{l}
n  \tag{2.6}\\
j
\end{array}\right](c y)^{i}\left(\frac{c}{a}\right)^{j}, \quad|a y|<1 .
$$

Proof.

$$
\begin{align*}
& { }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, c D_{q}}\left\{a^{n} \frac{(a x ; q)_{\infty}}{(a y ; q)_{\infty}}\right\} \\
& =\sum_{i=0}^{\infty} \frac{W_{i}}{(q ; q)_{i}}\left[(-1)^{i} q^{\binom{i}{2}}\right]^{1+s-r} c^{i} D_{q}^{i}\left\{a^{n} \frac{(a x ; q)_{\infty}}{(a y ; q)_{\infty}}\right\}  \tag{2.1}\\
& =\sum_{i=0}^{\infty} \frac{W_{i}}{(q ; q)_{i}} \times\left[(-1)^{i} q^{\binom{i}{2}}\right]^{1+s-r} c^{i} \\
& \times \sum_{j=0}^{i} q^{j^{2}-i j}\left[\begin{array}{l}
i \\
j
\end{array}\right] D_{q}^{j} a^{n} D_{q}^{i-j}\left\{\frac{\left(a x q^{j} ; q\right)_{\infty}}{\left(a y q^{j} ; q\right)_{\infty}}\right\}  \tag{1.14}\\
& =\sum_{j=0}^{\infty} \sum_{i=j}^{\infty} \frac{W_{i} c^{i}}{(q ; q)_{i-j}}\left[(-1)^{i} q^{\left.\binom{i}{2}\right]^{1+s-r} q^{j^{2}-i j}\left[\begin{array}{l}
n \\
j
\end{array}\right] a^{n-j} D_{q}^{i-j}\left\{\frac{\left(a x q^{j} ; q\right)_{\infty}}{\left(a y q^{j} ; q\right)_{\infty}}\right\}, ~\left(\frac{10}{\infty}\right\}}\right. \\
& =\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{W_{i+j} c^{i+j}}{(q ; q)_{i}}\left[(-1)^{i+j} q^{\binom{i+j}{2}}\right]^{1+s-r} q^{-i j}\left[\begin{array}{l}
n \\
j
\end{array}\right] a^{n-j} \\
& \times D_{q}^{i}\left\{\frac{\left(a x q^{j} ; q\right)_{\infty}}{\left(a y q^{j} ; q\right)_{\infty}}\right\} \\
& =\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \frac{W_{i+j} c^{i+j}}{(q ; q)_{i}}\left[(-1)^{i+j} q^{\binom{i+j}{2}}\right]^{1+s-r}\left[\begin{array}{l}
n \\
j
\end{array}\right] a^{n-j} y^{i}\left\{\frac{(x / y ; q)_{i}\left(a x q^{i+j} ; q\right)_{\infty}}{\left(a y q^{j} ; q\right)_{\infty}}\right\} \\
& =a^{n} \frac{(a x ; q)_{\infty}}{(a y ; q)_{\infty}} \sum_{i, j=0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(x / y ; q)_{i}}{\left(a x q^{j} ; q\right)_{i}} \frac{(a y ; q)_{j}}{(a x ; q)_{j}}\left[(-1)^{i+j} q^{i+j} 2^{2+s-r}\right]^{1+s-r}\left[\begin{array}{l}
n \\
j
\end{array}\right](c y)^{i}\left(\frac{c}{a}\right)^{j}
\end{align*}
$$

Setting $x=0$ in equation (2.6), we get the following corollary:
Corollary 2 Let ${ }_{r} \Phi_{s}\binom{a_{1}, \ldots, a_{r}}{b_{1}, \ldots, b_{s} ; q, c D_{q}}$ be defined as in (2.1), then

$$
\begin{align*}
& { }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, c D_{q}}\left\{\frac{a^{n}}{(a y ; q)_{\infty}}\right\} \\
& =\frac{a^{n}}{(a y ; q)_{\infty}} \sum_{i, j \geq 0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}}\left[(-1)^{i+j} q^{\binom{i+j}{2}}\right]^{1+s-r}(c y)^{i}(a y ; q)_{j}\left[\begin{array}{c}
n \\
j
\end{array}\right]\left(\frac{c}{a}\right)^{j}, \quad|a y|<1 . \tag{2.7}
\end{align*}
$$

## 3. Applications in $q$-Identities

In this section, we aim to generalize some well-known $q$-identities such as Cauchy identity,

Heine's transformation of ${ }_{2} \phi_{1}$ series and $q$-Pfaff-Saalschütz sum by using the general operator ${ }_{r} \Phi_{s}$. Then, some special results are obtained from these generalizations, some new ones and others are known.

### 3.1 Generalization of Cauchy Identity

Theorem 3.1 (Generalization of Cauchy identity). Let Cauchy identity be defined as in (1.5), then

$$
\begin{align*}
& \sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} x^{k} \sum_{i, j \geq 0} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(b / c ; q)_{i}}{(x b ; q)_{i+j}}\left[(-1)^{i+j} q^{\binom{i+j}{2}}\right]^{1+s-r}(x c ; q)_{j}\left[\begin{array}{l}
k \\
j
\end{array}\right](d c)^{i}\left(\frac{d}{x}\right)^{j} \\
& =\frac{(x a ; q)_{\infty}}{(x ; q)_{\infty}} \sum_{i, j \geq 0} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(b / c ; q)_{i}}{(x b ; q)_{i+j}}\left[(-1)^{i+j} q^{\left.\binom{i+j}{2}\right]^{1+s-r} \frac{(a, x c ; q)_{j}}{(q, x a ; q)_{j}}(d c)^{i} d^{j}}\right. \tag{3.1}
\end{align*}
$$

Proof. Multiply Cauchy identity خطأ! لم يتم العثور على مصدر المرجع. by $\frac{(x b ; q)_{\infty}}{(x c ; q)_{\infty}}$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} x^{k} \frac{(x b ; q)_{\infty}}{(x c ; q)_{\infty}}=\frac{(a x, x b ; q)_{\infty}}{(x, x c ; q)_{\infty}} \tag{3.2}
\end{equation*}
$$

Applying the operator ${ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{\left.b_{1}, \cdots, b_{s} ; q, d D_{q}\right)}$ on both sides of (3.2), we get

$$
\begin{align*}
& \sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}}{ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{\left.b_{1}, \cdots, b_{s} ; q, d D_{q}\right)}\left\{x^{k} \frac{(x b ; q)_{\infty}}{(x c ; q)_{\infty}}\right\} \\
& \quad={ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, d D_{q}}\left\{\frac{(a x, x b ; q)_{\infty}}{(x, x c ; q)_{\infty}}\right\} . \tag{3.3}
\end{align*}
$$

By using (2.4), we get

$$
\begin{align*}
& \sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}}{ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{\left.b_{1}, \cdots, b_{s} ; q, d D_{q}\right)}\left\{x^{k} \frac{(x b ; q)_{\infty}}{(x c ; q)_{\infty}}\right\} \\
& \left.\quad=x^{k} \frac{(x b ; q)_{\infty}}{(x c ; q)_{\infty}} \sum_{i, j \geq 0} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(b / c ; q)_{i}}{(x b ; q)_{i+j}}\left[(-1)^{i+j} q^{(i+j} 2\right)\right]^{1+s-r}(x c ; q)_{j}\left[\begin{array}{c}
k \\
j
\end{array}\right](d c)^{i}\left(\frac{d}{x}\right)^{j} \tag{3.4}
\end{align*}
$$

and using (2.2), we get

$$
\begin{align*}
& { }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, d D_{q}}\left\{\frac{(a x, x b ; q)_{\infty}}{(x, x c ; q)_{\infty}}\right\} \\
& \quad=\frac{(x a ; q)_{\infty}}{(x ; q)_{\infty}} \sum_{i, j \geq 0} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(b / c ; q)_{i}}{(x b ; q)_{i+j}}\left[(-1)^{i+j} q^{\binom{i+j}{2}}\right]^{1+s-r} \frac{(a, x c ; q)_{j}}{(q, x a ; q)_{j}}(d c)^{i} d^{j} \tag{3.5}
\end{align*}
$$

Substituting (3.4) and (3.5) into (3.3) the proof completed.

- If $d=0$ in equation (3.1), we obtain Cauchy identity.
- If $b=0$ and then $c=0$ in equation (3.1), we obtain the following formula:


## Corollary 3.1.3

$$
\begin{align*}
& \sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} \sum_{j=0}^{\infty} W_{j}\left[\begin{array}{l}
k \\
j
\end{array}\right]\left[(-1)^{j} q^{\binom{j}{2}}\right]^{1+s-r} d^{j} x^{k-j} \\
& \quad=\frac{(x a ; q)_{\infty}}{(x ; q)_{\infty}} \sum_{j=0}^{\infty} \frac{W_{j}}{(q ; q)_{j}} \frac{(a ; q)_{j}}{(x a ; q)_{j}}\left[(-1)^{j} q^{\left.\binom{j}{2}\right]^{1+s-r} d^{j}}\right. \tag{3.6}
\end{align*}
$$

- If $r=s=0, a=0, x \rightarrow x t$ and $d \rightarrow y t$ in equation (3.6), we get the generating function for Cauchy polynomials $P_{k}(x, y)$ (1.26).
- If $r=1, s=0$ and $a=0$ then replacing $x, a_{1}, d$ by $x t, y, t$ respectively, in equation (3.6), we get on the generating function for bivariate Rogers-Szegö polynomials $h_{k}(x, y \mid q)$ (1.25).
- If $r=s+1, a=0, x \rightarrow y t$ and then $d \rightarrow x t$ in equation (3.6), we get the generating function for the generalized Al-Salam-Carlitz $q$-polynomials $\phi_{n}^{(a, b)}(x, y)$ (1.26).


### 3.2 Generalization of Heine's Transformation of ${ }_{2} \phi_{1}$ Series

Theorem 3.2 (Generalization of Heine's transformation of ${ }_{2} \phi_{1}$ series). Let Heine's identity be defined as in (1.11), then

$$
\begin{align*}
& \left.\sum_{k=0}^{\infty} \frac{(a, b ; q)_{k}}{(q, c ; q)_{k}} z^{k} \sum_{n, i \geq 0} \frac{W_{n+i}}{(q ; q)_{n}}\left[\begin{array}{c}
k \\
i
\end{array}\right]\left(z b q^{k} ; q\right)_{i}\left[(-1)^{n+i} q^{n+i} 2\right)\right]^{1+s-r}\left(d b q^{k}\right)^{n}(d / z)^{i} \\
& =\frac{(c / b, z b ; q)_{\infty}}{(c, z ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a b z / c, b ; q)_{k}}{(q, z b ; q)_{k}}(c / b)^{k} \sum_{n, i \geq 0} \frac{W_{n+i}}{(q ; q)_{n}} \frac{\left(q^{-k}, z ; q\right)_{i}}{(q, a b z / c ; q)_{i}} \\
& \quad \times\left[(-1)^{n+i} q^{\binom{n+i}{2}}\right]^{1+s-r} d^{n}\left(d a b q^{k} / c\right)^{i} \tag{3.7}
\end{align*}
$$

Proof. Rewrite Heine's formula as follows.

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(a, b ; q)_{k}}{(q, c ; q)_{k}} \frac{z^{k}}{\left(z b q^{k} ; q\right)_{\infty}}=\frac{(c / b ; q)_{\infty}}{(c ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(b ; q)_{k}}{(q ; q)_{k}}(c / b)^{k} \frac{(a b z / c ; q)_{\infty}}{\left(z b q^{k}, z ; q\right)_{\infty}} \tag{3.8}
\end{equation*}
$$

Applying the general operator ${ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, d D_{q}}$ to both sides of the equation (3.8) gives:

$$
\sum_{k=0}^{\infty} \frac{(a, b ; q)_{k}}{(q, c ; q)_{k}}{ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, d D_{q}}\left\{\frac{z^{k}}{\left(z b q^{k} ; q\right)_{\infty}}\right\}
$$

$$
\begin{equation*}
=\frac{(c / b ; q)_{\infty}}{(c ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(b ; q)_{k}}{(q ; q)_{k}}(c / b)_{r}^{k} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, d D_{q}}\left\{\frac{(a b z / c ; q)_{k}}{\left(z b q^{k}, z ; q\right)_{k}}\right\} . \tag{3.9}
\end{equation*}
$$

Using (2.7), we get

$$
\begin{align*}
& { }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \cdots, a_{r} \\
\left.b_{1}, \cdots, b_{s} ; q, d D_{q}\right)
\end{array} \frac{z^{k}}{\left(z b q^{k} ; q\right)_{\infty}}\right\} \\
& =\frac{z^{k}}{\left(z b q^{k} ; q\right)_{\infty}} \sum_{n, i \geq 0} \frac{W_{n+i}}{(q ; q)_{n}}\left[\begin{array}{c}
k \\
i
\end{array}\right]\left(z b q^{k} ; q\right)_{i}\left[(-1)^{n+i} q^{\left.\binom{n+i}{2}\right]^{1+s-r}}\left(d b q^{k}\right)^{n}\left(\frac{d}{z}\right)^{i} .\right. \tag{3.10}
\end{align*}
$$

and using (2.4), we get

$$
\begin{align*}
& { }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, d D_{q}}\left\{\frac{(a b z / c ; q)_{k}}{\left(z b q^{k}, z ; q\right)_{k}}\right\} \\
& \quad=\frac{(a b z / c ; q)_{k}}{\left(z b q^{k}, z ; q\right)_{k}} \sum_{n, i \geq 0} \frac{W_{n+i}}{(q ; q)_{n}} \frac{\left(q^{-k}, z ; q\right)_{i}}{(q, a b z / c ; q)_{i}}\left[(-1)^{n+i} q^{n+i} \begin{array}{c}
n+i
\end{array}\right]^{1+s-r} d^{n}\left(\frac{d a b}{c} q^{k}\right)^{i} \tag{3.11}
\end{align*}
$$

Substituting (3.10) and (3.11) in equation (3.9) the proof is completed.

- If $r=s+1, a=0, z \rightarrow y t, d \rightarrow x t, c \rightarrow c b$ and then $b=0$ in equation (3.7), we get the generating function for the generalized Al-Salam-Carlitz q-polynomials $\phi_{n}^{(a, b)}(x, y)$ (1.26).
- If $r=1, s=0$ in equation (3.7), we get the following identity:


## Corollary 3.2.4

$$
\left.\begin{array}{l}
\sum_{k=0}^{\infty} \frac{(a, b, d b ; q)_{k}}{\left(q, c, a_{1} d b ; q\right)_{k}} z^{k}{ }_{3} \phi_{1}\left(\begin{array}{l}
q^{-k}, a_{1}, z b q^{k} \\
a_{1} d b q^{k}
\end{array} q, d q^{k} / z\right.
\end{array}\right) . \begin{aligned}
& \left(\left(a_{1} d, d b, c / b, z b ; q\right)_{\infty}\right. \\
& \left(d, a_{1} d b, c, z ; q\right)_{\infty}
\end{aligned} \sum_{k=0}^{\infty} \frac{(a b z / c, b ; q)_{k}}{(q, z b ; q)_{k}}(c / b)^{k}{ }_{3} \phi_{2}\binom{q^{-k}, a_{1}, z}{a b z / c, a_{1} d ; q, d a b q^{k} / c} .
$$

### 3.3 Generalization of $\boldsymbol{q}$-Pfaff-Saalschütz Sum

Theorem 3.3 (Generalization of $q$-Pfaff-Saalschütz sum). Let $q$-Pfaff-Saalschütz sum be defined as in (1.9), then

$$
\begin{aligned}
& \sum_{k=0}^{n} \frac{\left(q^{-n}, a, b ; q\right)_{k}}{\left(q, c, a b q^{1-n} / c ; q\right)_{k}} q^{k} \sum_{i, j \geq 0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}} \frac{\left(q^{-n+k} ; q\right)_{i}}{\left(a b q^{1-n+k} / c ; q\right)_{i+j}} \frac{\left(y q^{-k}, a b q / c ; q\right)_{j}}{(q, a y ; q)_{j}} \\
& \quad \times\left[(-1)^{i+j} q^{i+j}\right]^{1+s-r} \quad(d b q / c)^{i}\left(d q^{k}\right)^{j}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{(c / a, c / b ; q)_{n}}{(c, c / a b ; q)_{n}} \sum_{i=0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(y c / q ; q)_{i}}{(a y ; q)_{i+j}} \frac{\left(q^{1-n} / c, a q / c ; q\right)_{j}}{\left(a q^{1-n} / c ; q\right)_{j}} \\
& \times\left[(-1)^{i+j} q^{\binom{i+j}{2}}\right]^{1+s-r}(d q / c)^{i} d^{j} . \tag{3.12}
\end{align*}
$$

Proof. Multiplaying $q$-Saalschütz identity (1.9) by (ay; $q)_{\infty}$, we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left(q^{-n}, b ; q\right)_{k}}{(q, c ; q)_{k}} q^{k} \frac{\left(a y, a b q^{1-n+k} / c ; q\right)_{\infty}}{\left(a q^{k}, a b q / c ; q\right)_{\infty}}=\frac{b^{n}(c / b ; q)_{n}}{(c, ; q)_{n}} \frac{\left(a q^{1-n} / c, a y ; q\right)_{\infty}}{(a, a q / c ; q)_{\infty}} \tag{3.13}
\end{equation*}
$$

Applying the general operator ${ }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{b_{1}, \cdots, b_{s} ; q, d D_{q}}$ to both sides of equation (3.13) gives:

$$
\begin{gather*}
\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k} q^{k}}{(q, c ; q)_{k}}{ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \cdots, a_{r} \\
\left.b_{1}, \cdots, b_{s} ; q, d D_{q}\right)\left\{\frac{\left(a y, a b q^{1-n+k} / c ; q\right)_{\infty}}{\left(a q^{k}, a b q / c ; q\right)_{\infty}}\right\} \\
=\frac{(-c)^{n} q^{\binom{n}{2}}}{(c ; q)_{n}}{ }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \cdots, a_{r} \\
\left.b_{1}, \cdots, b_{s} ; q, d D_{q}\right)\left\{\frac{\left(a q^{1-n} / c, a y ; q\right)_{\infty}}{(a, a q / c ; q)_{\infty}}\right\}
\end{array} .\right.
\end{array}=\left\{\begin{array}{l}
\end{array}\right)\right.
\end{gather*}
$$

Using (2.2), we get

$$
\begin{align*}
& { }_{r} \Phi_{s}\binom{a_{1}, \cdots, a_{r}}{\left.b_{1}, \cdots, b_{s} ; q, d D_{q}\right)}\left\{\frac{\left(a y, a b q^{1-n+k} / c ; q\right)_{\infty}}{\left(a q^{k}, a b q / c ; q\right)_{\infty}}\right\} \\
& =\frac{\left(a y, a b q^{1-n+k} / c ; q\right)_{\infty}}{\left(a q^{k}, a b q / c ; q\right)_{\infty}} \sum_{i, j \geq 0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}} \frac{\left(q^{-n+k} ; q\right)_{i}}{\left(a b q^{1-n+k} / c ; q\right)_{i+j}} \frac{\left(y q^{-k}, a b q / c ; q\right)_{j}}{(q, a y ; q)_{j}} \\
& \left.\left.\quad \times\left[(-1)^{i+j} q^{(i+j}\right)\right]^{1+s-r}\right]^{(d b q / c)^{i}\left(d q^{k}\right)^{j} .}  \tag{3.15}\\
& { }_{r} \Phi_{s}\left(\begin{array}{l}
a_{1}, \cdots, a_{r} \\
\left.b_{1}, \cdots, b_{s} ; q, d D_{q}\right)
\end{array}\right. \\
& \left.\quad \frac{\left(a q^{1-n} / c, a y ; q\right)_{\infty}}{(a, a q / c ; q)_{\infty}}\right\} \\
& \quad=\frac{\left(a q^{1-n} / c, a y ; q\right)_{\infty}}{(a, a q / c ; q)_{\infty}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(y c / q ; q)_{i}}{(a y ; q)_{i+j}} \frac{\left(q^{-n} ; q\right)_{j}}{\left(a q^{1-n} / c ; q\right)_{j}}  \tag{3.16}\\
& \left.\quad \times\left[(-1)^{i+j} q^{(i+j} 2\right)\right]^{1+s-r}(d q / c)^{i}(d)^{j} .
\end{align*}
$$

Substituting (3.15) and (3.16) in equation (3.14), the proof is completed.

- If $n=\infty$ in equation (3.12), we get a generalization for $q$-Gauss sum (1.10) as follows:

Corollary 3.3.5 (Generalization of $q$-Gauss sum). Let $q$-Gauss sum be defined as in (1.10), then

$$
\sum_{k=0}^{\infty} \frac{(a, b ; q)_{k}}{(q, c ; q)_{k}}(c / a b)^{k}{ }_{r} \phi_{s}\left(\begin{array}{l}
a_{1}, \cdots, a_{r} \\
\left.b_{1}, \cdots, b_{s} ; q, d / a\right)
\end{array}\right.
$$

$$
\begin{aligned}
= & \frac{(c / a, c / b ; q)_{\infty}}{(c, c / a b ; q)_{\infty}} \sum_{i, j \geq 0} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(y c / q ; q)_{i}}{(a y ; q)_{i+j}} \frac{(a q / c ; q)_{j}}{(q ; q)_{j}} \\
& \times\left[(-1)^{i+j} q^{\binom{i+j}{2}}\right]^{1+s-r} \quad(d q / c)^{i}(d / a)^{j}
\end{aligned}
$$

- If $b=\infty$ in equation (3.12), we get a generalization for $q$-Chu-Vandermonde sum (1.7) as follows:

Corollary 3.3.6 (Generalization to $q$-Chu-Vandermonde sum(1.7)). Let $q$-Chu-Vandermonde sum be defined as in (1.7), then

$$
\begin{aligned}
& \sum_{k=0}^{n} \frac{\left(q^{-n}, a ; q\right)_{k}}{(q, c ; q)_{k}}\left(c q^{n} / \mathrm{a}\right)^{k} \sum_{i, j \geq 0} W_{i+j} \frac{\left(q^{-n+k} ; q\right)_{i}}{(q ; q)_{i}} \frac{\left(y q^{-k} ; q\right)_{j}}{(q, a y ; q)_{j}} \\
& \quad \times\left[(-1)^{i+j} q^{\left.\binom{i+j}{2}\right]^{1+s-r}}(-1)^{i} q^{\binom{i}{2}}\left(\frac{d q^{n}}{a q^{k+j}}\right)^{i}\left(d q^{n}\right)^{j}\right. \\
& =\frac{(c / a ; q)_{n}}{(c ; q)_{n}} \sum_{i=0}^{\infty} \sum_{i, j \geq 0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(y c / q ; q)_{i}}{(a y ; q)_{i+j}} \frac{\left(q^{1-n} / c, a q / c ; q\right)_{j}}{\left(q, a q^{1-n} / c ; q\right)_{j}} \\
& \quad \times\left[(-1)^{i+j} q^{\binom{i+j}{2}}\right]^{1+s-r}(d q / c)^{i}(d)^{j} .
\end{aligned}
$$

- If $b=0$ in equation (3.12), we get a generalization for $q$-Chu-Vandermonde sum (1.8) as follows:

Corollary 3.3.7 (Generalization to $q$-Chu-Vandermonde sum (1.8)). Let $q$-Chu-Vandermonde sum be defined as in (1.8), then

$$
\begin{align*}
& \sum_{k=0}^{n} \frac{\left(q^{-n}, a ; q\right)_{k}}{(q, c ; q)_{k}} q^{k}{ }_{r+1} \phi_{s+1}\left(\begin{array}{l}
a_{1}, \cdots, a_{r}, y q^{-k} \\
\left.b_{1}, \cdots, b_{s}, a y \quad ; q, d q^{k}\right) \\
=
\end{array}\right. \\
& \quad \frac{(c / a ; q)_{n}}{(c ; q)_{n}} a^{n} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{W_{i+j}}{(q ; q)_{i}} \frac{(y c / q ; q)_{i}}{(a y ; q)_{i+j}} \frac{\left(q^{1-n} / c, a q / c ; q\right)_{j}}{\left(q, a q^{1-n} / c ; q\right)_{j}} \\
&\left.\quad \times\left[(-1)^{i+j} q^{(i+j}\right)\right]^{1+s-r}(d q / c)^{i} d^{j} \tag{3.17}
\end{align*}
$$

- If $r=s=0$ and $y=0$ in equation (3.17) then using (1.6), we get the following identity:


## Corollary 3.3.8

$$
{ }_{3} \phi_{2}\left(\begin{array}{l}
q^{-n}, a, 0 \\
c, d
\end{array} ; q, q\right)=\frac{(d q / c ; q)_{\infty}}{(d ; q)_{\infty}} \frac{(c / a ; q)_{n}}{(c ; q)_{n}} a^{n}{ }_{2} \phi_{2}\binom{q^{1-n} / c, a q / c}{a q^{1-n} / c, d q / c ; q, d}
$$

- If $r=2, s=1$ and $y=0$ in equation (3.17), we get Theorem 17 obtained by Li and Tan [9] (equation (1.22)).
- If $r=2, s=1, y=0$ and setting $a_{1}=q^{-N}$ in equation ??, then using equations (1.1) and (1.7), we get Theorem 3.1 obtained by Zhang and Yang [15] (equation (1.19)).
- If $r=2, s=1, y=0, a_{1}=q^{-N}$ and $a=1$ in equation (3.17), we get Corollary 3.2 obtained by Fang [5] (equation (1.20)).


## Conclusions

1. Many operators can be obtained by assigning some special values to the generalized $q$-operator ${ }_{r} \Phi_{s}\left(\begin{array}{l}a_{1}, \cdots, a_{r} \\ \left.b_{1}, \cdots, b_{s} ; q, c D_{q}\right)\end{array}\right.$
2. We generalized some well-known $q$-identities, such as Cauchy identity, Heine's transformation formula and the $q$-Pfaff-Saalschütz summation formula.

## References

[1] W.Y.C. Chen, A.M. Fu and B.Y. Zhang, The homogeneous $q$-difference operator, Adv. Appl. Math., 31 (2003) 659-668.
[2] W.Y.C. Chen and Z.G. Liu, Parameter augmenting for basic hypergeometric series, II, J. Combin. Theory, Ser. A, 80 (1997) 175-195.
[3] W.Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series, I, Mathematical Essays in Honor of Gian-Carlo Rota, Eds. , B.E. Sagan and R.P. Stanley, Birkhäuser, Boston, (1998) 111-129.
[4] Fang, J-P, Extensions of $q$-Chu-Vandermonde's identity, J. Math. Anal. Appl., 339 (2008) 845-852.
[5] Fang, J-P, Applications of a generalized $q$-difference equation, J. Korean Math. Soc., 47 (2010) 223-233.
[6] Fang, J-P, Some applications of $q$-differential operator, Advances in Difference Equations,Springer open journal, 267 (2014) 2014-267.
[7] I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, John Wiley, New York, 1983.
[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, $2^{\text {nd }}$ ed., Cambridge University Press, Cambridge, MA, 2004.
[9] N.N. Li and W. Tan, Two generalized $q$-exponential operators and their applications, $A d v$. Difference Equ., 53 (2016) 1-14.
[10] S. Roman, More on the umbral calculus, with emphasis on the $q$-umbral caculus, J. Math. Anal. Appl., 107 (1985) 222-254.
[11] H.L. Saad and A.A. Sukhi, Another homogeneous $q$-difference operator, J. Appl. Math. Comput., 12 (2010) 4332-4339.
[12] H.L. Saad and A.A. Sukhi, The $q$-Exponential Operator, Appl. Math. Sci., 7 (128) (2013) 6369-6380.
[13] H.L. Saad and R.H. Jaber, Application of the Operator $\phi\left(\begin{array}{l}a, b, c \\ d, e\end{array}, q, f D_{q}\right)$ for the Polynomials $Y_{n}(a, b, c ; d, e ; x, y \mid q), T W M S J . A p p$. and Eng. Math., (2020), accepted.
[14] H.M. Srivastava and S. Arjika, Generating functions for some families of the generalized Al-Salam-Carlitz q-polynomials, Adv. Difference Equ., 498 (2020) 1-17.
[15] Z. Z. Zhang and J. Z. Yang, Finite $q$-exponential operators with two parameters and their applications, Acta Math. Sinica, Chinese Series, 53 (2010) 1007-1018.
[16] Z.Z. Zhang and J. Wang, Two operator identities and their applications to terminating basic hypergeometric series and $q$-integrals, J. Math. Anal. Appl., 312 (2005) 653-665.

$$
\begin{aligned}
& q-\text { تطبيقات المؤثر } \\
& \text { حسام لوتي سعد } \\
& \text { قسم الرياضيات ، كلية العلوم ، جامعة البصرة ، } \\
& \text { البصرة ، العراق }
\end{aligned}
$$

في هذا البحث، أنشأنا المؤثر العام ${ }^{\text {الم }}$ ، ث ثم وجدنا بعض متطابقاته التي سيتم استخدامها لتعميم بعض متطابقات-q المعروفة ، مثل متطابقة كوشي ، وصيغة تحويل هاين ، وصيغة جمع بفافـ سلشونس. من خلال إعطاء قيم خاصـة للمعلمات في المتطابقات التي حصلنا عليها ، تم الحصول على بعض النتائج الجديدة و/اوتم اعادة بر هان البعض الآخر.

