

ISSN: 0067-2904

The Operator $\mathbb{S}\left(\boldsymbol{a}, \boldsymbol{b} ; \boldsymbol{\theta}_{\boldsymbol{x}}\right)$ for the Polynomials $Z_{n}(x, y, a, b ; q)$

Husam L. Saad*, Faiz A. Reshem
Department of Mathematics, College of Science, Basrah University, Basrah, Iraq

Received: 13/10/2021 Accepted: 13/1/2022 Published: 30/10/2022

Abstract

In this work, we give an identity that leads to establishing the operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$. Also, we introduce the polynomials $Z_{n}(x, y, a, b ; q)$. In addition, we provide Operator proof for the generating function with its extension and the Rogers formula for $Z_{n}(x, y, a, b ; q)$. The generating function with its extension and the Rogers formula for the bivariate Rogers-Szegö polynomials $h_{n}(x, y \mid q)$ are deduced. The Rogers formula for $Z_{n}(x, y, a, b ; q)$ allows to obtain the inverse linearization formula for $Z_{n}(x, y, a, b ; q)$, which allows to deduce the inverse linearization formula for $h_{n}(x, y \mid q)$. A solution to a q-difference equation is introduced and the solution is expressed in terms of the operators $\mathbb{S}\left(a, b ; \theta_{x}\right)$. The q-difference method is used to recover an identity of the operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$ and the generating function for the polynomials $Z_{n}(x, y, a, b ; q)$.

Keywords: The bivariate Rogers-Szegö polynomials, Generating function, Rogers formula, Inverse linearisation formula, q-difference equation.

$$
\text { تطبيقات المؤثر } q \text { - }{ }^{-1} \Phi_{\text {في التكامـلات }}
$$

قسم الرياضيات, كلية العلوم, جامعة البـي ", فائز عاجرة, البصرة, العراق

> الخلاصة
> نعطي متطابقة تقودنا إلى إنشاء المؤثر
> . $Z_{n}(x, y, a, b ; q)$) $Z_{n}(x, y, a, b ; q)$
> بعد ذلك يتم استتتاج الالة المولدة وتوسيعها وصيغة روجرز لمتعددات حدود روجرز - زيجو ثنائية المتغير
> ($Z_{n}(x, y, a, b ; q)$ تاشتقاق الصيغة الخطية العكسية لـ
> ($h_{n}(x, y \mid q)$. يتم تقديم

$$
\begin{aligned}
& \text { لاعادة برهان متطابقة للمؤثر (} \mathbb{C}\left(a, b ; \theta_{x}\right) \text { والدالة المولاة لمتعددات الحدود (} Z_{n}(x, y, a, b ; q)
\end{aligned}
$$

1. Introduction

The definitions and notations for the basic hypergeometric series [1] are adopted as follows:
Let $0<q<1$. The definition of the q-shifted factorial is:

[^0]\[

(a ; q)_{n}= $$
\begin{cases}1 & \text { if } n=0 \\ (1-a)(1-a q) \ldots\left(1-a q^{n-1}\right) & \text { if } n=1,2,3, \ldots\end{cases}
$$
\]

The definition

$$
(a, q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)
$$

is also given.
The researchers employed the following notation for the multiple q-shifted factorials:

$$
\left(a_{1}, a_{2}, \cdots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n}, \quad n=1,2,3, \ldots
$$

The definition of the basic hypergeometric series ${ }_{r} \phi_{s}$ is:

$$
{ }_{r} \phi_{s}\left(\begin{array}{l}
a_{1}, a_{2}, \cdots, a_{r} \\
b_{1}, b_{2}, \cdots, b_{s}
\end{array} q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{r} ; q\right)_{n}}{(q ; q)_{n}\left(b_{1} ; q\right)_{n}\left(b_{2} ; q\right)_{n} \cdots\left(b_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} x^{n} .
$$

The q-binomial coefficients is defined by:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

The Cauchy identity is given by:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} x^{k}=\frac{(a x ; q)_{\infty}}{(x ; q)_{\infty}}, \quad|x|<1 \tag{1.1}
\end{equation*}
$$

The particular cases of Cauchy identity were identified by Euler:

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{x^{k}}{(q ; q)_{k}} & =\frac{1}{(x ; q)_{\infty}}, \quad|x|<1 . \tag{1.2}\\
\sum_{k=0}^{\infty} \frac{\left.(-1)^{k} q^{(k)}\right)^{2} x^{k}}{(q ; q)_{k}} & =(x ; q)_{\infty} . \tag{1.3}
\end{align*}
$$

Euler's identity (1.3) can be expressed in a finite form as [2]

$$
(x ; q)_{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.4}\\
k
\end{array}\right](-1)^{k} q^{\binom{k}{2}} x^{k}
$$

The following identities will commonly occur in this paper [1]:

$$
\begin{equation*}
(q / a ; q)_{k}=(-a)^{-k} q^{\binom{k+1}{2}_{2}}\left(a q^{-k} ; q\right)_{\infty} /(a ; q)_{\infty} \tag{1.5}
\end{equation*}
$$

The Cauchy polynomials are defined as follows [3,4]:

$$
P_{k}(x ; y)=(x-y)(x-q y) \cdots\left(x-y q^{k-1}\right)=(y / x ; q)_{k} x^{k}
$$

with the generating function:

$$
\begin{equation*}
\sum_{k=0}^{\infty} P_{k}(x, y) \frac{t^{k}}{(q, q)_{k}}=\frac{(y t ; q)_{\infty}}{(x t ; q)_{\infty}}, \quad|x t|<1 \tag{1.6}
\end{equation*}
$$

Another version of the Cauchy polynomials is given as follows:

$$
P_{n}(x, y)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{k} q^{\binom{k}{2}} y^{k} x^{n-k}
$$

The bivariate Rogers-Szegö polynomials were presented by Chen et al. [5] in 2003,

$$
h_{n}(x, y \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] P_{k}(x, y),
$$

with this generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} h_{n}(x, y \mid q) \frac{t^{n}}{(q ; q)_{n}}=\frac{(y t ; q)_{\infty}}{(t, x t ; q)_{\infty}}, \quad \max \{|t|,|x t|\}<1 \tag{1.7}
\end{equation*}
$$

The Rogers formula for $h_{n}(x, y \mid q)$ was derived by Chen et al. [6]

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} h_{n+m}(x, y \mid q) \frac{t^{n}}{(q ; q)_{n}} \frac{s^{m}}{(q ; q)_{m}}=\frac{(y s ; q)_{\infty}}{(s, x s, x t ; q)_{\infty}}{ }_{2} \phi_{1}\binom{y, x s}{y s ; q, t} \tag{1.8}
\end{equation*}
$$

with the condition that $\max \{|t|,|x t|,|s|,|x s|\}<1$.
The q^{-1}-Rogers-Szegö polynomials [7] is defined by:

$$
h_{n}\left(a, b \mid q^{-1}\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{k^{2}-k n} a^{k} b^{n-k}
$$

The q-differential operator θ is defined by [8]:

$$
\begin{equation*}
\theta\{f(a)\}=\frac{f\left(a q^{-1}\right)-f(a)}{a q^{-1}} \tag{1.9}
\end{equation*}
$$

The Leibniz rule for θ is [9]:

$$
\theta^{n}\{f(a) g(a)\}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.10}\\
k
\end{array}\right] \theta^{k}\{f(a)\} \theta^{n-k}\left\{g\left(a q^{-k}\right)\right\}
$$

We can easily verify the identities:

$$
\begin{align*}
\theta_{x}^{k}\left\{P_{n}(y, x)\right\} & =(-1)^{k} \frac{(q ; q)_{n}}{(q ; q)_{n-k}} P_{n-k}(y, x) \tag{1.11}\\
\theta_{x}^{k}\left\{(x t ; q)_{\infty}\right\} & =(-1)^{k} t^{k}(x t ; q)_{\infty} \tag{1.12}
\end{align*}
$$

The q-exponential operator $E(b \theta)$ was defined by Chen and Liu [9] in 1998 as follows:

$$
E(b \theta)=\sum_{k=0}^{\infty} \frac{q^{\binom{k}{2}}(b \theta)^{k}}{(q ; q)_{k}}
$$

In 2007, the Cauchy companion operator $E(a, b ; \theta)$ was presented by Fang [10] as follows:

$$
E(a, b ; \theta)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}}(-b \theta)^{n} .
$$

The Cauchy operator was defined by Chen and Gu [11] in 2008 as follows:

$$
T\left(a, b ; D_{q}\right)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}}\left(b D_{q}\right)^{n}
$$

In 2010, the solutions of q-difference equation are obtained, and the solution is expressed in terms of the operator $E(b \theta)$, by Liu [7], who derived Mehler's formula for the q^{-1}-RogersSzegö polynomials $h_{n}\left(a, b \mid q^{-1}\right)$.

In 2010, the solutions of q-difference equations were obtained by Zhu [12], who expressed the solutions in terms of the operator $T\left(-\frac{1}{a}, a b ; \theta\right)$.

In 2010, the solutions of q-difference equations were obtained by Abdul Hussein [13] who expressed the solutions in terms of the operator $E(a, b ; \theta)$. The generating function, the Mehler formula and the Rogers formula for the Al-Salam-Carlits polynomials $U_{n}(x, y, a ; q)$ are also proved.

Our paper is structured as follows: Section 2 contains an identity, which leads to creating the operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$. We also present the polynomials $Z_{n}(x, y, a, b ; q)$. We used the operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$ to represent the polynomials $Z_{n}(x, y, a, b ; q)$. In section 3 , we present an operator proof for the generating function as well as its extension for the polynomials $Z_{n}(x, y, a, b ; q)$. The generating function and its extension for the polynomials $h_{n}(x, y \mid q)$ are then deduced. Section 4 presents an operator proof of the Rogers formula for the polynomials
$Z_{n}(x, y, a, b ; q)$. The Rogers formula for the polynomials $h_{n}(x, y \mid q)$ is then recovered. The Rogers formula for $Z_{n}(x, y, a, b ; q)$ allows to derive the inverse linearization formula for $Z_{n}(x, y, a, b ; q)$, from which we can get the inverse linearization formula for $h_{n}(x, y \mid q)$. Section 5 introduces and solves a q-difference equation. The operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$ is then used to describe the solution. This approach is used to confirm identity of the operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$ and the generating function for the polynomials $Z_{n}(x, y, a, b ; q)$.

2. The Operator $\mathbb{S}\left(\boldsymbol{a}, \boldsymbol{b} ; \boldsymbol{\theta}_{\boldsymbol{x}}\right)$ for the Polynomials $\boldsymbol{Z}_{\boldsymbol{n}}(\boldsymbol{x}, \boldsymbol{y}, a, b ; q)$

An identity is provided in this section. This identity is the inspiration to introduce the operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$. Furthermore, the polynomials $Z_{n}(x, y, a, b ; q)$ were presented.

Theorem 2.1 We have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(1 / a ; q)_{k}}{(q ; q)_{k}}(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k}=\frac{1}{(b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}} \tag{2.1}
\end{equation*}
$$

Proof. By using (1.4), the result is obtained as follows:

$$
\begin{align*}
\sum_{k=0}^{\infty} & \frac{(1 / a ; q)_{k}}{(q ; q)_{k}}(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k} \\
& =\sum_{k=0}^{\infty} \frac{\sum_{i=0}^{k}\left[\begin{array}{l}
k \\
i
\end{array}\right](-1)^{i} q^{i}\binom{i}{2}}{}(1 / a)^{i} \\
(q ; q)_{k} & (-1)^{k} q^{-\binom{k}{2}}(a b t)^{k} \\
& =\sum_{k=0}^{\infty} \sum_{i=0}^{k}(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k} \frac{\left.(-1)^{i} q^{i} \begin{array}{l}
i \\
2
\end{array}\right)}{(q ; q)_{i}(q ; q)_{k-i}} \\
& =\sum_{i=0}^{\infty} \sum_{k=0}^{\infty}(-1)^{k+i} q^{-\binom{k}{2}-\binom{i}{2}-i k}(a b t)^{k+i} \frac{\left.(-1)^{i} q^{i} q^{i}\right)}{(q ; q)_{i}(q ; q)_{k}} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k}}{(q ; q)_{k}} \sum_{i=0}^{\infty} \frac{\left(b t q^{-k}\right)^{i}}{(q ; q)_{i}} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k}}{(q ; q)_{k}} \frac{1}{\left(b t q^{-k} ; q\right)_{\infty}} \tag{1.5}\\
& =\frac{1}{(b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k}}{(q, q / b t ; q)_{k}(-b t / q)^{k} q^{-\binom{k}{2}}} \quad \text { (by using (1 using } \\
& =\frac{1}{(b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}} .
\end{align*}
$$

Now, let θ be defined as in (1.9). Taking inspiration from identity (2.1), the following operator is now presented:

$$
\begin{equation*}
\mathbb{S}\left(a, b, \theta_{x}\right)=\sum_{k=0}^{\infty} \frac{(1 / a ; q)_{k}}{(q ; q)_{k}} q^{-\binom{k}{2}}\left(a b \theta_{x}\right)^{k} \tag{2.2}
\end{equation*}
$$

and then the following polynomials are introduced:

$$
Z_{n}(x, y, a, b ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] b^{k}\left(a q^{1-k}, q\right)_{k} P_{n-k}(y, x)
$$

Setting $a=0, b=1$ and exchanging x and y in $Z_{n}(x, y, a, b ; q)$, we get the bivariate RogersSzegö polynomials $h_{n}(x, y \mid q)$, signifying that the bivariate Rogers-Szegö polynomials $h_{n}(x, y \mid q)$ is a particular case of the polynomials $Z_{n}(x, y, a, b ; q)$.

From (1.11) and (2.2), the following representation for the polynomials $Z_{n}(x, y, a, b ; q)$ is obtained:

$$
\begin{equation*}
\mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{n}(y, x)\right\}=Z_{n}(x, y, a, b ; q) . \tag{2.3}
\end{equation*}
$$

By using (1.12), it is easy to prove that

$$
\begin{equation*}
\mathbb{S}\left(a, b ; \theta_{x}\right)\left\{(x t ; q)_{\infty}\right\}=\frac{(x t ; q)_{\infty}}{(b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}} . \tag{2.4}
\end{equation*}
$$

3. The generating function for $Z_{\boldsymbol{n}}(x, y, a, b ; q)$

In this section, the operator proof for the generating function and its extension for the polynomials $Z_{n}(x, y, a, b ; q)$ are provided. The generating function and its extension for the polynomials $h_{n}(x, y \mid q)$ are then deduced.
Theorem 3.1 (The generating function for $Z_{n}(\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b} ; \mathrm{q})$). We have

$$
\begin{equation*}
\sum_{n=0}^{\infty} Z_{n}(x, y, a, b ; q) \frac{t^{n}}{(q ; q)_{n}}=\frac{(x t ; q)_{\infty}}{(y t, b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}} \tag{3.1}
\end{equation*}
$$

Provided that $\max \{|y t|,|b t|\}<1$.
Proof.

$$
\left.\begin{array}{rl}
\sum_{n=0}^{\infty} & Z_{n}(x, y, a, b ; q) \frac{t^{n}}{(q ; q)_{n}} \\
& =\sum_{n=0}^{\infty} \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{n}(y, x)\right\} \frac{t^{n}}{(q ; q)_{n}} \quad \text { (by using (2.3)) } \\
& =\frac{1}{(y t ; q)_{\infty}} \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{(x t ; q)_{\infty}\right\} \\
& =\frac{(x t ; q)_{\infty}}{(y t, b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}} .
\end{array} \quad \text { (by using using (1.6)) }\right)
$$

Setting $a=0, b=1$ and exchanging x and y in the generating function for the polynomials $Z_{n}(x, y, a, b ; q)$, we obtain the generating function of the bivariate Rogers-Szegö polynomials $h_{n}(x, y \mid q)$ (1.7).
Lemma 3.2 Let $\mathbb{S}\left(\mathrm{a}, \mathrm{b}, \theta_{\mathrm{x}}\right)$ be defined as in (2.2). Then

$$
\begin{align*}
\mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{n}(y, x)(x s ; q)_{\infty}\right\} & =\frac{(x s ; q)_{\infty}}{(b s ; q)_{\infty}} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \frac{(1 / a, q / x s ; q)_{m}}{(q / b s ; q)_{m}} q^{-\binom{m}{2}}(-a x)^{m} P_{n-m}(y, x) \\
& \times \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{-m} ; q\right)_{k}}, \quad|\mathrm{bs}|<1 \tag{3.2}
\end{align*}
$$

Proof.
$\mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{n}(y, x)(x s ; q)_{\infty}\right\}$
$=\sum_{k=0}^{\infty} \frac{(1 / a ; q)_{k}}{(q ; q)_{k}} q^{-\binom{k}{2}}(a b)^{k} \theta_{x}^{k}\left\{P_{n}(y, x)(x s ; q)_{\infty}\right\} \quad$ (by using (2.2))
$=\sum_{k=0}^{\infty} \frac{(1 / a ; q)_{k}}{(q ; q)_{k}} q^{-\binom{k}{2}}(a b)^{k} \sum_{m=0}^{k}\left[\begin{array}{l}k \\ m\end{array}\right] \theta_{x}^{m}\left\{P_{n}(y, x)\right\} \theta_{x}^{k-m}\left\{\left(x s q^{-m} ; q\right)_{\infty}\right\} \quad$ (by using (1.10))

$$
\begin{aligned}
& =\sum_{m=0}^{\infty} \sum_{k=0}^{\infty}\left(\frac{1}{a} ; q\right)_{k+m} \frac{q^{-\binom{k+m}{2}}(a b)^{k+m}}{(q ; q)_{m}(q ; q)_{k}} \theta_{x}^{m}\left\{P_{n}(y, x)\right\} \theta_{x}^{k}\left\{\left(x s q^{-m} ; q\right)_{\infty}\right\} \\
& =\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \frac{(1 / a ; q)_{m}\left(q^{m} / a ; q\right)_{k} q^{-\binom{k}{2}} q^{-\binom{m}{2}} q^{-m k}(a b)^{k+m}}{(q ; q)_{m}(q ; q)_{k}}(-1)^{m} \frac{(q ; q)_{n}}{(q ; q)_{n-m}} P_{n-m}(y, x) \\
& \times\left(-s q^{-m}\right)^{k}\left(x s q^{-m} ; q\right)_{\infty} \quad \text { (by using (1.11), (1.12)) } \\
& =\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right](-1)^{m}(1 / a ; q)_{m} q^{-\binom{m}{2}}(a b)^{m}\left(x s q^{-m} ; q\right)_{\infty} P_{n-m}(y, x) \\
& \times \sum_{k=0}^{\infty} \frac{\left(1 / q^{-m} a ; q\right)_{k}}{(q ; q)_{k}}(-1)^{k} q^{-\binom{k}{2}}\left(a b s q^{-2 m}\right)^{k} \\
& =(x s ; q)_{\infty} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right](-1)^{m}(1 / a, q / x s ; q)_{m} q^{-\binom{m}{2}}(a b)^{m}(-x s)^{m} q^{-\binom{m}{2}-m} P_{n-m}(y, x) \\
& \times \sum_{k=0}^{\infty} \frac{\left(1 / q^{-m} a ; q\right)_{k}}{(q ; q)_{k}}(-1)^{k} q^{-\binom{k}{2}}\left(a b s q^{-2 m}\right)^{k} \quad \text { (by using (1.5)) } \\
& =(x s ; q)_{\infty} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right](1 / a, q / x s ; q)_{m} q^{-m^{2}}(a b x s)^{m} P_{n-m}(y, x) \\
& \times \sum_{k=0}^{\infty} \frac{\left(1 / q^{-m} a ; q\right)_{k}}{(q ; q)_{k}}(-1)^{k} q^{-\binom{k}{2}}\left(a b s q^{-2 m}\right)^{k} \\
& =(x s ; q)_{\infty} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right](1 / a, q / x s ; q)_{m} q^{-m^{2}}(a b x s)^{m} P_{n-m}(y, x) \\
& \times \frac{1}{\left(b s q^{-m} ; q\right)_{\infty}} \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{-m} ; q\right)_{k}} \quad \text { (by using (2.1)) } \\
& =\frac{(x s ; q)_{\infty}}{(b s ; q)_{\infty}} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \frac{(1 / a, q / x s ; q)_{m}}{(q / b s ; q)_{m}(-1)^{m} q^{-\binom{m}{2}-m}(b s)^{m}} q^{-m^{2}}(a b x s)^{m} P_{n-m}(y, x) \\
& \times \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{-m} ; q\right)_{k}} \quad \text { (by using (1.5)) } \\
& =\frac{(x s ; q)_{\infty}}{(b s ; q)_{\infty}} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \frac{(1 / a, q / x s ; q)_{m}}{(q / b s ; q)_{m}} q^{-\binom{m}{2}}(-a x)^{m} P_{n-m}(y, x) \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{-m} ; q\right)_{k}} \text {. }
\end{aligned}
$$

Lemma 3.3 (Extension of the generating function for $Z_{n}(x, y, a, b ; q)$). We have

$$
\begin{align*}
& \sum_{n=0}^{\infty} Z_{n+k}(x, y, a, b ; q) \frac{t^{n}}{(q ; q)_{n}} \\
&= \frac{\left(x t q^{k} ; q\right)_{\infty}}{\left(y t, b t q^{k} ; q\right)_{\infty}} \sum_{m=0}^{k}\left[\begin{array}{c}
k \\
m
\end{array}\right] \frac{\left(1 / a, q / x t q^{k} ; q\right)_{m}}{\left(q / b t q^{k} ; q\right)_{m}}(-1)^{m} q^{-\binom{2}{2}}(a x)^{m} \\
& \quad \times P_{k-m}(y, x) \sum_{n=0}^{\infty} \frac{\left(a q^{1-m}\right)^{n}}{\left(q, q / b t q^{k-m} ; q\right)_{n}}, \max \{|y t|,|\mathrm{b} t|\}<1 \tag{3.3}
\end{align*}
$$

Proof.

$$
\begin{aligned}
\sum_{n=0}^{\infty} & Z_{n+k}(x, y, a, b ; q) \frac{t^{n}}{(q ; q)_{n}} \\
= & \sum_{n=0}^{\infty} \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{n+k}(y, x)\right\} \frac{t^{n}}{(q ; q)_{n}} \quad(\text { by using (2.3)) } \\
= & \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{\sum_{n=0}^{\infty} P_{n+k}(y, x) \frac{t^{n}}{(q ; q)_{n}}\right\} \\
= & \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{\sum_{n=0}^{\infty} P_{k}(y, x) P_{n}\left(y, x q^{k}\right) \frac{t^{n}}{(q ; q)_{n}}\right\} \\
= & \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{k}(y, x) \frac{\left(x t q^{k} ; q\right)_{\infty}}{(y t ; q)_{\infty}}\right\} \quad(\text { by using (1.6))}) \\
= & \frac{1}{(y t ; q)_{\infty}} \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{k}(y, x)\left(x t q^{k} ; q\right)_{\infty}\right\} \\
= & \frac{\left(x t q^{k} ; q\right)_{\infty}}{\left(y t, b t q^{k} ; q\right)_{\infty}} \sum_{m=0}^{k}\left[\begin{array}{l}
k \\
m
\end{array}\right] \frac{\left(1 / a, q / x t q^{k} ; q\right)_{m}}{\left(q / b t q^{k} ; q\right)_{m}}(-1)^{m} q^{-\left({ }_{2}^{m}\right)}(a x)^{m} P_{k-m}(y, x) \\
& \times \sum_{n=0}^{\infty} \frac{\left(a q^{1-m}\right)^{n}}{\left(q, q / b t q^{k-m} ; q\right)_{n}} . \quad(\text { by using }(3.2))
\end{aligned}
$$

Setting $a=0, b=1$ and exchanging x and y in the extension of generating function for the polynomials $Z_{n}(x, y, a, b ; q)(3.3)$, an extension of the generating function of the bivariate Rogers-Szegö polynomials $h_{n}(x, y \mid q)$ is obtained:

$$
\sum_{n=0}^{\infty} h_{n+k}(x, y \mid q) \frac{t^{n}}{(q ; q)_{n}}=\frac{\left(y t q^{k} ; q\right)_{\infty}}{\left(x t, t q^{k} ; q\right)_{\infty}} \sum_{m=0}^{k}\left[\begin{array}{l}
k \\
m
\end{array}\right] \frac{\left(q / y t q^{k} ; q\right)_{m}}{\left(q / t q^{k} ; q\right)_{m}} y^{m} P_{k-m}(x, y)
$$

Provided that max $\{|x t|,|t|\}<1$.

4. The Rogers formula for $Z_{n}(\boldsymbol{x} ; \boldsymbol{y} ; \boldsymbol{a} ; \boldsymbol{b} ; \boldsymbol{q})$

This section provides the operator proof of the Rogers formula for the polynomials Z_{n}, and the inverse linearization formula for $Z_{n}(x, y, a, b ; q)$ is obtained. The Rogers formula and the inverse linearization formula for $h_{n}(x, y \mid q)$ are then recovered $h_{n}(x, y \mid q)$.
Theorem 4.1 (The Rogers formula for $Z_{n}(\mathrm{x} ; \mathrm{y} ; \mathrm{a} ; \mathrm{b} ; \mathrm{q})$). We have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} Z_{n+m}(x, y, a, b ; q) \frac{t^{n}}{(q ; q)_{n}} \frac{s^{m}}{(q ; q)_{m}} \\
& =\frac{(x s ; q)_{\infty}}{(y s, b s ; q)_{\infty}} \sum_{m=0}^{\infty} \frac{(1 / a ; q)_{m}}{(q ; q)_{m}}(-1)^{m} q^{-\binom{m}{2}}(a b t)^{m} \sum_{n=0}^{\infty} \frac{(x / y, b s ; q)_{n}}{(q, x s ; q)_{n}}(y t)^{n} \\
& \quad \times \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{n} ; q\right)_{k}}, \quad \max \{|y s|,|\mathrm{bs}|\}<1 . \tag{4.1}
\end{align*}
$$

Proof.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} Z_{n+m}(x, y, a, b ; q) \frac{t^{n}}{(q ; q)_{n}} \frac{s^{m}}{(q ; q)_{m}} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{n+m}(y, x)\right\} \frac{t^{n}}{(q ; q)_{n}} \frac{s^{m}}{(q ; q)_{m}} \quad \text { (by using (2.3)) } \\
& =\mathbb{S}\left(a, b ; \theta_{x}\right)\left\{\sum_{n=0}^{\infty} P_{n}(y, x) \frac{t^{n}}{(q ; q)_{n}} \sum_{m=0}^{\infty} P_{m}\left(y, x q^{n}\right) \frac{s^{m}}{(q ; q)_{m}}\right\} \\
& =\mathbb{S}\left(a, b ; \theta_{x}\right)\left\{\sum_{n=0}^{\infty} P_{n}(y, x) \frac{t^{n}}{(q ; q)_{n}} \frac{\left(x s q^{n} ; q\right)_{\infty}}{(y s ; q)_{\infty}}\right\} \quad \text { (by using (1.6)) } \\
& =\frac{1}{(y s ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{t^{n}}{(q ; q)_{n}} \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{n}(y, x)\left(x s q^{n} ; q\right)_{\infty}\right\} \\
& =\frac{1}{(y s ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{t^{n}}{(q ; q)_{n}} \frac{\left(x s q^{n} ; q\right)_{\infty}}{\left(b s q^{n} ; q\right)_{\infty}} \sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] \frac{\left(1 / a, q / x s q^{n} ; q\right)_{m}}{\left(q / b s q^{n} ; q\right)_{m}} q^{-\binom{m}{2}(-a x)^{m} P_{n-m}(y, x)} \\
& \times \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{n-m} ; q\right)_{k}} \\
& \text { (by using (3.2)) } \\
& =\frac{1}{(y s ; q)_{\infty}} \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \frac{t^{n}(1 / a ; q)_{m} q^{-\binom{m}{2}}(-a x)^{m}}{(q ; q)_{m}(q ; q)_{n-m}} \frac{\left(x s q^{n} ; q\right)_{\infty}\left(q / x s q^{n} ; q\right)_{m}}{\left(b s q^{n} ; q\right)_{\infty}\left(q / b s q^{n} ; q\right)_{m}} P_{n-m}(y, x) \\
& \times \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{n-m} ; q\right)_{k}} \\
& =\frac{1}{(y s ; q)_{\infty}} \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \frac{t^{n}(1 / a ; q)_{m} q^{-\binom{m}{2}}(-a x)^{m}}{(q ; q)_{m}(q ; q)_{n-m}} \frac{\left(x s q^{n-m} ; q\right)_{\infty}\left(-x s q^{n}\right)^{-m} q^{\binom{m+1}{2}}}{\left(b s q^{n-m} ; q\right)_{\infty}\left(-b s q^{n}\right)^{-m} q^{\left(\begin{array}{c}
m+1 \\
2
\end{array}\right.}} P_{n-m}(y, x) \\
& \times \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{n-m} ; q\right)_{k}} \quad \text { (by using (1.5)) } \\
& =\frac{1}{(y s ; q)_{\infty}} \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \frac{t^{n}(1 / a ; q)_{m} q^{-\binom{m}{2}}(-a x)^{m}}{(q ; q)_{m}(q ; q)_{n-m}} \frac{\left(x s q^{n-m} ; q\right)_{\infty}}{\left(b s q^{n-m} ; q\right)_{\infty}}(b / x)^{m} P_{n-m}(y, x) \\
& \times \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{n-m} ; q\right)_{k}} \\
& =\frac{1}{(y s ; q)_{\infty}} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{t^{n+m}(1 / a ; q)_{m} q^{-\left({ }_{2}^{m}\right)}(-a b)^{m}}{(q ; q)_{m}(q ; q)_{n}} \frac{\left(x s q^{n} ; q\right)_{\infty}}{\left(b s q^{n} ; q\right)_{\infty}} P_{n}(y, x) \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{n} ; q\right)_{k}} \\
& =\frac{(x s ; q)_{\infty}}{(y s, b s ; q)_{\infty}} \sum_{m=0}^{\infty} \frac{(1 / a ; q)_{m}(-1)^{m} q^{-\binom{m}{2}}(a b t)^{m}}{(q ; q)_{m}} \sum_{n=0}^{\infty} \frac{(x / y, b s ; q)_{n}}{(q, x s ; q)_{n}}(y t)^{n} \sum_{k=0}^{\infty} \frac{\left(a q^{1-m}\right)^{k}}{\left(q, q / b s q^{n} ; q\right)_{k}} .
\end{aligned}
$$

Set $a=0, b=1$ and exchang x and y in the Rogers formula for the polynomials $Z_{n}(x, y, a, b ; q)$ (4.1), the Rogers formula for the bivariate Rogers-Szegö polynomials $h_{n}(x, y \mid q)$ (1.8) is recovered.

The Rogers formula for $Z_{n}(x, y, a, b ; q)(4.1)$ can be written differently, this allows to obtain the inverse linearisation formula of $Z_{n}(x, y, a, b ; q)$ as follows:

Lemma 4.2 For $n, m \geq 0$, we have
$Z_{n+m}(x, y, a, b ; q)$
$=\sum_{i=0}^{n}\left[\begin{array}{l}n \\ i\end{array}\right](1 / a ; q)_{i}(-1)^{i} q^{-\binom{i}{2}}(a b)^{i} P_{n-i}(y, x) Z_{m}\left(x q^{n-i}, y, a q^{-i}, b q^{n-i} ; q\right)$.
Proof. Rewrite the Rogers formula (4.1) as:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} Z_{n+m}(x, y, a, b ; q) \frac{t^{n}}{(q ; q)_{n}} \frac{s^{m}}{(q ; q)_{m}} \\
& =\frac{(x s ; q)_{\infty}}{(y s, b s ; q)_{\infty}} \sum_{i=0}^{\infty} \frac{(1 / a ; q)_{i}}{(q ; q)_{i}}(-1)^{i} q^{-\binom{i}{2}}(a b t)^{i} \sum_{n=0}^{\infty} \frac{(x / y, b s ; q)_{n}}{(q, x s ; q)_{n}}(y t)^{n} \sum_{k=0}^{\infty} \frac{\left(a q^{1-i}\right)^{k}}{\left(q, q / b s q^{n} ; q\right)_{k}} \\
& =\sum_{i=0}^{\infty} \frac{(1 / a ; q)_{i}}{(q ; q)_{i}}(-1)^{i} q^{-\binom{i}{2}}(a b t)^{i} \sum_{n=0}^{\infty} \frac{(x / y ; q)_{n}}{(q ; q)_{n}}(y t)^{n} \frac{\left(x s q^{n} ; q\right)_{\infty}}{\left(y s, b s q^{n} ; q\right)_{\infty}} \sum_{k=0}^{\infty} \frac{\left(a q^{1-i}\right)^{k}}{\left(q, q / b s q^{n} ; q\right)_{k}} \\
& =\sum_{i=0}^{\infty} \frac{(1 / a ; q)_{i}}{(q ; q)_{i}}(-1)^{i} q^{-\binom{i}{2}}(a b)^{i} \sum_{n=0}^{\infty} P_{n}(y, x) \frac{t^{n+i}}{(q ; q)_{n}} \sum_{k=0}^{\infty} Z_{k}\left(x q^{n}, y, a q^{-i}, b q^{n} ; q\right) \frac{s^{k}}{(q ; q)_{k}} . \tag{3.3}
\end{align*}
$$

Equating the coefficients of $t^{n} s^{m}$ on both sides, we get the required result.
Set $a=0, b=1$ and exchang x and y in the inverse linearisation formula for $Z_{n}(x, y, a, b ; q)$ (4.2), the inverse linearisation formula for the bivariate Rogers-Szegö polynomials for polynomials $h_{n}(x, y \mid q)$ is obtained:

$$
h_{n+m}(x, y \mid q)=\sum_{i=0}^{n} \sum_{j=0}^{m}\left[\begin{array}{l}
n \\
i
\end{array}\right]\left[\begin{array}{c}
m \\
j
\end{array}\right] q^{i(m-j)} P_{i+j}(x, y) .
$$

5. The \boldsymbol{q}-Difference Equation and the $\mathbb{S}\left(\boldsymbol{a}, \boldsymbol{b} ; \boldsymbol{\theta}_{\boldsymbol{x}}\right)$ operator

In this section, a q-difference equation is presented and solved. The solution is then expressed in terms of the operator $\mathbb{S}\left(a, b ; \theta_{c}\right)$. With this method, an operator identity for the operator $\mathbb{S}\left(a, b ; \theta_{c}\right)$ and the generating function for the polynomials $Z_{n}(x, y, a, b ; q)$ were verified.

Proposition 5.1 Let $f(a, b, c)$ be an analytic function of three variables in a neighborhood of (a, b, c) $=(0,0,0) \in \mathbb{C}^{3}$ satisfying the q-difference equation

$$
\begin{align*}
c q^{-1}\{f(a, b, c) & -f(a, b q, c)\} \\
& =b\left\{a f\left(a, \frac{b}{q}, \frac{c}{q}\right)-f\left(a, b, \frac{c}{q}\right)+f(a, b, c) a f(a, b / q, c)\right\} . \tag{5.1}
\end{align*}
$$

Then we have

$$
\begin{equation*}
f(a, b, c)=\mathbb{S}\left(a, b ; \theta_{c}\right)\{f(a, 0, c)\} \tag{5.2}
\end{equation*}
$$

where $\mathbb{S}\left(a, b ; \theta_{c}\right)$ acts on the parameter c.
Proof. Let

$$
\begin{equation*}
f(a, b, c)=\sum_{n=0}^{\infty} A_{n}(a, c) b^{n} \tag{5.3}
\end{equation*}
$$

where A_{n} is independent of b. Substituting the (5.3) into (5.1) the following is obtained
$c q^{-1}\left\{\sum_{n=0}^{\infty} A_{n}(a, c) b^{n}-\sum_{n=0}^{\infty} A_{n}(a, c)(b q)^{n}\right\}$

$$
\begin{gathered}
=b\left\{a \sum_{n=0}^{\infty} A_{n}(a, c / q)\left(b q^{-1}\right)^{n}-\sum_{n=0}^{\infty} A_{n}\left(a, \frac{c}{q}\right) b^{n}+\sum_{n=0}^{\infty} A_{n}(a, c) b^{n}\right. \\
\left.-a \sum_{n=0}^{\infty} A_{n}(a, c)\left(b q^{-1}\right)^{n}\right\} .
\end{gathered}
$$

which can be rewritten as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} c q^{-1}\left(1-q^{n}\right) A_{n}(a, c) b^{n} \\
& \quad=\sum_{n=0}^{\infty}\left\{-\left(1-a q^{-n}\right) A_{n}\left(a, c q^{-1}\right)+\left(1-a q^{-n}\right) A_{n}(a, c)\right\} b^{n+1} \\
& \quad=\sum_{n=0}^{\infty}-\left(1-a q^{-n}\right)\left\{A_{n}\left(a, c q^{-1}\right)-A_{n}(a, c)\right\} b^{n+1} .
\end{aligned}
$$

If the coefficients of b^{n} on both sides are equated, the result is:

$$
\begin{aligned}
A_{n}(a, c) & =-\frac{\left(1-a q^{1-n}\right)}{\left(1-q^{n}\right)}\left\{\frac{A_{n-1}\left(a, c q^{-1}\right)-A_{n-1}(a, c)}{c q^{-1}}\right\} \\
& =\frac{a q^{1-n}\left(1-q^{n-1} / a\right)}{\left(1-q^{n}\right)} \theta_{c}\left\{A_{n-1}(a, c)\right\} .
\end{aligned}
$$

In an iterative process, the following is obtained:

$$
\begin{equation*}
A_{n}(a, c)=\frac{a^{n} q^{-\binom{n}{2}}(1 / a ; q)_{n}}{(q ; q)_{n}} \theta_{c}^{n}\left\{A_{0}(a, c)\right\} \tag{5.4}
\end{equation*}
$$

By set $b=0$ in (5.3), we obtain

$$
\begin{equation*}
f(a, 0, c)=A_{0}(a, c) \tag{5.5}
\end{equation*}
$$

If (5.5) is substituted into (5.4) and then the result is substituted into (5.3), the following is obtained:

$$
\begin{aligned}
f(a, b, c) & =\sum_{n=0}^{\infty} A_{n}(a, c) b^{n} \\
& =\sum_{n=0}^{\infty} \frac{q^{-\binom{n}{2}}(1 / a ; q)_{n}}{(q ; q)_{n}}(a b)^{n} \theta_{c}^{n}\{f(a, 0, c)\} \\
& =\mathbb{S}\left(a, b ; \theta_{c}\right)\{f(a, 0, c)\} .
\end{aligned}
$$

This completes the proof.
Theorem 5.2 We have

$$
\mathbb{S}\left(a, b ; \theta_{c}\right)\left\{(c t ; q)_{\infty}\right\}=\frac{(c t ; q)_{\infty}}{(b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}}
$$

provided that $|b t|<1$.
Proof. The Proposition 5.1 is used in order to prove this theorem. Rewriting the q-difference equation (5.1) the result is as follows:

$$
\begin{align*}
& c q^{-1}\{f(a, b, c)-f(a, b q, c)\} \\
& \quad-b\left\{a f\left(a, \frac{b}{q}, \frac{c}{q}\right)-f\left(a, b, \frac{c}{q}\right)+f(a, b, c)-a f\left(a, \frac{b}{q}, c\right)\right\}=0 \tag{5.6}
\end{align*}
$$

Let

$$
\begin{align*}
& f(a, b, c)=\frac{(c t ; q)_{\infty}}{(b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}} \\
&=(c t ; q)_{\infty} \sum_{k=0}^{\infty} \frac{(1 / a ; q)_{k}}{(q ; q)_{k}}(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k} \tag{5.7}
\end{align*}
$$

Now, we can use the q-Gospers algorithm $[14,15,16]$ to verify that $f(a, b, c)$ satisfies the q difference equation (5.6). Setting $b=0$ in (5.7), the result is:

$$
\begin{equation*}
f(a, 0, c)=(c t ; q)_{\infty} . \tag{5.8}
\end{equation*}
$$

If (5.7) and (5.8) are substituted into (5.2), the result will be as follows:

$$
(c t ; q)_{\infty} \sum_{k=0}^{\infty} \frac{(1 / a ; q)_{k}}{(q ; q)_{k}}(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k}=\mathbb{S}\left(a, b, \theta_{c}\right)\left\{(c t ; q)_{\infty}\right\} .
$$

By using (2.1), we get the required result.
Now the q-difference equation (5.1) can be rewritten as :

$$
\begin{align*}
& \left(x q^{-1}-b\right) f(a, b, x)-x q^{-1} f(a, b q, x)-a b f\left(a, \frac{b}{q}, \frac{x}{q}\right)+b f\left(a, b, \frac{x}{q}\right)+a b f\left(a, \frac{b}{q}, x\right) \\
& \quad=0 . \tag{5.9}
\end{align*}
$$

Theorem 5.3 Let $f(a, b, x)$ be a three variables analytic function in a neighborhood of $(a, b, x)=(0,0,0) \in \mathbb{C}^{3}$ satisfying the q-difference equation (5.9) and $f(a, 0, x)$ has the following series expansion

$$
f(a, 0, x)=\sum_{n=0}^{\infty} A_{n} P_{n}(y, x)
$$

where A_{n} is independent of x, then

$$
\begin{equation*}
f(a, b, x)=\sum_{n=0}^{\infty} A_{n} Z_{n}(x, y, a, b ; q) \tag{5.10}
\end{equation*}
$$

Proof. Setting $c=x$ in equation (5.2), this is obtained:

$$
\begin{aligned}
f(a, b, x) & =\mathbb{S}\left(a, b ; \theta_{x}\right)\{f(a, 0, x)\} \\
& =\mathbb{S}\left(a, b ; \theta_{x}\right)\left\{\sum_{n=0}^{\infty} A_{n} P_{n}(y, x)\right\} \\
& =\sum_{n=0}^{\infty} A_{n} \mathbb{S}\left(a, b ; \theta_{x}\right)\left\{P_{n}(y, x)\right\} \\
& =\sum_{n=0}^{\infty} A_{n} Z_{n}(x, y, a, b ; q) .
\end{aligned}
$$

Next, the generating function for polynomials $Z_{n}(x, y, a, b ; q)$ is reproved with the use of the q-difference equation method.
Theorem 5.4 (The generating function for $Z_{n}(x, y, a, b ; q)$). We have

$$
\sum_{n=0}^{\infty} Z_{n}(x, y, a, b ; q) \frac{t^{n}}{(q ; q)_{n}}=\frac{(x t ; q)_{\infty}}{(y t, b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}}, \quad \max \{|y t|,|b t|\}<1
$$

Proof. Let $f(a, b, x)$ be the right-hand side of the equation above:

$$
f(a, b, x)=\frac{(x t ; q)_{\infty}}{(y t, b t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q, q / b t ; q)_{k}}
$$

$$
\begin{equation*}
=\frac{(x t ; q)_{\infty}}{(y t ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(1 / a ; q)_{k}}{(q ; q)_{k}}(-1)^{k} q^{-\binom{k}{2}}(a b t)^{k} . \quad \text { (by using (2.1)) } \tag{5.11}
\end{equation*}
$$

Employing the same technique used in Theorem 5.2, it can be demonstrated that the q difference equation (5.9) is satisfied by (5.11). Setting $b=0$ in (5.11), then we get

$$
\begin{aligned}
f(a, 0, x) & =\frac{(x t, q)_{\infty}}{(y t ; q)_{\infty}} \\
& =\sum_{n=0}^{\infty} P_{n}(y, x) \frac{t^{n}}{(q ; q)_{n}}
\end{aligned}
$$

With Theorem 5.3, the following results is obtained:

$$
A_{n}=\frac{t^{n}}{(q ; q)_{n}}
$$

By using (5.10), we get the required result.

Conclusions

The polynomials $Z_{n}(x, y, a, b ; q)$ has been introduced and identity is given to establish the operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$. Also, the operator proof for the generating function with its extension and the Rogers formula for $Z_{n}(x, y, a, b ; q)$ is provided. In addition, we introduce a solution to a q-difference equation then it is expressed in terms of the operator. We also use the q difference method to recover an identity of the operator $\mathbb{S}\left(a, b ; \theta_{x}\right)$ and the generating function for the polynomials $Z_{n}(x, y, a, b ; q)$. Finally, many results and outcomes are given.

References

[1] G. Gasper and M. Rahman, Basic Hypergeometric Series, $2^{\text {nd }}$ ed., Cambridge University Press, Cambridge, MA, 2004.
[2] G.E. Andrews, The Theory of Partitions, Cambridge Univ. Press, 1985.
[3] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley, New York, 1983.
[4] J. Goldman and G.-C. Rota, On the foundations of combinatorial theory, IV: Finite vector spaces and Eulerian generating functions, Stud. Appl. Math., vol. 49, pp. 239-258, 1970.
[5] W.Y.C. Chen, A.M. Fu and B. Zhang, "The homogeneous q-difference operator", Adv. Appl. Math., vol. 31, pp. 659-668, 2003.
[6] W.Y.C. Chen, Husam L. Saad and L.H. Sun, The bivariate Rogers-Szegö Polynomials, J. Phys. A: Math. Theor., vol. 40, pp. 6071-6084, 2007.
[7] Z.-G. Liu, Two q-difference equations and q-operator identities, J. Difference Equ. Appl., vol 16, pp. 1293-1307, 2010.
[8] S. Roman, More on the umbral calculus, with emphasis on the q-umbral caculus, J. Math. Anal. App., vol. 107, pp. 222-254, 1985.
[9] W.Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series, I, Mathematical Essays in Honor of Gian-Carlo Rota, Eds., B.E. Sagan and R.P. Stanley, Birkhäuser, Boston, pp. 111-129, 1998.
[10] J.P. Fang, q-Differential operator identities and applications, J. Math. Anal. Appl., vol. 332, pp.1393-1407,2007.
[11] V.Y.B. Chen and N.S.S Gu, "The Cauchy operator for basic hypergeometric series", Adv. Appl. Math., vol. 41, pp. 177-196, 2008.
[12] J.-M. Zhu, The solution of four q-functional equations, 2010, https://doi.org/10.48550/arXiv.1001.0299 .
[13] S.A. Abdul Hussein, The q-Operators and the q-Difference Equation, M.Sc. thesis, University of Basrah, Basrah, Iraq, 2010.
[14] W.Y.C. Chen, Peter Paule and Husam L. Saad, Converging to Gosper's algorithm, Adv. in Appl. Math., vol. 41, pp. 351-364, 2008.
[15] W.Y.C. Chen and Husam L. Saad, On the Gosper-Petkovšek representation of rational functions, J. Symbolic Comput., vol. 40, pp. 955-963, 2005.
[16] M. Petkovšek, H.S. Wilf, D. Zeilberger, $A=B$, A. K. Peters, 1996.

[^0]: *Email: hus6274@hotmail.com

