

175

12 Deep Learning Approach
for Classification of
Alzheimer’s Disease

Abbas H. Hassin Alasadi and Faten Salim Hanoon
University of Basrah

CONTENTS

12.1 Introduction ... 176
12.2 Deep Learning ... 177
12.3 DL Building Block .. 178
12.4 Convolutional Neural Network (CNN) ... 180

12.4.1 Basic Building Blocks of CNNs ... 181
12.4.1.1 Convolutional Layer .. 181
12.4.1.2 Pooling Layer ... 182
12.4.1.3 Activation Layer ... 183
12.4.1.4 Batch Normalization Layer .. 184
12.4.1.5 Dropout Layer .. 184
12.4.1.6 Fully Connected Layer .. 184

12.4.2 Training CNN ... 184
12.4.3 Basic CNN Architecture ... 185

12.4.3.1 LeNet-5 .. 185
12.4.3.2 AlexNet .. 185
12.4.3.3 ZFNet ... 186
12.4.3.4 VGG ... 186
12.4.3.5 GoogLeNet .. 187
12.4.3.6 ResNet .. 187

12.5 Proposed Framework .. 188
12.5.1 Data Collection Stage ... 189
12.5.2 Data Preparation Stage ... 189

12.5.2.1 Convert to RGB ... 189
12.5.2.2 Resize ... 189
12.5.2.3 Augmentation ... 189
12.5.2.4 Splitting .. 191
12.5.2.5 Shuffling .. 191

12.5.3 Model Selection Stage .. 191
12.5.3.1 Algorithm Selection ... 191
12.5.3.2 Hyperparameter Tuning ... 194

12.5.4 Training Stage ... 194

DOI: 10.1201/9781003326182-12

176 Intelligent Internet of Things for Smart Healthcare Systems

12.5.5 Validation Stage .. 195
12.6 Evaluation Metrics .. 196

12.6.1 Confusion Matrix .. 196
12.6.2 Accuracy ... 196
12.6.3 Recall .. 196
12.6.4 Precision ... 197
12.6.5 F1-Score .. 197

12.7 Experimental Results .. 197
12.8 Conclusion .. 197
References .. 199

12.1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurological disease, which worsens over
time. Additionally, it is regarded as the most common cause of dementia [1]. The
term AD was coined in 1901 when Dr. Alois Alzheimer discovered a disease in a
patient named Auguste Deter, who died of the disease in 1906 [2] (see Figure 12.1).
The disease that would bear his name was first described in the scientific literature
in 1910. The symptoms of AD are a decrease in memory, an impairment of cogni-
tive abilities, a lack of logical thinking and judgment, and difficulty in expression
and comprehension. Symptoms result from damage or destruction of brain cells
that impair thinking, learning, and memory. As the disease progresses gradually,
nerve cells in other parts of the brain are damaged, resulting in a total loss of brain
function. As life expectancy increases, the number of people suffering from AD is
expected to rise dramatically in the future.

According to the World Alzheimer’s Report [3] statistics, an estimated 50 million
people had AD in 2015. By 2050, this number is expected to increase to 131.5 million
people worldwide.

 FIGURE 12.1 Dr. Alois Alzheimer (left) and Auguste Deter (right). Deter was Dr. Alois
Alzheimer’s patient and the world’s first patient diagnosed with AD [2].

177Deep Learning Approach for Classification of Alzheimer’s Disease

12.2 DEEP LEARNING

Deep learning (DL) is a branch of machine learning and a subfield under the umbrella
term “ Artificial Intelligence” that involves building large neural network models
capable of making accurate d ata-driven decisions [4]. The relationship between
artificial intelligence, machine learning, and DL is shown in F igure 12.2. Dechter
developed the concept of DL in 1986 [5]. In recent years, two key technological
trends have driven the growth of DL. First, a huge amount of data is freely available.
According to IDC, the global datasphere will reach 175 zettabytes by 2025 [6]. DL is
particularly suited for complex data cases, and there are huge datasets to work with.

Second, one of the major factors for the widespread adoption of DL has been the
innovation and advancement in the computational capabilities of parallel computing
hardware, which has made it easy to parallelize the computations required for deep
learning on these devices. DL has the following advantages over machine learning:
The most important aspect of DL is that DL algorithms can automatically extract
features from raw data, which helps to improve accuracy on a variety of problems [4].
In contrast, processing raw data and extracting features in traditional machine learn-
ing is limited and requires extensive expertise. It is considered a labor-intensive task
that requires and consumes a significant amount of time and project budget. DL has
a high learning capacity and also performs better based on the learning outcomes [7].
The depth of the model is the other aspect that distinguishes DL from other machine
learning techniques. DL neural networks have multiple layers and a wide breadth of
applications, so DL can solve highly complex problems [8]. Data dependency is a

Artificial Intelligence - Computers
with the ability to reason as humans

Machine Learning –
Computers with the ability to
learn without being explicitly
programed

Deep Learning –
Network capable of
adapting itself to new
data

 FIGURE 12.2 The relationship between artificial intelligence, machine learning, and DL [4].

178 Intelligent Internet of Things for Smart Healthcare Systems

feature of DL. Relevant experiments have shown that the larger the amount of data
available, the better the performance of DL.

Some tasks, such as image recognition, face recognition, and natural language
processing, even outperformed human performance [9]. DL has excellent porta-
bility [10]. Due to the superior performance of DL, numerous frameworks such as
MATLAB, TensorFlow, and Pytorch are now available for DL deployment. These
frameworks are compatible with a variety of platforms, including Windows,
Linux, and Mac OS. DL is now used by most online businesses and h igh-end
consumer technologies. For example, Facebook uses DL to analyze text in online
conversations. Google and Microsoft also use DL for machine translation and
image search.

In addition, DL systems now run on all modern smartphones. It is used as a stan-
dard technology for speech recognition and face recognition on digital cameras. DL
is also considered to be at the heart of s elf-driving cars. It is used for localization
and mapping, motion planning and control, environmental awareness, and driver
state tracking. In healthcare, DL is used to analyze medical imaging scans (X-rays,
CT, and magnetic resonance imaging (MRI)) to make diagnoses. Convolutional
neural networks (CNNs) have gained prominence in a variety of fields, including
image processing and analysis, computer vision tasks, and medical imaging appli-
cations such as cerebral microbleed detection [11], automatic myocardial infarction
detection [12], brain tumor segmentation [13], and COVID-19 detection [14]. In
this chapter, CNN architecture is used in order to solve the four-stage classification
problem of AD.

12.3 DL BUILDING BLOCK

Artificial neural networks (ANNs), also known as feedforward neural networks
(FNNs) or multilayer perceptrons (MLPs), are the fundamental building blocks
of numerous DL models that have achieved considerable success in process-
ing high-dimensional imaging datasets [4]. ANNs simulate the neural network
systems of the human brain. The human brain, which functions as the nerve
system’s command center, is composed of billions of neurons linked by approxi-
mately (1,014) synapses. Each neuron has three parts: a cell body, dendrites, and
an axon, and is regarded as the brain’s computing unit. The neuron takes input
signals from its dendrites, processes them, and then transmits output signals
via its axon. The biological neuron structure of the human brain is depicted in
Figure 12.3a.

According to the mathematical model depicted in F igure 12.3b, signals (Si) that
depend on the strength of synapses (Wi) interact multiplicatively (SiWi) with the
dendrites of other neurons. This model can be used to demonstrate how synapse
strengths (w eights) can learn and control one neuron’s influence on other neurons.
 Figure 12.3 illustrates the path taken by all signals from dendrites to the body cell,
which accumulates all incoming signals. When the sum surpasses a specific thresh-
old, neurons fire and send a signal spike via the axon.

In 1958, Rosenblatt created the perceptron [16], the world’s first learning neural
computer, to imitate human learning. The perceptron is an abstract model of a single

179Deep Learning Approach for Classification of Alzheimer’s Disease

 FIGURE 12.3 (a) Biological neuron and (b) mathematical model for an artificial neuron
[15].

neuron that has one output and several inputs. The output of the perceptron is the
sum of all the weighted inputs xi plus the bias b as expressed in Equation (12.1).

∑
n

f ()x b= + (ϕ x wi i .) … (12.1)
i=1

The Heavyside step function is denoted by the symbol ()ϕ , described by Equation
(12.2).

 1 if 0x ≥ϕ ()x = … (12.2)
 0 else

This network was used to perform binary classification. If the summation result is
greater than or equal to zero, the network votes for the first class, and if the summa-
tion result is less than zero, the network votes for the opposite class.

Neural networks have been developed to improve the limited representational
capabilities of the perceptron. They are made up of a series of arranged layers, each
of which comprises a collection of perceptrons known as units or neurons. The input
layer is the first layer, the output layer is the last, while layers that lie between the
input and output layers are referred to as hidden layers. The nodes in one layer are
connected to those in the next and previous layers. These connections are weighted
edges, called weights. One of the most commonly used architectures is the multilayer
perceptron, which has multiple hidden layers.

DL uses an architecture known as “d eep neural networks. ” Deep neural net-
works are a type of neural network that contains numerous hidden layers of neu-
rons. For a neural network to be considered deep, at least two hidden layers are
required [4]. However, most DL networks contain many more than two hidden layers

180 Intelligent Internet of Things for Smart Healthcare Systems

Hidden layers

Input 1

Input layer Output layer

Input 2
Output 1

ohnh2h1i

Output n
Input n

 FIGURE 12.4 ANN with multi-hidden layers [18].

(s ee F igure 12.4). The key point is that the depth of a network is defined by the num-
ber of hidden layers plus the output layer. However, deeper networks empirically
outperform external networks with one hidden layer and have lower generalization
errors. Nielson [17] attributes the superior performance of deeper networks to learn-
ing a complex hierarchy of concepts. In image classification, after the network has
obtained all the required information from the input layer, each hidden layer detects
a different set of features in an image, ranging from less detailed to more detailed.
For example, the first hidden layer detects edges and lines, the second layer detects
shapes, and the third layer detects specific image elements, such as a face or a wheel.
The predictions of the network are made in the output layer. The predicted image
classes are compared to the labels that were manually inserted by humans. If they
are wrong, the network uses a technique called backpropagation (w hich will be dis-
cussed later) to adjust its learning process in order to provide more accurate estimates
in subsequent iterations. After a sufficient amount of training, a network can make
classifications automatically without the need for human intervention.

12.4 CONVOLUTIONAL NEURAL NETWORK (CNN)

A CNN is a special ANN that applies image processing directly to pixels without
requiring any prior processing [19]. Yann LeCun proposed it for effective image rec-
ognition [4]. It is a part of DL technologies. CNNs are used in various applications,
including image classification, segmentation, and pattern recognition [20,21]. Due
to its autonomous nature, it has become an important tool for machine vision and
artificial intelligence. A convolutional layer consists of units and an atypical neural
network but with a different order and connection of units. The main differences
between them and neural networks are the following:

1. The units are not arranged in one dimension but three dimensions. The
colored image is responsible for the three-dimensional arrangement. A
colored image typically has three channels (red, green, and blue), each of

181Deep Learning Approach for Classification of Alzheimer’s Disease

which is represented by a two-dimensional matrix. As a result, ConvNet’s
input is a t hree-dimensional matrix. The output of a convolutional layer is a
 three-dimensional matrix with two-dimensional feature maps multiplied by
the number of filters in that layer. Each filter generates one feature map.

2. Weight sharing: The use of the same weights for various output units is
called weight sharing, which results in ConvNet having one property, fea-
ture invariance to translation. This means that the feature is present on the
entire input.

3. Local connectivity: Local connectivity is a term that relates to the concept
of each neuron being connected to a portion of the input image, as con-
trasted to a neural network in which all neurons are connected to the full
input image. This contributes to the reduction of the total number of param-
eters in the system and increases the computation efficiency.

12.4.1 basic building blocks of cnns

In this section, the basic layers of the CNN will be explained in detail.

12.4.1.1 Convolutional Layer
The convolutional layer is the building block of the CNN algorithm. It is responsible
for extracting the essential and useful features from the input images using a set of
trainable filters that form a feature map [22]. Convolution is a mathematical tech-
nique in which a filter is applied to an n -dimensional field (image). The filter also
consists of a set of numbers called weights or parameters. The values are multiplied
by the original pixel values of the image as the filter slides over or convolves the input
image [23]. In other words, it multiplies element by element. All of these multiplica-
tions are summed. When the filter slides over the entire image, the result is a filtered
image (called the feature map). In one layer, many filters are applied to the initial
image, and each filter represents a set of weights that were learned during the train-
ing process. Equation (12.3) expresses the convolution operation.

m f
j → =()s t, ,∑∑r xz ()y e. f

j . ,()w h … (12.3)
z x ,y

where r xz (), y represents an element of the input image tensor RZ, x is the x th coor-
dinate under consideration of an image, y is the yth coordinate under consideration of
an image, z is the index of the channel, e f

j (w, h) is the index of the f th convolutional
filter f j of the j th layer, J is the total number of layers, j is the layer number, F is the
total number of filters of the j th layer, f j is the filter number of the j th layer, w is the
wth row under consideration, h is the hth column under consideration, S is the total
number of rows of the feature matrix, T is the total number of columns of the feature
matrix, s is the sth row under consideration, t is the tth column under consideration,
and m f

j (s, t) is an element of the feature map shown in the notion:

M mf
j = … f

 j m()1,1 , ., f
j ()s t, ,…m Sf

j (),T

where M f
j is the input feature matrix for the j th layer and the f th neuron.

182 Intelligent Internet of Things for Smart Healthcare Systems

As shown in Figure 12.5, the filter matrix whose size is (3 × 3) was used with the
matrix in a region in the input image whose size is (3 × 3) to perform a dot product
multiplication. Then, the resulting matrix elements are added, and the sum yields a
single numerical value (target pixel) on the feature map. This process is repeated by
moving the matrix of the filter over the input matrix to complete the feature map by
multiplying the dot product by each remaining combination of 3 × 3 sized areas. A set
of filters are applied to an input image and the resultant feature maps are combined
to provide the final output of a single convolutional layer.

Convolutional layers have two other key concepts: strides and padding [24]. A
stride is the number of pixels that a kernel or filter moves across the input matrix. The
default value for strides is 1, but occasionally a stride greater than 1 is used to mini-
mize feature maps. At the same time, padding is used when the filter does not fit the
input matrix. Padding is classified into two types: valid padding, which discards the
input matrix’s edge pixels, and null or equal padding, which adds zeros to the edges
to make the filter fit the input matrix. In addition, two hyperparameters are important
for convolution operations: the first is the kernel size, which is usually 3 × 3 but can
sometimes be 5 × 5 or 7 × 7, and the second is the number of kernels, which deter-
mines the depth of the output feature maps [25].

12.4.1.2 Pooling Layer
The pooling layer (also called the down-sampling layer) is responsible for reducing
the spatial size of the convolved feature [26]. Dimensionality reduction reduces the
computational power required to process the data. As a result, it reduces the number
of parameters and the risk of over-fitting the data. It also helps in extracting the most

Convolution filter
(Sobel Gx)

Source pixel

3 0 1 5 0 3 0 3

2 6 2 4 3 0 3 0

2 4 1 0 6 1 4 1

3 0 1 5 0 3 0 2

2 6 2 4 3 2 3 0

2 4 1 0 6 2 1 1

2 6 2 4 4 0 3 6

2 4 1 0 6 1 6 1

-1 0 1

-2 0 2

-1 0 2

-3

Destination pixel

(-1×3)+ (0×0)+ (1×1)+
(-2×2)+ (0×6)+ (2×2)+
(-1×2)+ (0×4)+ (1×1) = -3

 FIGURE 12.5 Visualization of the convolution process [24].

183Deep Learning Approach for Classification of Alzheimer’s Disease

 FIGURE 12.6 Pooling operation (m ax pooling, average pooling) [24].

important and useful features. The fact that there are no learnable parameters in any
of the pooling layers should be noted. Pooling operations, like convolution opera-
tions, use hyperparameters like filter size, stride, and padding [25]. Equation (12.4)
illustrates the pooling operation, where P f

j represents the feature map after pooling
the jth layer for the f th Input feature map M f

j , gp (). determines the type of pooling
operation.

P gf = f
j p ()M j … (12.4)

Max pooling is the most widely used pooling method, where patches are taken from
the input feature maps, the highest value is output, and the rest is discarded (s ee
F igure 12.6). In practice, max pooling is often used with a filter size of 2 × 2 and a
stride of 2. Average pooling is the other type of pooling operation. Average pooling
returns the average value of the pixels of the image covered by the kernel. Usually,
this operation is performed only once before the fully connected layers.

12.4.1.3 Activation Layer
Typically, after each convolutional layer, an activation layer is applied. It gives non-
linear characteristics to a system that has recently completed a linear calculation in a
convolutional layer. The activation function serves as a decision-making mechanism
and facilitates the learning of complex patterns. Utilizing the appropriate activation
function helps accelerate the learning process. The activation function for a con-
volved feature map is defined by Equation (12.5).

K gf = f
j a ()M j … (12.5)

According to the formula of Equation (1 2.5), a convolution’s output (M f
j) is given to

an activation function ga (.), which adds nonlinearity and returns a transformed out-
put K f

j for the jth layer. A variety of activation functions are used in the literature to
inculcate nonlinear combinations of features, such as sigmoid, tanh, maxout, SWISH,

184 Intelligent Internet of Things for Smart Healthcare Systems

rectified linear unit (ReLU), and versions of ReLU, such as leaky ReLU, ELU, and
PReLU. ReLU and its variants, on the other hand, are recommended because they
help overcome the vanishing gradient problem [27].

12.4.1.4 B atch Normalization Layer
These layers are typically placed after activation layers, yielding normalized activa-
tion maps by subtracting the mean and dividing it by the standard deviation for each
training batch. The network is forced to periodically change its activations to zero
mean and unit standard deviation as the training batch passes through these layers
by including batch normalization layers. This acts as a regularizer for the network,
accelerates training, and reduces the network’s reliance on careful parameter initial-
ization [28]. Equation (12.6) illustrates batch normalization for a transformed feature
map F k

l .

 M f −µ
N f

j = j B
 … (12.6)

σ ε2
B +

where M f
j is the input feature map, and µB and σ 2

B represent the mean and variance
of a feature map for a mini batch, respectively. N f

j is the normalized feature map.

12.4.1.5 Dropout Layer
The dropout layer is typically used to control over-fitting to prevent it from occurring
[29,30]. During the forward pass, it discards a random activation parameter set by
setting it to zero to ensure that the neural network will not affect the training samples
overmatching, thereby alleviating o ver-fitting issues.

12.4.1.6 Fully Connected Layer
The fully connected layer is typically found at the network’s end and is utilized for
classification purposes. It is a global operation, unlike pooling and convolution. It
receives inputs from the feature extraction layers and analyses the outputs of all the
previous layers at a global level. As a result, a nonlinear combination of selected
features is created, which is used to classify the data.

The network uses a fully connected layer to map higher level activation map-
pings to the output layer classification and construct an n -dimensional vector, where
n denotes the number of classifications in the output layer [31]. This n-dimensional
vector represents the probability of the recognized image in N classifications.
 Figure 12.7 illustrates the fundamental building blocks of a typical CNN.

12.4.2 tRaining cnn

A CNN is trained by finding kernels in convolutional layers and weights in fully con-
nected layers that reduce the differences between output predictions and predefined
 ground-truth labels in the training dataset. A backpropagation algorithm is a popular
approach to neural network training that relies heavily on the loss function, and gra-
dient descent optimization algorithm. A loss function computes the performance of
a model under certain kernels and weights using forward propagation on a training

185Deep Learning Approach for Classification of Alzheimer’s Disease

 FIGURE 12.7 The fundamental building blocks of a typical CNN [28].

dataset. Learning parameters such as kernels and weights are updated according to
the loss value using a backpropagation algorithm and gradient descent.

Fully training a new CNN from scratch is not without challenges. First, a CNN
requires large amounts of labeled data for the training process, which can be dif-
ficult to obtain, especially in medical imaging. In addition, training a CNN requires
the use of many computational and storage resources. Otherwise, without these
resources, the training process would take a very long time. Tuning hyperparameters
is time-consuming and complicated and may lead to o ver-fitting or u nder-fitting,
resulting in poor model performance. Researchers have developed a promising alter-
native method, called transfer learning, to overcome these obstacles.

Transfer learning involves improving a new task by transferring knowledge from
a previously learned task [32].

12.4.3 basic cnn aRchitectuRe

In this section, the basic CNN architectures are explained.

12.4.3.1 LeNet-5
The L eNet-5 is the first CNN architecture proposed by LeCun et al. [33] in 1998 for
classifying handwritten digits. The L eNet-5 consists of five trainable layers, of which
three are convolutional, and two are fully connected. The first two convolutional lay-
ers are each followed by a max-pooling layer and two fully connected layers follow
the last convolutional layer. The final layer of these fully connected layers serves
as a classifier that can classify ten digits. The architecture of LeNet-5 is shown in
Figure 12.8.

12.4.3.2 AlexNet
Krizhevky et al. [34] created the first large CNN model called AlexNet in 2012,
which is based on LeNet and is employed to classify ImageNet data. It has eight

186 Intelligent Internet of Things for Smart Healthcare Systems

 FIGURE 12.8 The architecture of L eNet-5 [36].

 FIGURE 12.9 The architecture of AlexNet [36].

layers for learning, the first five of which are convolutional and the last three of
which are fully connected [35]. Because it was developed for ImageNet data,
the final output layer classifies the input images with 1,000 units into one of
the ImageNet dataset’s 1,000 classes. The architecture of AlexNet is shown in
Figure 12.9.

12.4.3.3 ZFNet
Zeiler and Fergus presented ZFNet [37] at E CCV-2014. It has a similar design to
AlexNet, with the exception that the first convolutional layer uses 7 × 7 filters with
Stride 2. When it comes to the first convolutional layer of AlexNet, Krizhevky et al.
employed an 11 × 11 filter with Stride 4. As a result, ZFNet exceeds AlexNet in terms
of efficiency, earning it the title of ILSVRC-2013 winner. Figure 12.10 depicts the
ZFNet architecture.

12.4.3.4 VGG
VGG is one of the most widely used CNN architectures, introduced in 2014 by
Simonyan and Zisserman. VGGNet’s popularity arises from its simple architecture
and the use of s mall-scale filters for convolutional processes [36]. This network illus-
trates that, when used, a stack of filters of size 3 × 3 in convolution operation has the
same effective effect as a stack of large-sized filters. For example, two layers of filter
with a size of 3 × 3 have the same effect as a filter with a size of 5 × 5 in convolution
operation. Three layers of filters with a size of 3 × 3 have the same effect as filters
with a size of 7 × 7. The important thing is that when filters of small size are used, the

187Deep Learning Approach for Classification of Alzheimer’s Disease

image size 224

filter size 7

stride 2

Input Image

3 55
5

96

96

2
13 3

2561

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

6 256

Layer 6 Layer 7 Output

C
class

softmax
4096
units

4096
units

256384384
256

26110 131313

33
11

3×3 max
pool

stride 2

3×3 max
pool

stride 2
3×3 max pool
stride 2

contrast
norm.

contrast
norm.

 FIGURE 12.10 The architecture of ZFNet [36].

 FIGURE 12.11 The architecture of VGG [36].

number of parameters in the network is reduced. The architecture of VGG is shown
in Figure 12.11.

12.4.3.5 GoogLeNet
GoogLeNet was proposed by Szegedy et al. in 2014. In contrast to the traditional CNN
models previously addressed, GoogLeNet [36] employs network branches rather than a
 single-line sequential architecture. The GoogLeNet has 22 learnable layers and is built
using the Inception Module, which represents the fundamental building block for this
network. This module’s processing occurs in parallel across the network. Each module is
composed of convolution layers with filters of the following sizes: 1 × 1, 3 × 3, and 5 × 5,
which operate in a parallel way, resulting in combined feature maps with extremely high
dimensions. To address the issue of the generated feature maps having high dimensions,
they used the inception module to reduce the dimensions (a s illustrated in Figure 12.12).

12.4.3.6 ResNet
Backpropagation over a deep CNN (a C NN with a large number of layers, e.g., 1,000)
requires the computation of loss gradients (errors) concerning the corresponding
weights in the neurons of each layer that update these weights. This task uses the
derivative operation, which causes the gradients to become smaller and smaller. For
this reason, the neurons in the earlier layer receive minimal gradients (sometimes
the gradients become almost zero), which causes the weights in the previous layer
to receive only minor updates, and learning for these layers becomes slow and inef-
ficient. This is known as the “ vanishing gradient problem” [36].

The residual neural network, known as ResNet, was proposed in 2016 by He et al.
[38] to solve this problem. ResNet ranked first in the 2015 ILSVRC classification

188 Intelligent Internet of Things for Smart Healthcare Systems

 FIGURE 12.12 On the right, simple inception module, with dimensionality reduction on the
left inception module [36].

identity

relu
+

relu

x

weight layer

weight layer

xF(x)

F(x) + x

 FIGURE 12.13 Structure of residual block [36].

competition with an error rate of 3.57. ResNet inventively uses shortcuts known
as “ skip connections,” i.e., direct connections between two non-consecutive layers
[39,40]. Adding the input x to the output after a few convolutional layers avoids the
vanishing gradient problem. Residual blocks are designed to fit a residual mapping
F(x) rather than the desired underlying mapping H(x) to assist in the optimization of
deeper models, and entire ResNet architectures are built by stacking residual blocks.
F igure 12.13 illustrates the concept of a residual block. If the input is x, the output of
the convolutional layer is F(x), which is added to x as a mapping input, and the result-
ing output H(x) = F(x) + x is passed to the next layer. This is much simpler than fitting
an identity map through a collection of nonlinear layers, and the network does not
need to include additional parameters and computations. At the same time, the train-
ing speed and effectiveness of the model can be significantly increased as the number
of layers increases. This residual block structure can effectively solve the gradient
disappearance problem in deep networks [38]. There are two types of residual blocks
in ResNet. While the first type is suitable for training shallow networks, the second
type (bottleneck) is recommended for more than 50 layers. Moreover, both types
have a similar time complexity.

12.5 PROPOSED FRAMEWORK

Accuracy in medical diagnosis is more important than anything else, even more
important than speed of diagnosis. After all, the wrong diagnosis of an ordinary
person as a patient causes severe consequences and psychological pressure, as well as

189Deep Learning Approach for Classification of Alzheimer’s Disease

diagnosing a patient, as normal, leads to the development of the disease because the
wrong diagnosis, in this case, will delay treatment. Therefore, building an automated
medical diagnostic system must be of a high level of accuracy.

This section presents the general architecture of the proposed framework. The
proposed framework consists of the following stages: data collection, data prepara-
tion, model selection, and training stage to build the model that helps in diagnosis,
validation, and evaluation. Each stage is independent of the other and is responsible
for implementing a specific function. At the same time, these stages can communi-
cate with each other since the result of one stage will be the input to the following
stage. F igure 12.14 describes the proposed framework.

12.5.1 data collection stage

Data collection is the first step in the machine learning pipeline for training the
selected model. The accuracy of machine learning systems’ predictions is only good
when the data used to train them is good. Therefore, the first stage in the framework
of the proposed work in this chapter is to collect data and obtain it from data sources
related to this work in order to solve the research problem, test the hypothesis, and
evaluate the results.

In this chapter, the Alzheimer’s brain MRI dataset was obtained from the open
access of the Kaggle website. The dataset contains 6,400 images with a size of 176 × 208
pixels. It has four classes (NonDemented, MildDemented, ModerateDemented,
VeryMildDemented) with a n on-uniform distribution of the images per class.

12.5.2 data PRePaRation stage

This stage contains four steps for preparing the selected data:

12.5.2.1 C onvert to RGB
In this step, the images are converted to RGB because the network used in our work
is pre-trained on color images.

12.5.2.2 Resize
In this step, the size of images is changed to different sizes according to the selected
experiment, for example, (50 ×50), (75× 75), and (125 × 125). This step decreases
the time for training the neural network by lowering the number of pixels in an
image because more pixels in an image lead to an increase in the model’s complexity.
Another reason is that try the training of the network with different sizes of images.

12.5.2.3 Augmentation
Because of the non-uniform distribution of images in each class, new training exam-
ples are generated using one of the data augmentation techniques only on the training
set to improve deep neural network generalization capabilities and prevent over-fitting.
Horizontal flipping is the augmentation technique used in this step. This technique
works by shifting all of the pixels in an image in the horizontal direction, or in other
words, by reversing the entire rows and columns of image pixels horizontally.

190 Intelligent Internet of Things for Smart Healthcare Systems

 FIGURE 12.14 Flowchart of the proposed framework for early diagnosis of AD.

191Deep Learning Approach for Classification of Alzheimer’s Disease

12.5.2.4 Splitting
The dataset is separated into two independent sets; the training set and the testing
set. The training set is then partitioned into a validation set and a new training set.
The proposed model is trained using the new training set. In contrast, the validation
set periodically evaluates the model’s performance during the training phase to avoid
 over-fitting problems. The testing set is later used to evaluate how well the model
generalizes to unseen data.

12.5.2.5 Shuffling
Shuffling is the last step in data preparation. This step shuffles the training data after
each epoch to pass different inputs to the neurons in each epoch. This procedure pre-
vents the model from learning the order of training samples and thus prevents bias.
This step eventually helps the training to converge quickly so that the network can
provide better generalizations.

By way of the validation set and testing set, no shuffling process was performed.
During the validation phase and testing phase, there is no updating process for the
model’s parameters. During the validation and testing phases only, accuracy and loss
are calculated. Their calculation method is not sensitive to the order of samples, so
shuffling does not affect the testing and validation data.

12.5.3 model selection stage

In this stage, the structure of a model is chosen. The algorithm and hyperparameters
for the training stage are preliminarily determined.

12.5.3.1 Algorithm Selection
In this chapter, two CNNs are studied to build a model for the early diagnosis of AD.
The structure of each network and its components are explained in detail.

12.5.3.1.1 ResNet-50 Architecture
 ResNet-50 is a residual DL network that deals with vanishing gradients in deep CNNs.
During backpropagation, jump connections are used to jump across three layers.

The residual block in ResNet-50 always consists of 1 × 1, 3 × 3, and 1 × 1 convo-
lutional layers stacked on top of each other. Figure 12.15 illustrates the concept of a
residual block in ResNet-50.

The architecture of resnet50 consists of the following components:

 1. A convolutional layer contains 64 different kernels. Each kernel has a size
of 7 × 7 and a step size of two, followed by a max-pooling layer of the same
size as the kernel step.

2. The first residual block contains a convolutional layer that has 64 kernels
and each kernel is in the size of 1 × 1. Another convolutional layer follows
this layer with 3 × 3 and 64 kernels. The final layer is also a convolutional
layer that has 256 kernels and each kernel has a size of 1 × 1. This block is
repeated three times, giving this step nine layers.

3. The second residual block contains a convolutional layer which has 128
kernels and each kernel is in the size of 1 × 1. Another convolutional layer

192 Intelligent Internet of Things for Smart Healthcare Systems

1 * 1 convolution

3 * 3 convolution

1 * 1 convolution

+

 FIGURE 12.15 Structure of bottleneck block in ResNet-50.

follows this layer with 3 × 3 and 128 kernels. The final layer is also a convo-
lutional layer which has 512 kernels and each kernel has a size of 1 × 1. This
block is repeated four times, giving this step 12 layers.

4. The third residual block contains a convolutional layer which has 256 ker-
nels and each kernel is in the size of 1 × 1. Another convolutional layer
follows this layer with 3 × 3 and 256 kernels. The final layer is also a con-
volutional layer which has 1024 kernels and each kernel has a size of 1 × 1.
This block is repeated six times, giving this step 18 layers.

5. The fourth residual block contains a convolutional layer which has 512
kernels and each kernel is in the size of 1 × 1. Another convolutional layer
follows this layer with 3 × 3 and 512 kernels. The final layer is also a con-
volutional layer which has 2048 kernels and each kernel has a size of 1 × 1.
This block is repeated six times, giving this step nine layers.

6. This is followed by an average pooling layer, followed by a fully connected
layer with 1,000 nodes, replacing this with four nodes according to the number
of disease stages. The final layer is a softmax function, resulting in one layer.

In each residual block, after the convolutional layer come the batch normalization
layer and then the activation function layer that uses ReLU, except for the last convo-
lutional layer, which is only followed by batch normalization.

12.5.3.1.2 ResNetF Architecture
ResNetF is a modified residual neural network that is proposed based on ResNet50.
The modification of RESNET50 is made as follows:

193Deep Learning Approach for Classification of Alzheimer’s Disease

 1. A convolution layer that has 64 different kernels. The size of each kernel is
7 × 7 and each has a step size of 2, followed by a m ax-pooling layer with the
same step size as the kernel.

2. The number of convolution layers is increased by repeating the first residual
block three times, the second residual block six times, the third residual block
seven times, and the fourth residual block three times. The expanding number
of convolution layers leads to the extraction of richer and more diverse features
from the different layers. Because the more deeply embedded the network is,
the more abstract the features that are extracted. Thus, the network’s ability to
extract features improves, and its effectiveness in diagnosing AD is increased.
As a result, 58 convolution layers are structured in the proposed network.

3. Each residual block has a different number of kernels and comprises three
convolution layers with different kernel sizes. Following the first and second
layers are the batch normalization and activation function layers. As for the
final layer, it is followed only by the batch normalization layer. F igure 12.16
illustrates layers of the residual block.

4. The average pooling layer is used after the last residual block. Then, to
ensure that o ver-fitting is effectively avoided when this network is used, a
dropout layer is added before the fully connected layer. The dropout ratio is
set to 50%. In the end of the network, a fully connected layer was added that
contains four nodes, based on the number of disease stages, and it concludes
with a softmax function. See F igure 12.17.

5. In ResNet50, the ReLU is commonly used as an activation function.
Basically, on CNN, ReLU takes the negative parts of its input and drops
them to zero, and retains the positive parts. However, these negative inputs
may contain useful feature information that could aid in the development of
 high-level discriminative features [41]. If a neuron’s output is 0, its gradient

1 * 1 convolution

Batch Normalization

Activation Function Layer

3 * 3 convolution

1 * 1 convolution

Batch Normalization

Activation Function Layer

Batch Normalization

 FIGURE 12.16 Layers of the residual block.

194 Intelligent Internet of Things for Smart Healthcare Systems

OutputAvg pool

S
of

tm
ax

F
ul

ly
 C

on
ne

ct
ed

D
ro

po
ut

 FIGURE 12.17 Last layers in ResNetF architecture.

 FIGURE 12.18 Modified residual neural network (ResNetF) structure.

will never update its weight, resulting in the neuron never being activated.
When the network contains a high number of inactive neurons, the con-
vergence of the model becomes extremely difficult. This may prevent the
network from learning and result in underperformance. Accordingly, this is
referred to as the dying ReLU problem [42].

6. For this reason, ReLU is replaced with leaky ReLU (LReLU) in order
to prevent any potential loss of input information. LReLU has added an
alpha parameter to the semi-axis of ReLU, resulting in a slight gradient
but not zero. Nodes that were previously inactive with ReLU will now be
 weight-adjusted. Figure 12.18 shows the ResNetF network.

12.5.3.2 Hyperparameter Tuning
Hyperparameters are parameters whose values are used to control and regulate the
learning process. The adjustment of hyperparameters has a significant impact on the
accuracy of the trained model. Therefore, an optimal set of hyperparameters must be
selected for the learning algorithm before it is trained. This process is called hyper-
parameter tuning. Experiments have been conducted to tune the hyperparameters,
which are shown in T able 12.1.

12.5.4 tRaining stage

In this stage, five experiments have been conducted to train the ResNetF architecture
from scratch and perform transfer learning with the ResNet-50 architecture using the

195Deep Learning Approach for Classification of Alzheimer’s Disease

 TABLE 12.1
A Set of Experiments to Tune the Hyperparameters

Hyperparameter EXP1 EXP2 EXP3 EXP4 EXP5

Size of image (50× 50) (50 ×,50) (75× 75) (125× 125) (125× 125)

Size training sample 65% 70% 70% 80% 80%

Size validation sample 35% 30% 30% 20% 20%

No. of training samples 3,328 3,584 3,584 4,096 4,096

No. of validation samples 1,793 1,537 1,537 1,025 1,025

Batch size 10 20 20 40 40

Length training batches 333 180 180 103 103

Length valid batches 180 77 77 26 26

No. of epochs 30 50 50 100 100

Learning rate 0.05 0.03 0.03 0.0003 0.00001

hyperparameters. In particular, two architectures are used in the experiments dur-
ing the training phase. First, a pre-trained network (ResNet-50) is used to initialize
the weights. Transfer learning was performed using a technique called off- the-shelf
(OTS) transfer learning. In this approach, the last dense layer of the original net-
work was replaced by a new dense layer corresponding to the number of classes in
our task. In the standard approach, all layers of the ResNet-50 network except the
last layer (classifier) are used for feature extraction. The weights of the last layer
were adjusted to meet the requirements of our task. Second, a modified version of
ResNet50 (ResNetF) is used to perform the training from scratch by randomly ini-
tializing the network parameters.

The training dataset was fed into our training networks during each epoch in
batches form. Cross-entropy is used as the loss function. It is used when there are
more than two classes in a classification problem. Adam is used as the optimizer, and
the backpropagation algorithm was used to train the network. In the previous chapter,
Adam and the backpropagation algorithm are described in detail.

12.5.5 validation stage

In this stage, a validation set is used, which is a sample of data that does not partici-
pate in the model training process. This data is used for the purpose of measuring
the performance of the model after each epoch during the training phase to adjust the
parameters of the model. The validation accuracy and loss compute the validation set
to assess the model’s performance after each epoch. This can determine whether the
model suffers from bias (under-fitting) or variance (over-fitting). If the model suffers
from over-fitting or under-fitting, the hyperparameters are retuned and the network
is trained again. However, when the validation accuracy improves, the validation
loss decreases. In this case, the training process continues until an optimal model is
obtained. Then, the model with its parameters is saved as an H5 file to preserve the
learned features after reaching the desired accuracy level. After that, the model is
imported into the evaluation stage for final testing.

196 Intelligent Internet of Things for Smart Healthcare Systems

12.6 EVALUATION METRICS

Classification model performance is evaluated using unseen data (testing data) by the
following metrics [19,43].

12.6.1 confusion matRix

The confusion matrix is a two-dimensional matrix that can visualize the performance
of the classification model, also known as the error matrix. By default, the confusion
matrix is designed for b inary-class classification. However, it can also be extended
to classify multiple classes. An example of a confusion matrix for b inary-class clas-
sification is shown in T able 12.2.

The row labels positive and negative refer to the model’s predictions. In contrast,
the column labels positive and negative refer to the dataset’s ground-truth labels. As
for the entries inside the confusion matrix, they represent the following:

True positive (TP): the number of instances correctly categorized as positive by
the model.

True negative (TN): the number of instances correctly categorized as negative by
the model.

False positive (FP): the number of negative instances incorrectly categorized as
positive by the model.

False negative (FN): the number of positive instances incorrectly categorized as
negative by the model.

12.6.2 accuRacy

Model accuracy is defined as the ratio of correctly classified samples to the total
number of samples. It is denoted mathematically by Equation (12.7).

TP + TN
Accuracy = … (12.7)

 TP T+ +N FP F+ N

12.6.3 R ecall

The recall is the ratio of truly positive predicted instances to all positive instances
observed in the ground data. It indicates the classification performance of positively
labeled instances. It is also known as sensitivity or true positive rate (TPR). It is
denoted mathematically by Equation (12.8).

 TABLE 12.2
Example Confusion Matrix for Binary-Class Classification

Actual Class
Confusion Matrix Positive (p) Negative (N)
Predicted class Positive (p) True positive (TP) False positive (FP)

Negative (N) False negative (FN) True negative (TN)

197Deep Learning Approach for Classification of Alzheimer’s Disease

TP

Recall= … (12.8)
TP + FN

12.6.4 PRecision

Precision is the ratio of correctly predicted truly positive instances among all
instances classified as positive. It is denoted mathematically by Equation (12.9).

TP
Precision = … (12.9)

TP + FP

12.6.5 f1-scoRe

Precision and recall frequently have an inverse relationship, increasing one at the
expense of decreasing the other. Thus, a metric that balances these two metrics is
needed. This is why the F1 score was created. It is known as the harmonic mean of
precision and recall. It is denoted mathematically by Equation (12.10).

Precision × Recall
F1 s− =core 2 × … (12.10)

Precision + Recall

12.7 EXPERIMENTAL RESULTS

 Table 12.3 offerings the final result of the experiment ResNetF, while the accuracy of train-
ing and validation across epochs and the training loss and validation loss across epochs
are shown in Figure 12.19. T able 12.4 shows the performance measures of ResNetF.
Moreover, the confusion matrix of the current experiment is shown in Table 12.5.

12.8 CONCLUSION

AD is a degenerative neurological illness that worsens with age and leads to severe
thinking, memory, and behavioral impairment. It is also considered the most com-
mon cause of dementia. Early diagnosis of AD is crucial because early intervention
in AD slows the progression of the disease, accelerates the development of treat-
ment options in the future, and reduces the financial burden on patients’ families.
Therefore, the task of early diagnosis of AD is the focus of many researchers who
have built many CAD systems to diagnose AD.

 TABLE 12.3
Results of ResNetF

Training Accuracy 99%

Validation accuracy 97%

Train loss 0.04

Validation loss 0.08

198 Intelligent Internet of Things for Smart Healthcare Systems

 FIGURE 12.19 (a) The accuracy of training and validation across epochs and (b) the train-
ing loss and validation loss across epochs.

 TABLE 12.4
Performance of ResNetF

CLASS Accuracy Precision Recall F1-score

CN 97% 0.99 0.97 0.98

MCI 97% 0.99 0.97 0.98

MD 100% 1.00 1.00 1.00

AD 99% 0.95 0.99 0.97

Avg 97% 0.98 0.98 0.98

 TABLE 12.5
Confusion Matrix of ResNetF

Confusion Matrix CN MCI MD AD

Pr
ed

ic
te

d
cl

as
s CN 618 2 0 20

MCI 2 173 0 4

MD 0 0 12 0

AD 4 0 0 444

Actual Class

199Deep Learning Approach for Classification of Alzheimer’s Disease

This chapter aimed to find out whether the early diagnosis of AD can be reliably
performed by using MRI of the brain together with a DL algorithm known as a CNN.

Therefore, an enhanced residual neural network known as ResNetF is proposed
to classify the four stages of AD by increasing the number of convolutional layers
that effectively improve the network’s ability to detect as many AD biomarkers as
possible. Replacing the activation function (ReLU) with a leaky ReLU can also solve
the problem of losing useful features that could help construct h igh-level discrimina-
tive features and reduce training time. To avoid over-fitting, a dropout layer is added
before the fully connected layer to train all layers in our architecture from scratch
without over-fitting problems.

REFERENCES

 [1] J. Poirier and S. Gauthier, Alzheimer’s Disease: The Complete Introduction. Dundurn,
Canada, 2014.

[2] R. Sahyouni, A. Verma, and J. Chen, Alzheimer’s Disease Decoded: The History,
Present, and Future of Alzheimer’s Disease and Dementia. 1st ed. World Scientific,
Singapore, 2016.

[3] M. Prince, A. Wimo, M. Guerchet, G. Ali, Y. Wu, M. Prina, “ World Alzheimer Report
2015”. The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost
and Trends, Alzheimer’s Disease International, London, 2015.

[4] J. D. Kelleher, Deep Learning. Illustrated edition. The MIT Press, Cambridge, MA,
September 10, 2019.

[5] H. Abdulkarim and M. Z. Al-Faiz, “ Online multiclass EEG feature extraction and rec-
ognition using modified convolutional neural network method,” Int. J. Electr. Comput.
Eng., vol. 11, no. 5, p p. 4016–4026, 2021, doi: 10.11591/ ijece.v11i5.pp4016-4026.

[6] H. Benmeziane, “ Comparison of deep learning frameworks and compilers”, Thesis for
the degree of Master in Computer Science, Université Polytechnique Hauts-de-France,
2020.

[7] J. Schmidhuber, “ Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, p p. 85–117, 2015, doi: 10.1016/ j.neunet.2014.09.003.

[8] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun, “D eep image: Scaling up image recogni-
tion,” arXiv preprint arXiv:1501.02876, vol. 7, no. 8, 2015.

[9] Y. Lecun, Y. Bengio, and G. Hinton, “ Deep learning,” Nature, vol. 521, no. 7553,
p p. 436–444, 2015, doi: 10.1038/ nature14539.

[10] M. Wu and L. Chen, “ Image recognition based on deep learning,” 2015 Chinese
Automation Congress (CAC), IEEE, p p. 542–546, 2015, doi: 10.1109/ CAC.2015.7382560.

[11] Q. Dou et al., “ Automatic detection of cerebral microbleeds from mr images via 3D con-
volutional neural networks,” IEEE Trans. Med. Imaging, vol. 35, no. 5, p p. 1182–1195,
2016, doi: 10.1109/ TMI.2016.2528129.

[12] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam, “A pplication
of deep convolutional neural network for automated detection of myocardial infarction
using ECG signals,” Inf. Sci. (Ny)., vol. 415–416, p p. 190–198, 2017, doi: 10.1016/ j.
ins.2017.06.027.

[13] M. M. Thaha, K. P. M. Kumar, B. S. Murugan, S. Dhanasekeran, P. Vijayakarthick, and
A. S. Selvi, “ Brain tumor segmentation using convolutional neural networks in MRI
images,” J. Med. Syst., vol. 43, no. 9, 2019, doi: 10.1007/ s10916-019-14160.

200 Intelligent Internet of Things for Smart Healthcare Systems

 [14] M. Rahimzadeh and A. Attar, “ A modified deep convolutional neural network for
detecting COVID-19 and pneumonia from chest X-ray images based on the concatena-
tion of Xception and ResNet50V2,” Informatics Med. Unlocked, vol. 19, p. 100360,
2020, doi: 10.1016/ j.imu.2020.100360.

[15] Y. Kazemi, “A deep learning pipeline for classifying different stages of Alzheimer’s
disease from fMRI data”, Thesis for the degree of Master in Computer Science, Brock
University, 2017.

[16] H. L. J. van der Maas, L. Snoek, and C. E. Stevenson, “ How much intelligence is there
in artificial intelligence? A 2020 update,” Intelligence, vol. 87, no. May, p. 101548, 2021,
doi: 10.1016/j.intell.2021.101548.

[17] M. Nielsen, Neural Networks and Deep Learning. San Francisco, CA: Determination
Press, 2015.

[18] S. Sharma, S. Sharma, and A. Athaiya, “ Activation functions in neural networks, ” Int.
J. Eng. Appl. Sci. Technol., vol. 04, no. 12, p p. 310–316, 2020, doi: 10.33564/ ijeast.2020.
v04i12.054.

[19] T. Ateeq et al., “E nsemble-classifiers-assisted detection of cerebral microbleeds in
brain MRI, ” Comput. Electr. Eng., vol. 69, p p. 768–781, Jul. 2018, doi: 10.1016/ j.
compeleceng.2018.02.021.

[20] M. Al-Smadi, M. Hammad, Q. B. Baker, and S. A. Al-Zboon, “ A transfer learning
with deep neural network approach for diabetic retinopathy classification, ” Int. J.
Electr. Comput. Eng., vol. 11, no. 4, p p. 2088–8708, 2021, doi: 10.11591/ ijece.v11i4.
pp2088-8708.

[21] R. Poojary, R. Raina, and A. K. Mondal, “E ffect of data-augmentation on fine-tuned
cnn model performance, ” IAES Int. J. Artif. Intell., vol. 10, no. 1, pp . 84–92, 2021, doi:
10.11591/ijai.v10.i1.pp84-92.

[22] S. B. Jadhav, V. R. Udupi, and S. B. Patil, “ Convolutional neural networks for leaf
image-based plant disease classification, ” IAES Int. J. Artif. Intell., vol. 8, no. 4,
pp . 328–341, 2019, doi: 10.11591/ ijai.v8.i4.pp328-341.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Illustrated edition. The
MIT Press, Cambridge, MA, November 18, 2016.

[24] R. Yamashita, M. Nishio, R. Do and K. Togashi, “ Convolutional neural networks: An
overview and application in radiology, ” Insights into Imaging, vol. 9, no. 4, p p. 611–
629, 2018, doi: 10.1007/ s13244-018-0639-9.

[25] G. Currie, “I ntelligent imaging: Anatomy of machine learning and deep learning, ” J.
Nucl. Med. Technol., vol. 47, no. 4, pp . 273–281, 2019, doi: 10.2967/ JNMT.119.232470.

[26] N. Aloysius and M. Geetha, “ A review on deep convolutional neural networks, ” 2017
International Conference on Communication and Signal Processing (ICCSP), IEEE,
p p. 588–592, 2017, doi: 10.1109/I CCSP.2017.8286426.

[27] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “ A survey of the recent architectures
of deep convolutional neural networks, ” Artif. Intell. Rev., vol. 53, no. 8, pp . 5455–5516,
2020, doi: 10.1007/ s10462-020-09825-6.

[28] A. S. Lundervold and A. Lundervold, “A n overview of deep learning in medical imag-
ing focusing on MRI, ” Z. Med. Phys., vol. 29, no. 2, pp . 102–127, 2019, doi: 10.1016/ j.
zemedi.2018.11.002.

[29] P. Mianjy and R. Arora, “ On convergence and generalization of dropout training, ” Adv.
Neural Inf. Processing Syst., vol. 33, pp. 21151–21161, 2020.

[30] A. Labach, H. Salehinejad, and S. Valaee, “ Survey of dropout methods for deep neural
networks, ” arXiv preprint arXiv:1904.13310, 2019.

[31] Q. Xu, M. Zhang, Z. Gu, and G. Pan, “ Overfitting remedy by sparsifying regularization
on fully-connected layers of CNNs, ” Neurocomputing, vol. 328, pp . 69–74, 2019, doi:
10.1016/j.neucom.2018.03.080.

201Deep Learning Approach for Classification of Alzheimer’s Disease

 [32] M. S. AL-Huseiny and A. S. Sajit, “ Transfer learning with GoogLeNet for detection of
lung cancer, ” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 2, p p. 1078–1086, 2021,
doi: 10.11591/ijeecs.v22.i2.pp1078-1086.

 [33] J. Heaton, Artificial Intelligence for Humans, Volume 3: Neural Networks and Deep
Learning. Heaton Research, Inc., CreateSpace Independent Publishing Platform,
October 28, 2015.

 [34] M. Nielsen, Neural Networks and Deep Learning. Determination Press, San Francisco,
CA, 2015.

 [35] R. A. Minhas, A. Javed, A. Irtaza, M. T. Mahmood, and Y. B. Joo, “S hot classification
of field sports videos using AlexNet convolutional neural network, ” Appl. Sci., vol. 9,
no. 3, 2019, doi: 10.3390/ app9030483.

 [36] A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti and D. De, “ Fundamental concepts of
convolutional neural network”, In Recent trends and advances in artificial intelligence
and Internet of Things 2020 (pp. 519–567). Springer, Cham.

 [37] M. Mishra, T. Choudhury and T. Sarkar, “ CNN based efficient image classification
system for smartphone device ”, 2021, doi: 10.21203/ rs.3.rs-428430/ v1.

 [38] K. He, X. Zhang, S. Ren, and J. Sun, “ Deep residual learning for image recognition”,
in Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, p p. 770–778, 2016, doi: 10.1109/ CVPR.2016.90.

 [39] P. C. Nissimagoudar, A. V. Nandi, A. Patil, and H. M. Gireesha, “A lertNet: Deep
convolutional-recurrent neural network model for driving alertness detection, ” Int. J.
Electr. Comput. Eng., vol. 11, no. 4, p p. 2088–8708, 2021, doi: 10.11591/ ijece.v11i4.
pp2088-8708.

 [40] M. A. Ihsan Aquil and W. H. Wan Ishak, “ Evaluation of scratch and pre-trained con-
volutional neural networks for the classification of tomato plant diseases, ” IAES Int. J.
Artif. Intell., vol. 10, no. 2, p p. 467–475, 2021, doi: 10.11591/ ijai.v10.i2.pp467-475.

 [41] E. M. Benyoussef, A. Elbyed, and H. El Hadiri, “D ata mining approaches for Alzheimer’s
disease diagnosis,” International Symposium on Ubiquitous Networking. Springer,
Cham, vol. 10542 LNCS, p p. 619–631, 2017, doi: 10.1007/ 978-3-319-68179-5_54.

 [42] M. Liu et al., “ A multi-model deep convolutional neural network for automatic hippo-
campus segmentation and classification in Alzheimer’s disease”, NeuroImage, vol. 208,
p. 116459, 2020.

 [43] R. Jain, N. Jain, A. Aggarwal, and D. J. Hemanth, “C onvolutional neural network based
Alzheimer’s disease classification from magnetic resonance brain images,” Cogn. Syst.
Res., vol. 57, p p. 147–159, 2019, doi: 10.1016/ j.cogsys.2018.12.015.

	Cover
	Chapter 12 Deep Learning Approach for Classification of Alzheimer’s Disease
	12.1 Introduction
	12.2 Deep Learning
	12.3 DL Building Block
	12.4 Convolutional Neural Network (CNN)
	12.4.1 Basic Building Blocks of CNNs
	12.4.1.1 Convolutional Layer
	12.4.1.2 Pooling Layer
	12.4.1.3 Activation Layer
	12.4.1.5 Dropout Layer
	12.4.1.6 Fully Connected Layer
	12.4.1.4 Batch Normalization Layer

	12.4.2 Training CNN
	12.4.3 Basic CNN Architecture
	12.4.3.1 LeNet-5
	12.4.3.2 AlexNet
	12.4.3.4 VGG
	12.4.3.3 ZFNet
	12.4.3.5 GoogLeNet
	12.4.3.6 ResNet

	12.5 Proposed Framework
	12.5.1 Data Collection Stage
	12.5.2 Data Preparation Stage
	12.5.2.1 Convert to RGB
	12.5.2.2 Resize
	12.5.2.3 Augmentation
	12.5.2.4 Splitting
	12.5.2.5 Shuffling

	12.5.3 Model Selection Stage
	12.5.3.1 Algorithm Selection
	12.5.3.2 Hyperparameter Tuning
	12.5.5 Validation Stage
	12.5.4 Training Stage

	12.6 Evaluation Metrics
	12.6.1 Confusion Matrix
	12.6.2 Accuracy
	12.6.3 Recall
	12.6.5 F1-Score
	12.6.4 Precision

	12.7 Experimental Results
	12.8 Conclusion
	References

