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Abstract: The information obtained from external sources within the cloud and the resulting 
computations are not always reliable. This is attributed to the absence of tangible regulations and 
information management on the part of the information owners. Although numerous techniques 
for safeguarding and securing external information have been developed, security hazards in the 
cloud are still problematic. This could potentially pose a significant challenge to the effective 
adoption and utilization of cloud technology. In terms of performance, many of the existing solu-
tions are affected by high computation costs, particularly in terms of auditing. In order to reduce 
the auditing expenses, this paper proposes a well-organised, lightweight system for safeguarding 
information through enhanced integrity checking. The proposed technique implements a crypto-
graphic hash function with low-cost mathematic operations. In addition, this paper explores the 
role of a semi-trusted server with regard to smart device users. This facilitates the formal man-
agement of information prior to distribution through the IoT-cloud system. Essentially, this facili-
tates the validation of the information stored and exchanged in this environment. The results ob-
tained show that the proposed system is lightweight and offers features such as a safeguarding 
capability, key management, privacy, decreased costs, sufficient security for smart device users, 
one-time key provision, and high degree of accuracy. In addition, the proposed method exhibits 
lower computation complexity and storage expenses compared with those of other techniques 
such as bilinear map-based systems. 

Keywords: data integrity; dynamic integrity checking; lightweight; semi-trust server; one time key; 
smart device user 
 

1. Introduction 
The inherent adaptability and instantaneity serve to generate a number of ad-

vantages for the IoT. These include reductions in hardship in the regulation of storage, 
general information accessibility regardless of location, and evasion of capital costs for 
various items such as hardware, software, and individual upkeep [1]. 

The IoT-cloud system technology is recognised as being the most modern ad-
vancement for the structuring of IT corporations. This is because of its numerous unpar-
alleled benefits such as on-demand self-service, pervasive network accessibility, con-
text-independent asset sharing, quick asset flexibility, employment-based costs, and 
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hazard mitigation [2]. Therefore, the IoT-cloud system has become an innovate system 
that has exerted crucial effects in many organizations. This has seen a rise in the adoption 
of certain IT services by corporations. An important aspect of this change is the fact that 
information on the cloud is obtained from external sources. As such, both corporations 
and individual users have the opportunity to upload information on to the IoT-cloud 
system. 

Although IoT-cloud-based systems have many attractive features, they generate 
unique and difficult safeguarding issues for information obtained from external sources. 
This can be attributed to the fact that IoT-cloud systems are isolated from the regulating 
companies. Consequently, external information decreases a smart device user’s regula-
tion and control of their information. This jeopardises the information stored on these 
IoT-cloud-based systems in a number of ways. For instance, although this infrastructure 
has greater influence and dependability compared with individuals’ computing tech-
nology, individuals continue to encounter various external and internal hazards that 
might affect the accuracy of the information. 

This is exampled by the shortages and violations of the safeguarding methods de-
ployed to protect these IoT-cloud systems. In addition, smart device users are unaware of 
the location of their external information. For instance, financial constraints may make 
organizations deploy cloud storage space, especially for information that is not fre-
quently accessed [3–5]. Another challenge is that IoT-cloud systems potentially conceal 
information misplacement, which may be detrimental to the users. Although outsourcing 
information to the cloud system has financial benefits in terms of expenses and compli-
cations in the lengthy and massive amounts of information storage for smart device us-
ers, the honesty and efficient accessibility of this information is not always assured. This 
negatively affects the effective utilisation of smart device cloud users. 

There are many conventional cryptographic primitives that can be deployed to 
safeguard information stored in the cloud. However, these techniques cannot be imme-
diately employed as smart device users do not have absolute control over the storage of 
their information. In addition, these cryptographic methods may not be appropriate for 
the computation and storage-limited user devices. Therefore, techniques for the suc-
cessful confirmation of the validity of external cloud information in the absence of local 
replications of information have become a serious issue in storing information safely in 
IoT-cloud systems [6–8]. 

The process of downloading information does not represent a feasible method for 
the confirmation of data integrity. This is due to the high costs associated with I/O and 
the transfer of files within the network. Additionally, I/O is typically inadequate for 
identifying information fraud during the process of information retrieval. This is because 
at this stage, information that has been compromised may no longer be salvaged. An-
other major issue is the expansive dimensions of external information and smart device 
users’ restrictions regarding asset abilities. As such, confirming the validity of infor-
mation within the IoT-cloud system can be impractical and cost-ineffective for smart de-
vice users [8,9]. 

The provision of integrity checking for information stored on the IoT-cloud system 
is essential. This is because it ensures that the information is safeguarded and the smart 
device users’ computation assets are protected. To achieve this, additional semi-trusted 
servers may be utilized, which have the abilities that the smart device users’ lack. These 
semi-trusted servers could audit the external information as required and in accordance 
with the audit outcomes. This could be followed by the publication of audit evaluations 
to help smart device users and cloud systems assess the hazards of the cloud provider 
and enhance necessary programs, respectively [7]. In essence, creating integrity hazard 
checking procedures can considerably boost the adoption of IoT-cloud systems. In addi-
tion, this offers techniques for smart device users to evaluate hazards and enhance their 
confidence in these systems. 
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To address this issue, numerous systems deploying various schemes and safe-
guarding methods have been suggested in the literature [6,10–15]. Similarly, there have 
been a number of investigations that have sought to identify solutions that can effectively 
fulfil these demands and offer a high degree of system organisation. They also seek to 
offer stateless confirmation, unrestricted usage, and accessibility to information. In this 
environment, the verifier plays critical roles in that every system has to be classified as 
having either private or public verifiability. 

In order to obtain a high level of competence, private verifiability systems enforce 
computational consequences on smart device users. Nevertheless, public verifiability re-
lieves smart device users of the burden of completing numerous computations to guar-
antee the standards of information storage. For instance, smart device users can request 
another organisation to complete the confirmation processes without committing their 
computation assets. Within the IoT cloud, smart device users could experience unfore-
seen crises. They may also be subjected to an excessive number of recurring confirma-
tions of integrity. As such, incorporating public verifiability in confirmation procedures 
is logical and reasonable. In fact, public verifiability is forecasted to exert a considerable 
influence on achieving the financial benefits for both cloud and IoT. 

The methods of creating alternative organizational integrity checking procedures 
that are not dependent on information encryption are addressed in this paper. To attain 
this, informational honesty through integrity checking within the IoT-cloud system with 
a specific emphasis on information storage is offered. The pervasive nature of the 
IoT-cloud system could potentially heighten the extent of the checking procedures con-
ducted by various individuals who are serving as semi-trust servers. However, the 
checking of these increasing duties by smart device users is both monotonous and un-
manageable. Consequently, many smart device users tend to specifically request that 
semi-trusted servers undertake these duties on a simultaneous basis. This paper ad-
dresses these issues by using an integrity checking system that is founded on a crypto-
graphic hash function. The system includes low complexity mathematic operations and 
the key chain method. It assists semi-trusted servers to conduct integrity checking devoid 
of local replication of the information. This considerably decreases communication and 
computation overheads. The proposed scheme ensures that the semi-trusted server re-
mains unaware of the subject matter of the information which is stored in the IoT-cloud 
system for the duration of the integrity checking procedures. 

When considering the safeguarding capabilities of the IoT-cloud system and issues 
of honesty, the results are certainly multifaceted. The developed system tackles every 
previously identified shortcoming and proposes a lightweight dynamic information 
honesty public integrity checking service. Here, cryptographic hash function with simple 
mathematic operations and the key chain method are utilized to minimize the duration of 
integrity checking. Consequently, this helps semi-trusted servers working as a repre-
sentative of smart device users to manage information prior to the distribution of such 
information to the smart device user. In addition, this confirms the integrity of infor-
mation while avoiding any potentially problematic effects on smart device users. More-
over, this system allows semi-trusted servers to conduct audits in the absence of a local 
replication of the information. Basically, the IoT-cloud system is unable to create an ac-
curate reaction without the necessary information. A one-time key is implemented to 
protect against various security threats. 

The remainder of this paper is organized as follows. In Section 2, we provide an 
overview of Related Work, while in Section 3 the Problem Statement is presented. We 
discuss the Proposed Scheme in Section 4, while the Security Analysis of this scheme is 
presented in Section 5. The results and analyses are described in Section 6. Finally, Sec-
tion 7 concludes the paper. 
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2. Related Works 
The provable data possession (PDP) system was initially established by Ateniese et 

al. [6] and employed an RSA-founded hemimorphic linear authenticators (HLA) to col-
lect a sample of unsystematic file blocks to provide concrete evidence. A different version 
of this system helped to allow for public integrity checking, but this scheme was disad-
vantageous as it provided inadequate safeguarding assurance to protect the data from 
third-party auditors. Curtmola et al. [16] suggested an RSA-founded multiple-replica 
PDP system that could confirm numerous versions of texts. Curtmola’s suggested system 
could not substantiate information complexities. On the other hand, Ateniese et al. [17,18] 
suggested a complicated PDP system, but this system could only substantiate a restricted 
amount of audits. Erway et al. [19,20] suggested a PDP system that encouraged infor-
mation complexities through a conformation skip catalogue, but this system experienced 
inadequate safeguarding protection from third-party auditors; it can check the integrity of 
data blocks of variable sizes, but it is unable to verify the integrity of individual block [21]. 

The initial sentinel-founded Proof of Retrievability (PoR) system ensured infor-
mation availability that included a continual relation between information accessibility 
through codes that rectified mistakes [10]. Shacham and Waters [11] created two com-
pressed PoR systems that were suitable for either private or public integrity checking and 
were both founded on the characteristics of Boneh–Lynn–Schacham, which confirmed 
the protection abilities of the PoR system. Nonetheless, these systems provided inade-
quate safeguarding assurance. Schwarz and Miller [15] created a system that employed 
distribution erasure to code the information so as to ensure greater accessibility, but this 
system was inadequate as the server computations and discussion expenses appeared 
linear within numerous file blocks. 

Wang et al. [8,22,23] conducted an examination on the dominant problems within 
audits on information honesty. One experiment created a third-party auditor system that 
encouraged information complexities through exploiting the conventional Merkle hash 
tree. This system [23] included bilinear characteristics that employed public key-founded 
HLAs that could be unsystematically included into the masking methods for assuring 
that data was safe-guarded from third-party auditors. Additionally, this system also en-
couraged batch integrity checking. However, information was not safeguarded within 
the cloud server. Other researchers such as Chen and Guo [24] created a successful dis-
tant information management confirmation system for static information employing 
RSA-founded modern difficulties techniques. A complex PoR system was created by 
Zheng and Xu [25] through employing the notion of justness within information dy-
namics, founded on a genuine information organization known as range-founded 2–3 
trees and a consistently increasing characteristic system known as 
hash-compress-and-sign. Zhu’s system [26] encouraged information honesty audits 
within hybrid clouds, while Hao et al. [27] suggested a system founded on Sebe’s pro-
cedures [28] for public verifiability that ensured information was safeguarded. 

Wei et al. [29,30] considered the issue of outsourced computation security in cloud 
computing to ensure the IoT-cloud system performed the necessary computations. They 
proposed a privacy preserving and computational integrity checking method, SecCloud, 
that uses the commitment-based sampling (CBS) technique [31] and designated verifier 
signature [32,33] to achieve privacy cheating discouragement, and thus minimize the 
computational cost in cloud computing. To reduce the communication and computa-
tional costs, a batch verification algorithm was suggested for handling various users’ 
requests, concomitantly. They also developed a secure-aware cloud computing envi-
ronment to implement SecCloud in the real world environment [30]. Li et al. [34] ex-
tended this method to support both data integrity and deduplication by using the con-
vergent encryption technique. The existing data integrity checking methods assume that 
the data owner’s secret key is secure, but this is not always true. Yu et al. [35] proposed 
an integrity checking method to mitigate the damage of the data owner’s key exposure 
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issue, in which the secret key of the data owner is updated by employing the binary tree 
structure and the pre-order traversal technique. 

Based on the principal characteristics of the decentralized blockchain, many authors 
have studied schema verification of the data integrity based on blockchain. Liu et al. [36] 
considered that the reliability of the TPA-based framework was not satisfactory and 
proposed a framework based on blockchain to verify the data integrity. Similarly, Yu et 
al. [37] suggested a framework to verify the data integrity based on blockchain for cloud 
storage; the authors used a Merkle tree with a random number for data integrity verifi-
cation without relying on TPA. Wang et al. [38] suggested a scheme to verify data integ-
rity based on blockchain, but with significant improvement in the security and efficiency 
of the verification process to avoid excessive reliance on TPA. While existing systems 
using blockchain to verify data integrity can avoid the issues associated with TPA, they 
entail extensive communication and processing costs [39]. 

There are numerous types of systems and some guarantee the validity of remotely 
stored data within complex safeguarding schemes, but are expensive and thus inappro-
priate for devices with limited sources. The proposed system has a greater efficiency, is 
lightweight, and is better protected than the previously discussed systems. It is founded 
on a cryptographic hash function with the key chain method and can be integri-
ty-checked through a semi-trust server. This scheme [10,11,18,20,22,25] is designed for 
the data integrity verification of the whole dataset. Unfortunately, it suffers from a very 
high computational cost resulting from its reliance on bilinear mapping, so it cannot 
guarantee that the data validation results are entirely correct [39,40]. Thus, this study 
proposes that the suggested system is more suitable than its predecessor in terms of 
smart devices with modest sources or capabilities. Additionally, the safeguarding evalu-
ation and investigative outcomes reveal that the recommended system is vigorous, safe, 
and successful. Table 1 illustrates the contrasts between the safeguarding characteristics 
of numerous systems. 

Table 1. Contrasts of information honesty systems. 

Parameter lightweight IoT-Cloud  
System 

Public Integrity 
Check 

Batch Integrity 
Checking 

Key  
Management 

Our Pro-
posed 

Yes Yes Yes Yes Yes 

[6] No No Yes No No 
[7] No No Yes Yes No 

[10] No No No No No 
[11] No No No No No 
[18] No No No No No 
[20] No No No No No 
[22] No No Yes Yes No 
[37] No Yes Yes No No 
[38] No Yes No No No 
[39] No Yes Yes No No 

3. Problem Statement 
3.1. The Traditional Model 

In the integrity checking model, there are three functions—the semi trust server, the 
smart device user, and the IoT-cloud system. The latter provides services to hold the 
significant volume of data files owned by the smart device user. The role of the semi-trust 
server is to validate the integrity of the IoT-cloud system’s data, as the smart device user 
does not have this capability. 
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In the traditional schemes shown in Figure 1, the smart device user generates the 
public and private parameters, computes the metadata of their files using the public pa-
rameters, and signs the metadata through employing private parameters. The smart de-
vice user also transmits file and metadata to the IoT-cloud system and metadata to the 
semi-trust server. The smart device user sends a request to the semi-trust server to con-
firm that the data have been stored in the IoT-cloud system. The semi-trust server gen-
erates a challenge request and sends it to the semi-trust server. 

 
Figure 1. Architecture of the traditional scheme. 

The IoT-cloud system receives the challenge request and begins calculating the ver-
ification response through employing the parameters of the challenge request for the 
metadata that is stored in the cloud. The IoT-cloud system then sends the verification 
response to the semi-trust server. The semi-trust server receives the verification response 
and confirms the validity of the response by using a bilinear map. Finally, the semi-trust 
server sends a report to the smart device user regarding the data that are stored in the 
cloud. The total computation cost of the bilinear map scheme includes numerous modu-
lar exponential operations that occur when one file of data is processed. This computa-
tion is extremely costly, particularly as substantial information is being audited. How-
ever, due to the large number of data tags, their integrity checking protocols will incur a 
heavy storage overhead on the server. Furthermore, the pub-
lic-integrity-checking-scheme-based bilinear map incurs a heavy computation cost to the 
auditor, which makes the integrity checking system inefficient [21]. 

3.2. Our Proposed Model 
The mechanism of our proposed scheme is different from the mechanisms of the 

traditional scheme. For example, the smart device user generates an owner key that is 
unique for each smart device user, and sends the encrypted file and owner key to the 
semi-trust server. Practically, our scheme only requires one round of communication 
between the smart device user and semi-trust server side, while others require multiple 
rounds. Thus, our work reduces the communication cost as much as possible. 

The upload stage begins once the semi-trust server has received the file and owner 
key from the smart device user. During this phase, the semi-trust server computes the 
metadata for the file by generating two keys by using a cryptographic hash function. One 
of these keys is a challenge key while the other is a verification key. The semi-trust server 
uses the challenge key with the file to generate the metadata. Finally, the semi-trust 
server sends the file and metadata to the IoT-cloud system and deletes the file from its 
local storage. 

The semi-trust server employs the integrity checking stage to verify the integrity of 
the out-sourced data. This process begins with the semi-trust server sending a challenge 
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key to the IoT-cloud system. The IoT-cloud system computes the audit key using the 
metadata with the challenge key of the file and sends the audit key to the semi-trust 
server. The semi-trust server receives the audit key and checks the verification key. If 
these two keys match, then the file is stored correctly. Figure 2 shows the mechanism of 
the proposed scheme. 

To reduce the integrity checking costs, this paper proposes a scheme based on the 
cryptographic hash function, key chain method, and low complexity mathematic opera-
tion. This scheme would be cost-effective and considerably more efficient than the bilin-
ear map-based schemes. 

 
Figure 2. Architecture of the proposed scheme. 

3.3. The Threats Model 
Instead of being trustworthy, the semi-trust server should be regarded as untrust-

worthy. It behaves in a trusted way for public integrity checking, but inspects the data it 
receives. Hence, it may initiate the following attacks [11]: 
• Replay attack. The server may generate the proof from the previous proof or other 

information, without retrieving the actual file. 
• Forge attack. The server may forge the integrity checking key of the file and deceive 

the semi-trust server if the semi-trust server has reused the same challenge key of 
the same file. 

• Replace attack. The server may choose another valid and uncorrupted pair of  file 
and integrity checking parameter to replace the challenged of file, if it has already 
discarded the current file. 

3.4. Design Objectives 
In order to address the previously discussed issues, the system employed within this 

paper attains several safeguarding and execution assurances. For example: 
• Public integrity checking enables a semi-trust server to confirm the validity of in-

formation stored on the IoT-cloud system as requested, and does not require that 
they access a replica of the information in its entirety or partially, or have any further 
online consequences for smart device users. 

• Storage suitability guarantees that the IoT-cloud system is not contamination by 
revealing positive results in the semi-trust server’s audit without storing the smart 
device users’ information. 

• Additionally, bath integrity checking helps a semi-trust server that has confident 
and positive integrity checking abilities to handle numerous integrity checking as-
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signments at the same time that are likely from numerous and varied smart device 
users. 

• Semi-trust servers are lightweight, which helps them to complete audits with the 
lowest level of discussion or calculation expenses. 

4. Proposed Scheme 
This section explains the suggested public integrity checking technique for the 

IoT-cloud system and includes a thorough information outsourcing resolution that also 
applies for confirming information integrity methods. This paper explains the primary 
system and confirms the degree that it encourages semi-trust servers to perform batch 
integrity checking as a representative and on numerous files. This section also explores 
the generalization of the public integrity checking system and its encouragement of dy-
namics information. 

4.1. Definitions and Framework 
This paper employs explanations that are identical to the explanations presented 

within formerly suggested systems within the circumstances of remote data integrity 
confirmation and utilizes guidelines for the public integrity checking system [6,10,11]. 

The public integrity checking system is composed of the four algorithms of KeyGen, 
SigGen, GenProof, and VerifyProof. KeyGen can be defined as the primary creation al-
gorithm that smart device users’ conduct and that helps semi-trust servers to establish 
the system, while semi-trust servers employ SigGen to confirm the metadata. The 
semi-trust server’s procedures for confirming the metadata can be composed of digital 
characteristics. Additionally, the IoT-cloud system utilizes GenProof to confirm accurate 
information storage and semi-trust servers employ VerifyProof to confirm the audit. The 
suggested system is composed of three stages: setup, upload, and audit. 
• The setup stage involves the smart device user starting the confidential guidelines 

through conducting the KeyGen and encrypting raw data file F* to F through the 
elliptic curve cryptography (ECC). 

• The upload stage involves the semi-trust server utilizing the information’s confi-
dential guidelines through completing the KeyGen and prior information proce-
dures F through SigGen, which creates metadata. The semi-trust server stores the 
information F and metadata on the IoT-cloud system and removes the local replica. 
As part of the pre-processing, the user may alter data file F; in such a case, the user 
should notify the semi-trust server. 

• The integrity check stage involves the semi-trust server submitting an audit appeal 
to the IoT-cloud system to guarantee that the IoT-cloud system has stored the suita-
ble information file F during the audit. The IoT-cloud system then formulates a re-
sponse through employing the GenProof and F. Within this stage, the metadata 
serves as an input. VerifyProof is then employed by the semi-trust server to confirm 
the reaction. 
This paper’s regulations presume that the semi-trust server is independent and, as 

such, does not need to sustain and inform circumstances between audits. Independence 
is an attractive characteristic for semi-trust servers, especially within a public integrity 
checking scheme [11]. Broadening the suggested guidelines to include an independent 
integrity checking scheme is not complicated as the confirmation of metadata only has to 
be divided in half and kept with the semi-trust server and IoT-cloud system. The plan 
presented in this paper does not presume further characteristics of the information file. 

4.2. Proposed Scheme Details 
The details of the proposed design to guarantee that the contents of the data cannot 

be extracted are outlined below. It is assumed that the smart device user encrypts the raw 
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data file F∗ into F using an ECC (ECC is more suitable for IoT) [41] to guarantee that 
privacy and security are maintained before data are uploaded to the IoT-cloud system. 

The new design covers three stages: setting-up, uploading, and integrity checking, 
and the procedures for doing so are outlined in this document: 

4.2.1. Basic Scheme 
This section discusses a scenario where a single file is audited. 

1. Setup: An owner key Wk is derived by the smart device user: 

Wk = H(UID||TPAID||CSID) (1) 

where: 
• UID identifies the smart device user and is usually a biometric value. It is also the 

secret key for the smart device users. 
• TPAID identifies the semi-trust server. Using a secure channel, (Wk, F) is sent to the 

semi-trust server by the smart device user. 
• CSID identifies the IoT-cloud system. 
2. Upload: The smart device user sends (Wk, F) to the semi-trust server, which starts 

calculating the metadata of file F. The challenge value of file c, which has a random 
value, is chosen. Thereafter, Wk and c generate the challenge key Ck, as highlighted: 

Ck = H(Wk||c) (2) 

The following step is for the semi-trust server to calculate the challenge hash value 
Ch, which is derived from F and Ck as follows: 

Ch = H(F||Ck) (3) 

The verification key Vk is then generated by the semi-trust server, which selects the 
random verification value v and then deploys this value along with Wk: 

Vk = H(Wk||v) (4) 

The verification key Vk is used to compute the metadata σ using XOR and the chal-
lenge hash value Ch as follows: 

σ = Ch XOR  Vk (5) 

After σ is calculated, the IoT-cloud system receives the file and metadata {σ, F} from 
the semi-trust server. Alternatively, the smart device user receives σ as a receipt 
from the semi-trust server, which thereafter retains the keys, and removes the file F 
from its local storage position. 

3. Auditing: Using a secure channel, the IoT-cloud system receives a request that in-
cludes a challenge key Ck from the semi-trust server. This process validates the in-
tegrity of the data that has been outsourced. When it receives the key the IoT-cloud 
system it initially calculates Cf from F and Ck by employing the cryptographic hash 
function, as per the following: 

Cf = H(F||Ck) (6) 

Lastly, the audit key Ak is generated by the IoT-cloud system, from the metadata σ 
and Cf as follows: 

Ak = σ XOR  Cf (7) 

The semi-trust server then receives the audit key Ak from the IoT-cloud system, and 
upon receipt, the semi-trust server compares it to the verification key Vk. When 
these two keys match each other, it is certain that the file has not been modified and 
has been stored correctly. The verification equation’s validity can thus be proven. 
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V k = ? Ak (8) 

The validity of the preceding verification equation can be proven as follows: 
Proof of Equation (8). 

Ak = σ XOR  Cf 
= σ XOR  H(F||Ck) 
= σ XOR  Ch 
= Ch XOR  Vk XOR  Ch 
= 1 XOR  Vk 

Ak = Vk 

4.2.2. Support Batch Integrity Checking 
The creation of a public integrity checking system within the IoT-cloud system cal-

culations allows the semi-trust server to simultaneously juggle numerous integrity 
checking assignments for various file appeals. Individual integrity checking duties can be 
cumbersome and unsuccessful for the semi-trust server. The individual auditing of these 
tasks for the semi-trust server can be tedious and inefficient. With y auditing delegations 
on y distinct data files. The semi-trust server can then compute two keys, such as Vk and 
Ck, for numerous files, which might cause the IoT-cloud system to try remove every file 
except for the one file required for confirmation. In order to address this issue, the 
semi-trust server creates various confirmation keys Vk for different files through incor-
porating the file identity value FILEID to the following formula: 

V Ki = H(W k||v||F ILEID) (9) 

To confirm the files’ integrity, the semi-trust server submits a single key Ck appeal 
and i where {0 ≤ i ≤ y} to identify the file throughout the integrity checking process. Fur-
thermore, the semi-trust server can submit {i} with an identical key Cki in a single appeal 
for numerous files that are to be audited together. The IoT-cloud system then returns Aki 
for another file. 

4.2.3. Dynamic File Support 
Within the IoT-cloud system calculations, smart device users can regularly retrieve 

and modernize external information for an array of reasons. Therefore, encouraging in-
formation dynamics within public integrity checking systems is essential [17,42,43]. An 
encouraging information dynamic system should involve the following stages. To start 
the process: 
• The smart device user submits an appeal for the file to the semi-trust server. The 

semi-trust server then obtains the appeal and passes it on to the IoT-cloud system. 
• The IoT-cloud system then transmits the file to the semi-trust server and the 

semi-trust server passes it on to the smart device user. 
• The smart device user then alters the file, returns the file to IoT-cloud system, and 

transmits the altered file to the semi-trust server including the information version 
parameter ver. Within this context, ver has the value of 0 or 1: 
• If the ver has a value of 0, this indicates that the file has not been altered. 
• If the ver has a value of 1, this indicates that it has been altered. 

• Upon receiving the file, the semi-trust server considers the ver value to identify the 
next steps. When the ver has a value of 0, then the file has not been altered and no 
further steps are required. However, when the ver has a value of 1: 
• The semi-trust server must create new keys (Ck, Vk) for the altered file and then 

re-calculates Ch and σ. 
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• Once this has been completed, the semi-trust server submits a file appeal to the 
IoT-cloud system to substitute the new file for the old file and the new σ for the 
old σ. 

4.2.4. Support for Continuous Integrity Checking 
The prior section only explored one repetition of an audit. Once an audit has oc-

curred, the IoT-cloud system possesses two keys (Ck and Ak) and, most importantly, Ak. 
The IoT-cloud system then removes a file to retain Ak. Then, when the semi-trust server 
submits a different appeal for an audit, the IoT-cloud system sends Ak and does complete 
new calculations. A key chain method is incorporated into the suggested system to ad-
dress this issue. Our scheme generates fewer parameters, unlike traditional schemes. 
Within the key chain, the keys Ck and Vk are transfigured through the below equation. 

The semi-trust server, for a single file, broadens both keys Ck and Vk to transform 
them into n keys (0 ≤ j ≤ n) through the following equations: 

If j = 0,  Ck0 = H(W k||c)  

V ki0 = H(W k||v||F ILEID)  

If j > 0,  Ckj = H(W k||c||Ckj−1)  

V kij = H(W k||v||F ILEID||Vki(j−1))    0 ≤ j ≤ n  

The semi-trust server repeatedly executes the upload phase by employing the below 
key chain method. Chj is identified from F and Ckj through the following equation: 

Chj = H(F||Ckj) (10) 

The metadata files are then calculated through the XOR function: 

σj = Chj  XOR  V kij (11) 

By this stage, the semi-trust server has obtained the n metadata φ = {σj}, 0 ≤ j ≤ n for 
one file at one-time and transmits φ and F to the IoT-cloud system. 

Throughout the integrity checking process, the semi-trust server unsystematically 
selects a single Ckj and transmits this value to the IoT-cloud system, which the IoT-cloud 
system uses to calculate Cfj through the below equation: 

Cfj = H(F||Ckj) (12) 

The IoT-cloud system then creates the audit key Akj with the below equation: 

Akj = σj  XOR  Cfj (13) 

The IoT-cloud system then transmits the audit key Akj to the semi-trust server, and 
the semi-trust server keeps this key and contrasts it to Vkij to guarantee that the file has 
been stored accurately. Theorem 3 explicates how this is accomplished while protracting 
for multi integrity checking. 

5. Security Analysis 
This section initially establishes a security scheme for the proposed system and then 

validates the system’s security. 

5.1. Security Modelling 
There are four algorithms within the suggested system: KeyGen (), SigGen (), GenProof 

(), and VerifyProof (). This section will provide an explanation of these algorithms. 
• KeyGen (Wk) produces both Vk and Ck. Additionally, KeyGen creates a key chain for 

one-time use. 
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• SigGen (Vk, Ck, F) generates the group of metadata φ. 
• GenProof (Ck, σ, F) generates the poof of data storage P. Practically, P is the auditing 

key Ak. 
• VerifyProof (Ak, Vk) is a comparison algorithm. If Ak = Vk, then the data are correctly 

stored. 
This paper evaluates the proposed system’s security as an alternative to Shacham 

and Waters’ scheme [11]. Shacham and Waters’ scheme encourages public verifiability 
and its essential goal is to attain evidence confirming the system’s accessibility. However, 
its characteristics indirectly guarantee that rivals are unable to produce confirmed evi-
dence of the integrity of file F to any degree, which suggests errors in the counter argu-
ments. 

The proposed system’s security varies from Shacham and Waters [11] proposed 
security scheme for numerous reasons. For example: 
• Within Shacham and Walters’ security scheme, F is not included in the GenProof and, 

thus the IoT-cloud system is able to erase files and storage metadata σ to confirm its 
validity. In order to correct this error, this paper’s proposed system incorporates F 
into GenProof. 

• Within Shacham and Waters’ proposed security scheme, the challenge is incorpo-
rated into the GenProof and VerifyProof, which allows the IoT-cloud system to erase F 
and uses σ to maintain proof (P) once the audit has been effectively completed. 
Therefore, when the semi-trust server requests conducting another audit on the file, 
the IoT-cloud system only provides the semi-trust server with P. In order to correct 
this error, in our proposed scheme, Ck is changed every time; consequently, P is also 
changed every time. The scheme of Shacham and Waters [11] was not designed for 
IoT, especially for smart devices with a minimal size; meanwhile, the proposed 
system was customized to be compatible with the IoT-cloud system and smart de-
vices. The experimental results’ proficiency evaluation section proves the compati-
bility of our work for smart devices in terms of consuming time and communication 
cost. 

5.2. Security Proofs 
The underlying principle in the scheme that we are proposing is that in order for the 

IoT-cloud system to generate a correct response, which is then received by the semi-trust 
server, the data must be stored correctly. 

Definition 1. It is argued that offence algorithms, such as GenProof*(), should not be held by the 
IoT-cloud system. This is because these algorithms might allow smart device users to gain accurate 
evidence of validation and to compute the outcome employed in VerifyProof(). 

Hence, in Definition 1, we show that the IoT-cloud system will not create a correct 
proven result by using GenProof (σ, Ck). Next, we demonstrate that the verification algo-
rithm VerifyProof (Ak, Vk) will fail in the absence of the correctly proven result. 

Theorem 1. One argues that the IoT-cloud system is unable to create an accurate reaction in the 
absence of a file. 

Proof of Theorem 1. Confirms that the IoT-cloud system performs sufficiently with a 
consistent and correct methodology without deviating from the dictated procedures. 
Nonetheless, the IoT-cloud system might ignore or intentionally remove infrequently 
retrieved information files that are recovered and owned by typical smart device users. 
Furthermore, the IoT-cloud system can conceal information, deceptions, or manipulation 
created by hackers or Byzantine malfunctions in order to sustain its status [16]. For ex-
ample, the IoT-cloud system possesses file σ without possessing file F. As a result, the 
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IoT-cloud system has σ. However, the IoT-cloud system cannot create Cf without F. The 
offense algorithm GenProof*(σ, Ck) cannot create Ak as Ak must be calculated using the 
equation Ak = σ XOR Cf. Cf can only be calculated through Cf = H(F||Ck), which means 
that the IoT-cloud system is unable to create an accurate reaction if it does not have the 
right file.   □ 

Theorem 2. Argues that in the absence of an accurate Ak, the verification algorithm VerifyProof 
(P, sk) will not be able to generate the proof correctly. 

Proof of Theorem 2. Suggests that the verification algorithm VerifyProof (P, sk) contrasts 
the audit key Ak and the Vk key. The semi-trust server currently stores Vk, but the 
IoT-cloud system transmits Ak. When the IoT-cloud system is unable to transmit an audit 
key Ak, the algorithm outcomes will be incorrect. When an attacker acquires Ak during 
transmission, the key Ak can no longer be employed as it is a one-time key.   □ 

Theorem 3. Argues that the suggested encouragement system is a one-time key. 

Proof of Theorem 3. Argues that once the audit is complete, the IoT-cloud system pos-
sesses two keys, Ck and Ak, but especially Ak. In order to maintain Ak, the IoT-cloud 
system can erase a file. Therefore, when the semi-trusted server sends the audit of this 
specific file again, the IoT-cloud system will send the audit key Ak file. Thus, the pro-
posed system uses a one-time key generated by the key chain method. The semi-trust 
server for a single file alters both of the keys created through the key chain method (Ck 
and Ak) to create n keys through the following equations: 

If j = 0,  Ck0 = H(W k||c) 

V ki0 = H(W k||v||F ILEID) 
 

If j > 0,  Ckj = H(W k||c||Ckj−1), 

V kij = H(W k||v||F ILEID||V ki(j−1))       when (0 ≤ j ≤ n) 
 

The semi-trust server repeatedly executes the upload phase through the key chain 
method. Within this stage, the semi-trust server possesses the nth metadata (φ = {σj}, 0 ≤ j ≤ n) 
for a single file and transmits φ and F to the IoT-cloud system. Within the integrity 
checking process, the semi-trust server unsystematically selects a single Ckj to transfer to 
the IoT-cloud system. The IoT-cloud system then calculates Cfj and uses σj to create the 
audit key Akj, which is transmitted to the semi-trust server. The semi-trust server then 
puts Akj aside to contrast it to Vkij to guarantee that the file has been accurately stored.   
□ 

Theorem 4. Argues that the suggested system can supply key management. 

Proof of Theorem 4. The suggested system argues that the smart device user obtains 
their key Wk (W k = H(UID||T P AID||CSID)) and transmits it to the semi-trust server. 
The semi-trust server then employs the smart device user key Wk to create two keys, Ck 
and Vk. The opposition key Ck is calculated by employing the cryptographic hash func-
tion (Ck = H(W k||c)) and the verification key (Vk) or (Vk = H(W k||v)). The semi-trust 
server then transmits the opposition key (Ck) to the IoT-cloud system throughout the in-
tegrity checking procedures. The IoT-cloud system then employs the opposition key (Ck) 
to calculate Cf (Cf = H(F||Ck)). Once Cf has been determined, it can be employed to create 
the audit key Ak (Ak = σ XOR Cf), which is transmitted back to the semi-trust server. Thus, 
this system can encourage key management.   □ 

Theorem 5. Argues that the suggested system encourages privacy and confidentiality. 
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Proof of Theorem 5. A semi-trusted server can concurrently handle several integrity 
check tasks within multiple file restore requests using general integrity check procedures. 
Therefore, a semi-trusted server must keep the information private and confidential for 
every smart device user. Within the suggested system, the semi-trust server incorporates 
the file specification value FILEID throughout the creation of the verification key Vk (Vki = 
H(Wk||v||F ILEID)) for every individual file of metadata.   □ 

Theorem 6. Argues that the proposed system can protect against a replay attack. 

Proof of Theorem 6. The hackers conduct repeated attacks by eavesdropping on the Ak 
(integrity checking key) transmission between the IoT-cloud system and the semi-trust 
server. When the transmission is complete, the hacker employs the Ak (integrity checking 
key) to replicate the original copy of the IoT-cloud system when the semi-trust server 
re-requests to audit the file. This flaw within the proposed system can be solved by al-
tering the integrity key Ak after every integrity checking procedure. In addition, Ak is a 
one-time key; thus, the hacker is unable to repeatedly circulate the integrity checking key. 
As a result, the hacker will not be able to complete this type of attack due to system pro-
tection measures.  □ 

6. Proficiency Evaluation 
Public auditing is a very demanding resource in terms of communication costs, 

computational resources, and memory space. This paper assesses the suggested system’s 
proficiency, durability, and validity by evaluating the system based on the intended 
goals. Data integrity checking for limited source devices is a resource-demanding service 
in terms of computational and communication costs. This study compared the computa-
tion and communication costs of the proposed system and the existing audit system 
proposed by Yang and Jia [7]. 

The system’s initial abilities were quantified by calculating the uploading duration 
and integrity checking stages. The discussion expenses were quantified based on the 
overall extent of the integrity checking appeal in contrast with the bilinear map-founded 
system [7]. 

6.1. Computation Cost of the Uploading Stages 
According to Section 4, the semi-trust server needs to generate a challenge key Ck, 

verification key Vk, and metadata σ for each smart device user separately. This study 
evaluated the generation of challenge key Ck, verification key Vk, and metadata σ for the 
system. Figure 3 indicates that the parameter generation cost is proportional to the 
number of smart device users. Note that the system upload cost is one-time and will not 
influence the real-time performance of the integrity checking. 
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Figure 3. Computation cost of the uploading stages in the semi-trust server. 

6.2. Computation Cost of the Integrity Checking Stages 
6.2.1. Computation Cost of the Semi-Trust Server 

This stage contrasts the number of challenges, the number of smart device users, and 
the number of clouds with the semi-trust server’s computation time. In the first instance, 
the semi-trust server’s computation time was assessed depending on the volume of 
challenged files in the single smart device user and the single IoT-cloud system. The size 
of the challenge data was calculated to be equal to 1000 kilobytes. If the number of chal-
lenges reached 1000, then the size of the challenges data was equal to 1000 kilobytes. It 
can demonstrate that there is a linear relationship between the challenge number and the 
computation cost of the semi-trust server. In Figure 4, it is clear that when handling large 
volumes of challenged data, the computational cost is higher in Yang’s solution [7] than 
in the proposed solution; this is because the challenge size key in the proposed system is 
(Ck = 128 bit) and is independent of the challenged data size. In contrast with Yang [7], 
which depends on the size of the data, when the challenge data increases, so does the 
challenge key. Consequently, a highly efficient scheme has been improved in the pro-
posed work. It can also further reduce the computation complexity. 

 
Figure 4. Computation cost on the semi-trust server with the single smart device user and single 
IoT-cloud system. 

In the proposed system, the integrity of vast amounts of data (e.g., petabytes) is 
protected by applying the sampling integrity checking method; this is in contrast with 
the function of an IoT-cloud system. Service level agreements set the frequency and 
sample sizes. During the tests, this study concluded that about 0.223 s are required to 
audit 1000 challenges. However, the computational time required was likely to be small 
because the PC used in this study lacked the computational ability of the semi-trust 
server and the IoT-cloud system. This result confirms that in large-scale IoT-cloud sys-
tems, the proposed scheme for checking the system integrity is practical. 

Next, this review examined the computation cost of the semi-trust server of the 
multi-cloud batch integrity checking scheme based on the number of challenged clouds. 
Figure 5 shows that Yang’s solution [7] incurred a higher computational cost for the 
semi-trust server than the suggested system. This is particularly true when the large-scale 
IoT-cloud system contains a large number of the IoT-cloud system and results because of 
complex algorithms. Yang used the bilinear map, which is a complicated method and 
takes time to obtain results, unlike the proposed system, which uses lightweight opera-
tions, namely the cryptographic hash function, XOR, and concatenation, and calculates 
the results quickly. These were used in Yang’s scheme [7] to support batch integrity 
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checking for multi-cloud. In the proposed scheme, where one smart device user was se-
lected for every ten clouds, the dependency was in the number of challenges. 

 
Figure 5. Computation cost on the semi-trust server with a single smart device user and mul-
ti-cloud. 

Lastly, the general integrity checking protocol used to support the multi-owner 
batch integrity checking in Yang’s scheme [7] was compared (from the perspective of the 
computation cost of the semi-trust server) with this study’s multi-smart device user batch 
integrity checking scheme. As can be observed in Figure 6, the computational costs could 
be significantly reduced when batch integrity checking for multiple owners was under-
taken. Therefore, this study’s solution was considerably more efficient and cost-effective 
than Yang’s scheme [7]. This is due to using the lightweight cryptographic hash function, 
XOR, and concatenation operations that do not require significant time or resources to 
obtain results. In addition, the scheme proposed in Section 4 is short and does not contain 
complex operations. Conversely, Yang used the Bilinear Map method, a complex algo-
rithm that takes a long time to obtain results in a large-scale IoT-cloud system where 
there may be millions or billions of smart device data users. This delay is a factor even 
when the number of smart device data users is 1000 or less. 

 
Figure 6. Computation cost on semi-trust server with multi smart device user and single cloud. 

6.2.2. Computation Cost of the Cloud 
This study looked at the number of files sent to one smart device user (Figure 7) and 

the overall amount of data for smart device users (Figure 8) and compared the computa-
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tion cost of the IoT-cloud system. Compared with the proposed system, it is clear that 
Yang’s scheme [7] incurred a higher computation cost for the IoT-cloud system. 

Furthermore, in Yang’s solution [7], a high computation cost time was observed on 
the IoT-cloud system side; this occurred due to an attempt to reduce the computation cost 
of the semi-trust server by moving the computing loads of the integrity-checking func-
tion to the IoT-cloud system. 

In contrast, the proposed solution led to a lower computation cost time in the 
IoT-cloud system side. This was due to its adoption of low-cost operations to compute 
the proof of data in the IoT-cloud system. 

Consequently, compared with Yang’s scheme [7] which used the Bilinear Map 
method, the proposed solution using lightweight and secure operations offered a low 
computation time and cost for both the semi-trusted server and IoT-cloud side. 

 
Figure 7. Computation cost for the IoT-cloud system with a single smart device user and single 
cloud. 

 
Figure 8. Computation cost for the IoT-cloud system with a multi smart device user and single 
cloud. 

6.3. Cost of Communication 
The communication cost between the semi-trust server and the IoT-cloud system 

server, which consists of the challenge and the proof, is further examined in this section. 
This study reviewed the batch integrity checking between smart device users and 
IoT-cloud systems. For the sake of comparison, it was assumed that the number of chal-
lenged files from each smart device user using different IoT-cloud systems was the same. 
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When reviewing Yang’s scheme [7] on each of the IoT-cloud system servers, it was 
clear that there was a linear relationship between the communication cost of the chal-
lenge data and the number of challenged data blocks from each smart device user. There 
can be many data blocks in a large-scale IoT-cloud system, which means that Yang’s 
system [7] may result in a high communication cost. Alternatively, in the proposed solu-
tion the communication cost has a linear relationship only to the number of challenge 
requests that the semi-trust server sends to the IoT-cloud system at CK = 128 bits. 

Therefore, the results prove that the proposed solution is more cost-effective than 
Yang’s scheme [7]. 

7. Conclusions 
This paper presents a rigorous system for ensuring the integrity, confidentiality, and 

validity of information that is stored in the cloud. The system uses mathematic opera-
tions and a cryptographic hash function to protect information and avoid security 
breaches in the cloud. A semi-trust server cannot uncover or retrieve the subject matter of 
the information contained within the file. XOR and the cryptographic hash function are 
employed to evaluate the integrity and accuracy of the information in the cloud. 

The semi-trust server and IoT-cloud system can execute every function in the sug-
gested system. The semi-trust server transmits records relating to the file’s conditions 
only to the smart device user. Furthermore, the suggested system encourages dynamic 
data, batch integrity checking, and integrity checking via the key chain technique. Public 
integrity checking can be accomplished in the suggested system through the utilisation of 
a semi-trust server. The semi-trust server possesses the skills and abilities that the smart 
device user does not. The semi-trust server is in charge of checking the integrity of the 
information in the IoT-cloud system as a representative of the smart device user. It cannot 
remove information that is stored in the IoT-cloud system throughout the integrity 
checking procedure, which reduces smart device users’ cumbersome and costly auditing 
tasks and eliminates their concerns regarding breaches in the IoT-cloud system resulting 
from external information. 
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