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Abstract 

Although the Basic RRT algorithm is considered a traditional search method, it has been widely used in the field of robot path 

planning (manipulator and mobile robot), especially in the past decade. This algorithm has many features that give it 

superiority over other methods. On the other hand, the Basic RRT suffers from a bad convergence rate (it takes a long time 

until finding the goal point), especially in environments with cluttered obstacles, or whose targets are located in narrow 

passages. Many studies have discussed this problem in recent years. This paper introduces an improved method called (Hybrid 

RRT-A*) to overcome the shortcomings of the original RRT, specifically slow convergence and cost rate. The heuristic function 

of A-star algorithm is combined with RRT to decrease tree expansion and guide it towards the goal with less nodes and time. 

Various experiments have been conducted with different environment scenarios to compare the proposed method with the 

Basic RRT and A-star under the same conditions, which have shown remarkable performance. The time consumed to find the 

path of the worst one of these scenarios is about 4.9 seconds, whereas it is 18.3 and 34 for A-star and RRT, respectively. 

KEYWORDS: Path planning, Autonomous mobile robot, Configuration space, Cost rate, Convergence rate, Grid-map.  

I.  INTRODUCTION 

Since the emergence of humanity and the gradual 

development of societies until the establishment of the first 

civilization, all efforts directed to build that civilization were 

achieved by humans with the help of animals. When 

mechanical machines have been discovered, more tasks 

became easier due to the help of these machines. Robotics, in 

general, is the science that is concerned with trying to 

comprehend the environment in which the robot moves, 

through a set of measuring and sensing equipment that 

attempts to build an integrated vision of what that 

environment is, then guiding the mechanical parts based on 

that information [1]. In the same context, an autonomous 

mobile robot is defined as a machine that has the ability to 

perform a specific job without human intervention (i.e. make 

decisions independently) to decrease the effort and cost. 

Robotics has made big gains over the past years, especially 

in the field of medicine, industry, manufacturing, 

agriculture, space, and army [2,3]. Therefore, it can also be 

defined as the science which represents all the fields that 

have a direct relationship with the robot, such as designing, 

manufacturing, and implementing, as well as the fields of 

navigation, mapping, and others [4]. Navigation is one of the 

most important areas of research that has grown significantly 

in recent years due to the importance of an autonomous 

mobile robot field. This field includes four subfields [5] that 

still need a lot of research and development, such as 

perception, localization, motion control, and path planning. 

Path planning, as a general concept, varies based on the field 

that it represents and may reach far beyond that, such as the 

field of manufacturing and aerospace. In robotics, the 

problem of path planning, which is also called a "Piano 

Mover’s Problem", aimed to develop methods that serve this 

purpose besides equipment capable of dealing with the 

challenges of this field. Rapidly exploring random tree 

(RRT) is one of the classical sampling-based algorithms, 

which is used widely in the field of path planning due to the 

ability of its fast growth within cluttered high-dimensional 

space as well as finding the route that reaching the goal if 

there an existing one. However, it has some problems in 

convergence rate besides the cost. A-star is a classical 

graph-search algorithm, which is used as another path 

planning method. It is able to find the optimal path 

depending on the use of distance-cost but within low 

dimensional space. On the other hand, the A-star algorithm 

has some disadvantages like the high-cost rate, big time 

complexity, and falling within local minima. 

  

The contributions of this work can be summarized as the 

following: 

https://doi.org/
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1. A hybrid method called (Hybrid RRT-A*) is 

proposed by combining both basic RRT and A-star 

algorithms to overcome the rate of bad convergence 

for the basic RRT besides reducing the cost. 

2. Evaluate the performance of the Hybrid RRT-A by 

comparing the results of the cost and convergence 

with Basic RRT and A-star under the same conditions 

(computer hardware and simulation environment). 

The rest of the paper is organized as follows: Section II 

presents the related work of path planning algorithms. 

Section III describes Basic RRT and A-star, as well as the 

proposed methods Hybrid RRT-A* within the same 

environmental conditions. Section IV outlines the 

experiments and results. Section V discusses the final 

results. Section VI presents the conclusions and future 

works. 

II.  RELATED WORK 

Rapidly Exploring Random Tree (RRT), which is 

developed by Steven M. LaValle [6] and James J. Kuffner 

[7], is a type of Roadmaps algorithms (RM). The basic idea 

of RRT is generating random samples from the configuration 

space based on the uniform distribution, then trying to links 

these samples. If the connection is feasible to the nearest 

point and passes entirely through free space without any 

collision of any obstacle, the result then is adding a new 

point to the tree. This algorithm is a single-query scheme 

(single tree), which takes a long time in search operation 

(convergence rate), while it has the ability to explore the 

whole search space with the lowest number of nodes (cost 

rate) compared to the bidirectional schemes. Basic RRT has 

some other advantages over other classical methods that 

make it a good choice for mobile robot path planning, which 

can be summarized as follows: 

•    Completeness algorithm, which can always terminate 

the search by finding the goal point and returning the 

path if there exists one. 

•    Used as a global planner (offline) and also as a 

real-time local planner (online) depending on the 

robot's sensor. 

•    Used for indoor, outdoor high complex, and large 

dimensional space environment. 

•    Dealing with the non-holonomic and Kinodynamic 

constraints efficiently (differential constraints). 

 

This scheme suffered from several problems, like other 

planners [8,9]. The bad rate of convergence is one of these 

problems, especially with a cluttered environment that has 

dynamic and static obstacles. This environment type leads 

usually to reduce the convergence and performance of the 

Basic RRT algorithm due to the slow tree expansion, besides 

the behavior of high randomness. So, as a result, it is not 

preferred to use Basic RRT in such an environment or that 

which has constraints. To overcome these shortcomings, 

Basic RRT has been combined with several other methods. 

RRT-connect [10] is another type of Basic RRT, which 

operates to increase the Basic RRT convergence rate. This 

algorithm is based on the use of two functions: First, the 

greedy function that is used for rapid expansion to increase 

the convergence. Second, the probabilistic navigation 

function of the potential field to avoid falling in the 

local-minimum region. The main disadvantage of 

RRT-connect is the complexity increased in searching time 

for the nearest neighbor. 

On the one hand, unlike Basic RRT, A-star is an 

intelligent graph-search algorithm using the heuristic 

information and can be applied to a configuration space 

topologically [11]. This algorithm is proposed by Peter Hart, 

et al. [12]. It is used as a part of the Shakey project [13] for 

mobile robot path planning, and a special case of the Dijkstra 

algorithm [14]. 

Karaman and Frazzoli [15,16] introduced an extended 

version of the Basic RRT algorithm called RRT*, which 

optimized the path non-optimality problem of the Basic 

RRT. The idea is similar to the RRT except two key 

differences make the influence of RRT* big. First, at each 

iteration, RRT* looks for the node with the lower 

distance-cost among the neighbors until one is found, then 

this node is examined again along with all adjacent nodes 

within a fixed radius to find the lowest-cost node. If a new 

one is found, then replace the old node (cheap) with the new 

one (cheapest). Second, RRT* reconstructs the tree 

frequently until the cheapest node has been reached, and so 

on. This method introduces a smooth path, and closest to an 

optimal solution compared to the Basic RRT, while its 

convergence rate is still weak. In some cases, such as 

cluttered environments within high-dimensional space, 

narrow passages, and if there are local minimum regions that 

cause to trap the mobile robot and lead the navigation to fail, 

it is preferred to use bidirectional approaches such as the 

Bidirectional-RRT* which proposed by M. Jordan and A. 

Perez [17]. 

Another form of Basic RRT called RRT*-smart algorithm 

is proposed [18,19]. This algorithm has two phases: the first 

for path optimization and the second for intelligent 

sampling. In the first stage, the RRT*-smart acts as RRT* 

and the redundant nodes will be removed from the initial 

path, and then defining beacon nodes. In the second phase, 

the algorithm starts an intelligent sampling rather than a 

random one. These nodes tend to expand towards the 

surroundings of the beacon nodes based on a predefined 

constant that is used as a biasing parameter that can be 

determined statically or adaptively. Once again, the resulting 

path is optimized in the same way that in the first stage, then 

iterations continue with more biasing towards beacons until 

the path is improved. 

An improved variant of Basic RRT called RRT-Dijkstra is 

presented by Mahmut Dirik and A. Fatih Kocamaz [20]. This 

method is used as a global planner for mobile robot path 

tracking within a cluttered environment. It depends on taking 

the advantages of both Basic RRT and Dijkstra to obtain a 

new method that can overcome the problems which the 

previous two methods suffered from. The RRT-Dijkstra tries 

to produce an optimal path (safe, short, and smooth). This 

method bypassed the costly path problem due to the benefit 

of using Dijkstra's advantages of finding the shortest 

distance to the goal. On the other hand, it is computationally 

expensive. 
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Ayawli, et al. [21] proposed another version of Basic RRT 

called Optimized RRT-A*. In this method, four techniques 

are used. First, the step size-based RRT, which biases the 

search toward the target faster. Second, morphological 

dilation is another technique that helps to obtain a 

collision-free path by extending the external obstacle's 

boundaries. Third, the heuristic information obtained 

through the A-star algorithm is used to calculate the lowest 

distance-cost for neighbor nodes at each iteration to shorten 

the path. Finally, applying the interpolation of cubic spline to 

make the final path smoother. This method contributed to 

avoiding the region of local-minima besides providing an 

optimized path and reducing the computational load while 

navigating in a partially known environment. 

The Adaptive Hybrid Dynamic Step-size and Target 

Attractive Force-RRT (AHDSTAF-RRT) is an improved 

method introduced by Zhang, et al. [22] which consists of 

two parts. The first part is represented by Basic RRT which 

is responsible for the tree growth, while the second is 

represented by two other techniques (Dynamic step-size & 

Target Attractive Forces). Dynamic step-size (DS-RRT) 

uses a step-size technique within the Basic RRT structure to 

deal with different situations. For example, in the case of 

passing through narrow regions, small steps are used 

whereas big steps are used in the case of open areas to speed 

up a tree growing. Target Attractive Force (TAF-RRT) is 

used to deal with the problem of growing trees in multiple 

directions. Finally, the DS-RRT and TAF-RRT are 

combined to address the most Basic RRT issues while 

preserving the complexity of space and time. 

Zhang, et al. [23] proposed an improved form of the Basic 

RRT that takes the advantages of RRT while trying to 

overcome its drawbacks based on the use of two functions. 

The first is the Target Bias Search strategy (TBS). In this 

strategy, the Improved RRT (I-RRT) attempts to increase the 

convergence speed of the Basic RRT through biasing the 

search towards the goal point instead of searching the entire 

space, by predefining biasing threshold which guides the 

mechanism of RRT random sampling towards the goal, then 

reduces the sampling spread depending on the potential 

resulting value. This process makes the planning more 

accurate besides the ability to deal with planning situations 

in real-time. The problem of RRT path length and sharp turn 

is fixed by using the second technique that is called a New 

Metric Function (NMF). 

III.  THE PROPOSED METHOD 

This section presents the proposed hybrid method called 

(Hybrid RRT-A*). It involves a kind of combination of 

Basic RRT and A-star planners. While the RRT advantages 

are preserved, the heuristic function feature of the A-star 

planner is employed to solve the problem of bad RRT's 

convergence and decrease the overall cost of the resulting 

method. 

A. Hybrid RRT-A* 

 The proposed Hybrid RRT-A* method consists of two 

phases: The first can be represented simply as shown in the 

construct of Algorithm 1, by forming a tree within the 

configuration space, starting from an initial point - 

representing the root of the tree - and then gradually 

expanding into several branches to explore the entire 

environment and reaching the goal point. Figure 1 clearly 

shows this mechanism. 

 

Fig. 1: The construction process of RRT. 

 

Algorithm 1. 

Input: Initial configuration qinit, 

            Number of vertices in RRT V, 

            Incremental distance ɛ, 

Output: RRT graph G 

G.init (qinit) 

for v= 1 to V do 

           qrand ← RAND_CONF() 

           qnear ← NEAREST_VERTEX(qrand, G) 

           qnew ← NEW_CONF(qnear, qrand, ɛ) 

       G.add_vertex(qnew) 

       G.add_edge (qnear, qnew) 

return G 

 

In the beginning, the dimensions of the main 

configuration C (workspace) are defined besides the 

obstacles regions (Cobs). Then, the locations for both start 

and goal points (qinit, qgoal) within the obstacle-free region 

(Cfree) are located by placing them in the configuration 

space. In addition, the maximum number of nodes (V) that 

can be examined in all iterations should be predefined. The 

radius of the goal area is another condition that must be 

specified, which determines whether the A-star (sub-search 

operation) can be called at this range or not, as well as the 

distance between every two A-star algorithms. This 

condition (distance) is used as the basis for determining the 

number of the next sub-search functions that should be 

called within the RRT structure each time. After finishing 

these settings, the random tree starts its growth by frequently 

choosing a random sample (qrand). The node of (qrand) is used 

as a steer function to determine the direction of the new 

sample point (qnew) which will be added at each iteration. 

The new point will be used for the random tree expansion, 

while it does not fall in the region of (Cobs) and the distance 

between (qnear) and (qnew) achieves the condition of 

predefined step-size (ɛ), the nodes will be joined together by 

an edge. Basic RRT tends to grow rapidly in large 

unexplored regions besides biasing towards the 

configuration of the goal region. This algorithm is very 

sensitive against the obstacles, which means that the values 

of the two main parameters (step-size and bias probability) 
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have to be carefully chosen. Several studies attempt to find 

some ways to help accurately select the most influential 

values [33]. In the Hybrid RRT-A*, the proposed parameters 

to be used are (1) for step-size and (0.25) for the probability 

of biasing to reduce the dependence of these parameters and 

showing the efficiency of the Hybrid RRT-A*. 

At this stage of algorithm improvement, the first phase 

continues sequentially as long as the previous conditions are 

met until either the goal is found or all the nodes (V) are 

examined. In each iteration, the method has to verify two 

additional new conditions. First, if the node (qnew) which was 

generated and added to the configuration, does not fall 

within a radius of the goal area which is predefined 

depending on a specific threshold, then the main planner 

(RRT) will continues its search. Otherwise, the second phase 

(sub-search operation) is called to operate in this range. The 

second condition needs to check the distance (D) between 

the current node (qnew) and the last one that has been added to 

the tree whether satisfying a predefined metric (D) or not. If 

the condition is achieved, then the sub-search operation will 

be recalled again to perform the same task frequently until 

reaching the goal. Otherwise, this operation (sub-search) is 

aborted and the main RRT planner continues. 

The second phase represents the use of the A-star 

functions. This method is used as a local planner that 

interpreting its environment basing on the robot's sensor. In 

the proposed method, A-star is used as a global planner 

supposing that the robot environment is known. A-star is 

sometimes called the Best-First planner because the 

configuration cells are evaluated based on the minimum 

value of f(n): 

 

    f(n)=g(n)+h(n)                              (1) 

 

Where f(n) represents the cost value of the final path by 

passing through all points between the start and goal points. 

The g(n) represents the function that computes the path-cost 

from the initial node to the current one (n), while h(n) 

represents the heuristic function, which estimates the 

distance between the current node and goal, by extending a 

straight line between the two nodes using (Euclidean, 

Manhattan, ..., etc.). A-star builds a graph structure saving all 

paths starting from the initial point until the goal. The 

procedure is continuously repeated by extending the node 

that has the lowest distance-cost at each iteration until hitting 

the goal, which enables us to decide which path should be 

expanded based on minimizing the f(n) value. Finally, when 

the goal point is found, the planner returns the path gradually 

in an opposite direction starting from the goal node, where 

each node keeps track of its previous path until reaching the 

start node.  

 The A-star planner has many advantages, like the simple 

implementation, short running time, and high efficiency 

within a specific two-dimensional environment. On the other 

hand, space and time complexity are the main disadvantages, 

due to the need of checking and saving of all adjacent nodes 

in every round before deciding which node will take to be 

expanded later. That is considered a big issue facing the 

A-star with a large space environment. 

 Practically, the construct of A-star, as shown in 

Algorithm 2, uses two queues called (close-set & open-set) 

which are initially empty. In the beginning, the configuration 

nodes should be classified into two groups (non-expandable 

and expandable nodes). Firstly, the non-expandable nodes 

are all placed into the close-set queue representing nodes 

fallen on the map border or that fall within an obstacle 

region. Secondly, generating the start and goal nodes, then 

placing the start one into the second queue (open-set). This 

queue is used to perform the frequent choice for nodes with 

the lowest value which can be used for the expansion if it 

satisfies the criteria. This means that the algorithm has to 

verify all nodes adjacent to the current one and push them 

(add) into the queue before deciding which node has to visit 

next. 

Algorithm 2. 

A* (Start, Goal) 

Closed-set = the empty set 

Open-set = includes start node 

G[Start] = 0, H[Start] = H_calc [Start, Goal],  

F [Start] = H[Start] 

While Open-set ≠ 0 Do 

CurNode ←EXTRACT-MIN- F (Open-set) 

       If (CurNode == Goal), then return Best Path 

           For each Neighbor Node N of CurNode 

                  If (N is in Closed-set), Then Nothing 

                  Else If (N is in Open-set), 

                           calculate N’s G, H, F 

            If (G [N on the Open-set] > calculated G[N]) 

                       RELAX (N, Neighbor in Open-set, w) 

                       N’s parent=CurNode & add N to Open-set 

            Else Then calculate N’s G, H, F 

N’s parent = CurNode & add N to Open-set 

 
 

In this phase, the advantages of A-star are exploited to 

overcome the problem of Basic RRT's bad convergence rate 

as well as decreasing the cost rate. Basic RRT is a blind 

algorithm due to its randomness (uniform distribution), 

where the probability of selecting any point from the sample 

space is (1/n). This means that all points have the same 

selection probability whereas the cost-dependent behavior of 

A-star -as a feature- makes the RRT find the goal point in a 

relatively short time. Mostly, a Basic RRT is only needed 

when wanting to explore an open area without obstacles, but 

practically there is no obstacle-free or optimal environment 

in reality. When the RRT facing a large number of obstacles, 

or when the goal point falls within a local minimum region 

or falls behind or maybe between narrow passages, the RRT 

takes a long searching time until finding the goal. Therefore, 

A-star functions are used in the proposed scheme to 

overcome the low search-speed problem of the Basic RRT as 

well as the large cost. Finally, this leads to a fast and more 

efficient search. It should be noted that the values of both 

threshold (T) and distance (D) have to be proportional to the 

environment size. Figure 2 demonstrates Hybrid RRT-A* 

phases in more detail. 
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Fig. 2: Hybrid RRT-A* flowchart.
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IV.  EXPERIMENTS AND RESULTS 

 In this section, various experiments have been 

conducted to evaluate the overall performance of the 

proposed method. 

A. Setup and Maps 

 The experiments are conducted by using the simulation 

environment of the Robot Operating System (ROS Kinetic). 

This framework is operated under Linux (64-bit) operating 

system with (8GB) RAM and (intel Core-i7 8th Gen) 

processor. The visualize environment (Rviz) of ROS, C++ 

interface with the source file implementation, and the 

terminal windows are additional components that are 

utilized.  

 The simulation of planning the path is divided into three 

groups. Group-1 consists of three experiments: The First, for 

the (Basic RRT) method. The Second, for the (A-star) 

method. The Third, for the (Hybrid RRT-A*). All 

experiments are applied using a grid environment map of 

size 75*75 through the map (Map-1). Group-2 and 3 repeat 

the same methods listed above, experiments are applied 

again on the same grid dimensions through the maps (Map-2 

& Map-3).  

In Group-1, Group-2, and Group-3 experiments, the 

previous methods are tested by implementing them in 

different scenarios, then the results are compared and the 

performance is evaluated depending on several factors (cost, 

convergence). In these maps, shaded grid cells are referred to 

as an occupied region, while the green square shape refers to 

the point of start, and the red square to the goal. Finally, the 

rest grid-cells represent the free region. 

 

 Many parameters should be initialized, which are the 

same for all experiments. These parameters are: Start point= 

(74,74); Goal point= (37,15); Max iteration no.=30000; Step 

size=1; Goal biasing=0.25; Goal threshold=13 (goal area 

radius); A* threshold=7 (distance between two A* start 

points); Obstacle padding=1; Robot frequency=0.05. The 

number of obstacles and their coordinates varies among the 

maps (Map-1, Map-2, and Map-3) of all groups. Each of 

these maps will be used with the previous methods for 

planning the robot path. The results of the search operations 

of all experiments will be discussed at the end of the next 

section. 

B. Experiments 

 The experiments of all groups are applied on a 75*75 

environment grid-map as shown in Figure 3 with a number 

of sparse obstacles to be used in the simulation process of 

finding the robot path. 

 

 
(a) Map-1. 

 

(b) Map-2. 

 
(c) Map-3. 

Fig. 3: 75*75 Grid environment of (a) Map-1, (b) Map-2, 

and (c) Map-3. 

 

In each group, three different methods (Basic RRT, A-star, 

Hybrid RRT-A*) are applied through three separate 

experiments to explore the entire environment map and 

locating the goal point as shown in Figure 4 with a low rate 

(cost and time), as well as avoiding the collisions, and 

finding the path between source and destination. 
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(a) A-star 

 

(b) Basic RRT 

 
(c) Hybrid RRT-A* 

Fig. 4: 75*75 Grid environment of Map-2 (a) A-star, (b) 

Basic RRT, and (c) Hybrid RRT-A*. 

 

The experiment of each group introduces an analytical 

comparison among the results of the three methods 

depending on the cost and time rates. The results in Table I 

demonstrate that the highest cost rate is the Basic RRT, then 

A-star with a lower rate followed by Hybrid RRT-A* as the 

lowest one. While Hybrid RRT-A* is the lowest time rate 

followed by A-star then Basic RRT. Figure 5 shows these 

results through a plot graph. 

 

 

 

TABLE I 

EXPERIMENTS RESULTS FOR THE COST, CONVERGENCE, AND 

THE PERCENTAGE AMONG THE THREE METHODS IN EACH MAP. 

Methods 

Map-1 

Cost 

(node) 

Time 

(sec.) 

Total 

Percentage 

Basic RRT 3815.034 25.942 59.53% 

A-star 1380.023 13.793 31.65% 

Hybrid RRT-A* 676.160 3.843 8.82% 

Methods 

Map-2 

Cost 

(node) 

Time 

(sec.) 

Total 

Percentage 

Basic RRT 4401.857 29.636 61.12% 

A-star 1424.433 14.235 29.36% 

Hybrid RRT-A* 729.066 4.619 9.53% 

Methods 

Map-3 

Cost 

(node) 

Time 

(sec.) 

Total 

Percentage 

Basic RRT 5049.196 34.093 59.48% 

A-star 1830.858 18.300 31.93% 

Hybrid RRT-A* 817.610 4.925 8.59% 

 

 

(a) Cost-rate. 

 

(a) Convergence-rate (time to reach the goal). 

 

(c) Total percentage. 

Fig. 5: (a) Cost, (b) Convergence, and (c) Total percentage 

graphs for the three methods in each map. 
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V.  DISCUSSION 

 In general, Hybrid RRT-A* initially applies the obstacle 

avoidance method and if the path intersecting some obstacles 

then re-planned the path around the obstacles at the available 

free spaces. In the case of facing narrow passages, or goal 

point is placed among many obstacles and the search tree is 

near to the goal region, then the heuristic function is used to 

improve the search cost and time. Many studies used maps of 

size (10*10 - 40*40) with about (5-10) obstacles distributed 

in simple scenarios. In this simulation, various scenarios are 

used with maps of size 75*75 and (18-30) obstacles, 

designed to simulate the worst cases. Moreover, in this 

simulation, the experiments are executed (1000 times) for 

each method individually. The results proved that the 

combination process used in the proposed method has 

contributed to decreasing the Basic RRT cost and time rate 

(convergence). Finally, in Table II, the proposed method 

(Hybrid RRT-A*) was compared with several earlier 

sampling-based algorithms depending on the characteristics 

of each one. 

 

TABLE II 

THE CHARACTERISTICS COMPARISON OF SAMPLING-BASED 

ALGORITHMS. 

Algorithm Completeness 
Low 

Cost 

Fast 

Convergence 

RRT Yes No No 

RRT* Yes No No 

PRM Yes No No 

PRM* Yes No No 

RRG Yes No No 

Hybrid RRT-A* Yes Yes Yes 

VI.  CONCLUSION 

 In this paper, a hybrid path planning method (Hybrid 

RRT-A*) is proposed and implemented depending on the 

rapidly exploring random trees (Basic RRT). The sampling 

technique of the RRT planner has been improved, so the 

present tree of the proposed method will guide the process of 

node sampling efficiently within the goal region. This is 

done by using a heuristic function of A-star in combination 

with the Basic RRT. The heuristic function is defined to 

speed up the convergence rate, besides reducing the cost. 

This is done by examining each RRT node to check if it falls 

within the goal region with a specific threshold. When 

reaching this region, the A-star algorithm is activated. The 

advantage of using A-star in this stage is to eliminate random 

search and find the shortest path in this region. The 

simulation results show that (Hybrid RRT-A*) achieves the 

best cost and time rate compared to both A-star and Basic 

RRT.  

In future work, the aim is to optimize the shortest path and 

make it much smoother by using some kind of regression and 

curve methods like (multinomial-regression and b-spline). 

Moreover, as future work, the aim is to perform planning 

within an environment populated with moving (dynamic) 

obstacles. 
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