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Abstract: Dealing with the islanded operation of a microgrid (MG), the micro sources must cooperate
autonomously to regulate the voltage and frequency of the local power grid. Droop controller-based
primary control is a method typically used to self-regulate voltage and frequency. The first problem
of the droop method is that in a steady state, the microgrid’s frequency and voltage deviate from
their nominal values. The second concerns the power-sharing issue related to mismatched power line
impedances between Distribution Generators (DGs) and MGs. A Secondary Control Unit (SCU) must
be used as a high-level controller for droop-based primary control to address the first problem. This
paper proposed a decentralized SCU scheme to deal with this issue using optimized PI controllers
based on a Genetic Algorithm (GA) and Artificial Neural Networks (ANNs). The GA provides the
appropriate adjustment parameters for all adopted PI controllers in the primary control-based voltage
and current control loops and SCU-based voltage and frequency loops. ANNs are additionally
activated in SCUs to provide precise online control parameter modification. In the proposed control
structure, a virtual impedance method is adopted in the primary control scheme to address the
power-sharing problem of parallel DGs. Further, in this paper, one of the main objectives includes
electricity transmission over long distances using Low-Voltage DC Transmission (LVDCT) systems
to reduce power losses and eradicate reactive power problems. Voltage Source Inverters (VSIs) are
adopted to convert the DC electrical energy into AC near the consumer loads. The simulation results
illustrated the feasibility of the proposed solutions in restoring voltage and frequency deviations,
reducing line losses, as well as achieving active and reactive power sharing among the DGs connected
to the MG.

Keywords: microgrid; distribution generators; secondary control; genetic algorithm; artificial neural
network; virtual impedance; power sharing

1. Introduction

Recent advances in power system technology have spurred significant transitions
toward sustainable, modern, and intelligent grids. As newly emerging small-scale grids,
MGs can accommodate a variety of technologies, such as Renewable Energy Resources
(RERs), energy storage, power electronic devices, and demand management programs.
Since most RERs are intrinsically DC or DC-friendly, integrating these sources with a long
DC Transmission (DCT) is simple. Due to their high efficiency, high reliability, and simple
integration with renewable energy sources, Low-Voltage DCT (LVDCT) systems appear
to be an attractive option for distribution systems. In the MG system, to reduce power
losses and eliminate reactive power issues, long-distance LVDCT transmission of electricity
is preferred for supplying VSIs. In contrast, short-distance AC transmission lines can be
used to supply three-phase MG loads. MGs have many benefits, such as using more than
one type of DG, using renewable energy, reducing pollution, and increasing economic
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benefits [1–4]. Due to their decentralized nature, MGs can be installed in remote locations
and improve network reliability.

The term “smart MGs” refers to electrical networks that use digital and other modern
technology to monitor and control the conveyance of power from all generating sources
to satisfy shifting end-user electricity needs. In a smart MG, the resources and capacities
of the various power plants, grid managers, and consumers are coordinated. Artificial
Intelligence (AI) has been used in several smart MG-related disciplines, such as control
approaches, security and reliability evaluation, energy management systems, data-driven
decision-making systems, and so on. AI is a prominent field of computer science. AI can
make optimal use of existing data and aid in making judgments in difficult situations for
safer and more reliable MG control and operation. AI includes machine learning (ML). ML
models are supervised or unsupervised based on training data. In MGs, system control
and monitoring need an enhanced methodology that blends data-driven modelling to
solve observability and controllability challenges [5]. MG hierarchical control schemes
include numerous control levels based on functionality [6]. AI approaches may improve
MG control and operation accuracy, speed, and effectiveness [7]. The MG can operate in
off-grid “island mode” in addition to the grid-connected mode. The Q-V and P-f droop
control methods are commonly used to achieve power sharing among all DGs. Active and
reactive power sharing is gained when P-f and Q-V control are used, but the frequency and
voltage values in the steady state are not always at nominal ones. As a result, an intelligent
SCU is required to adjust the grid’s voltage and frequency [8,9]. SCUs can also be used to
compensate for reactive power [10]. In general, SCUs may be decentralized or centralized,
as depicted in Figure 1. In a centralized control strategy, the voltage and frequency of the
grid are typically estimated and compared to their respective reference values. The error
signals are processed by a controller, which then transmits correcting signals to all DG units
(see Figure 1a). Figure 1b depicts a typical decentralized control; in this case, every DG unit
is outfitted with SCU to correct voltage and frequency deviations.
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The general configuration of an islanded MG consists of several DGs, each of which
is connected to the load via a Power Electronic (PE) interface. This interfacing is typically
accomplished with a nonlinear PE device, such as a PWM-based converter adopted to
connect DGs within MG [11]. The primary issue with these devices is that they generate
nonlinearity between current and voltage, producing high switching frequency pulses that
distort the power quality [12]. As a result, MG faces significant power quality challenges,
especially when incorporating an excessive number of DGs [13,14]. A reliable method of
control is typically necessary to meet power quality standards and keep the MG system
running smoothly. Large power, frequency, and voltage variations occur in the islanded
mode of MG operation compared to the grid-connected mode due to the lack of inertia and
uncertainty in selecting optimal gains of the Proportional Integral (PI) controller. Due to
these issues, this research is being conducted to enhance MG’s functionality in the islanded
mode of operation.

Nevertheless, a significant shortcoming of PI controllers is their limited performance,
which relies heavily on fine-tuning the proportional and integral gain coefficients
(Kp and Ki) [15]. Throughout the process, these coefficients can be made static or dy-
namic using soft-computing techniques. Adaptive or “trial and error” methods [16–18],
or the alternative Ziegler–Nichols (Z–N) method [19–21], are used to calculate static gains
in PI regulators used for control loops that employ static gains. Because of this, they may
delay the transition into a stable operating region [22]. Correct tuning of PI gains is crucial
and challenging in order to guarantee improved system performance and power quality
during DG incorporation and load changes [23].

ANN’s training and expandable characteristics enable the system to manage changes
and uncertainty. Learning algorithms overcome technical obstacles. Online tuning con-
trollers improve secondary voltage output and frequency regulation. Early secondary MG
controller research resulted in classical PI controllers [24–26]. The main reasons for these
controllers’ industrial success are their simplicity and ease of implementation. However,
they are less dependable and robust due to their reliance on operating point conditions.
The technical bottlenecks can be overcome with the help of intelligent learning algorithms.
Tuning controllers that are both online and robust has a significant impact on the control of
secondary frequency and voltage.

In the literature, different ways to choose the controllers’ coefficients have been
outlined [27]. Most of them rely on trial-and-error methods, which can be time-consuming
when dealing with a complex MG and often result in less-than-optimal tuned parameters.
Further, this method does not provide a systematic way to design the coefficients of the
controllers in the MGs. Another way is to set the parameters of the controllers so that
the outer loop is slower than the inner loop [28]. Based on this idea, both the inner and
the outer control loops can be constructed in a standalone fashion. Most of the time, the
outer loop’s bandwidth is only 0.1 of the inner loop’s [29]. Further, this method has the
same problems as the trial-and-error method. For the purpose of restoring the average
voltage without the need for extra communication links, the authors of [30] suggested a
secondary voltage control technique that makes use of state estimation in autonomous
MG neighboring. In reference [31], a distributed-averaging-proportion-integral (DAPI)
controller is proposed to address the adjustable tradeoff between voltage restoration and
accurate reactive power sharing. The majority of the existing literature on distributed
secondary control offers solutions for active power sharing and frequency/voltage re-
covery with asymptotic convergence speeds. Secondary control based on PI controllers
and consensus observers for reactive power sharing and voltage restoration is proposed
in [32]. The PI controller parameters are chosen by trial and error and no intelligent or
optimization algorithms are adopted. Furthermore, if the optimal control settings are used
and the islanded MG may be stable through several operations with less frequency and
voltage steady-state errors. Parameters of the PI controller were tuned using a Grasshopper
Optimization Algorithm (GOA) in [33] and PSO in [34]. The parameters of a triple-action
controller for an AC islanded MG were designed using PSO in [35]. To regulate an isolated



Sensors 2022, 22, 8709 4 of 23

MG’s supply voltage and frequency, the authors of reference [36] developed a PSO-based
controller. The developed controller optimized the system’s dynamic response with respect
to regulating voltage within the prescribed limit (5% of the rated value), but the frequency
response exceeded the limit (1% of the rated value) before stabilizing. The PSO-based
controller in [37] was developed specifically for island MG. In spite of significant variations
in both source and load, the controller maintained a frequency well within the allowed
range. Based on previously published research papers, the authors of [38] assessed robust
control approaches for MGs, comprising DC, AC, and hybrid MGs, with various topologies
and forms of connectivity to conventional power systems. To regulate the AC voltage in AC
MGs, [39] created a robust controller using the Cohen-Coon (CC) tuning technique. In [40],
a PID robust secondary controller frequency control for an isolated AC MG is presented as
a means of dealing with the inherent unpredictability of the energy supply from renewable
energy sources. In order to restore the AC voltage and frequency in isolated AC MGs, [41]
created a completely distributed secondary control (DSC) approach. Multiple studies are
undertaken to find the optimal power distribution for MGs. Power distribution in spatially
concentrated AC MGs with grid connection were addressed in [42], which details the
development of a hierarchical controller with two layers. The goal of [43] is to improve
power sharing in electrical networks that include both traditional power sources and DERs
by proposing an enhanced droop-based control method. In [44], a control approach is
developed that considers battery protection and reactive-power variations in a network bus,
relying on a battery supercapacitor power system for the benefit of both storage systems.
These studies do not address the power-sharing issue in an islanded MG and the LVDCT
system is not adopted.

This study focuses on islanded smart MGs and tries to improve the secondary control
mechanism to reduce voltage and frequency deviations. An intelligent control strategy
adjusts the control settings to retrieve these parameters at the nominal levels. MG’s
decentralized controller has an online self-optimizing control technique. In the tuning
procedure, GA provides the first parameter adjustments. Then, an ANN modifies control
settings online. ANN’s training and extensible features eliminate the controller’s reliance
on operating point circumstances, allowing the system to handle changes and uncertainty.
AC MG stability is of paramount importance due to the sensitivity of frequency and
voltage deviations to the variations in MG loads. Moreover, different AC transmission
line impedances lead to unequal power sharing between the parallel VSIs due to their
inherent characteristics. To the authors’ knowledge, no prior research has discussed the use
of decentralized SCUs utilizing GA-optimized ANN-based PI controllers to simultaneously
restore frequency/voltage as well as equally share active/reactive power over LVDCT. The
LVDCT reduces power losses and eliminates reactive power issues over long distances. To
validate the proposed technique, a variety of case studies, including system load changes,
without adopting SCU and using SCU, are simulated using MATLAB R2020a software in
the islanded mode of operation. The paper’s contributions are listed below.

1. This paper proposes an effective control process with droop, inner, and SCUs for
voltage and frequency control to improve MG performance. The proposed approach
adjusts voltage and frequency in the MG assembly automatically in real time.

2. To handle the loading variations and improve power quality, we create a robust online
fine-tuning strategy based on decentralized secondary control using ANN learning
features. The parameter tuning for an SCU in an MG application can be tuned online
using a combination of ANN and GA. The optimal secondary PI parameters are
determined by GA and stored in the SCUs permanently. The modification of the PI
controller-based GA parameters by an online ANN co-occurs at any time after the
starting simulation. The proposed control mechanism’s extensibility is enhanced by
the ANN controller’s ability to learn, creating an independent online controller.

3. The proposed control strategy makes use of the primary control-based virtual impedance
method for satisfying the power-sharing requirements.
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4. A long-distance LVDCT transmission system is adopted for powering VSIs since it
reduces power losses and eliminates reactive power problems. Short-distance AC
transmission lines are used to power three-phase MG loads.

This paper’s remaining sections are arranged as follows: The proposed MG system
is elaborately discussed in Section 2. The modeling of system-generation resources is
developed in Section 3. Section 4 contains the specifics of PI control parameter tuning.
Section 5 describes the decentralized secondary control formulation. Section 6 conducts
extensive simulation studies to evaluate the performance of the proposed controller. The
paper is concluded in Section 7.

2. Proposed MG System

Consider the adopted islanded MG indicated in Figure 2. This MG is made up of five
700 V DC sources (three solar Photovoltaics (PVs) and two Battery Energy Storage Systems
(BESSs)), five VSI-interfaced DGs (providing load power according to their capacity), ten
DC line impedances, five AC transmission line impedances, shown in Tables 1 and 2,
showing droop coefficients and power filter parameters for each VSI, as well as three load
banks shown in Table 3, with their time-value-based active and reactive load power. Active
and reactive power losses are the primary issue with transmission lines. It is critical to
resolve this issue or the majority of electrical energy will be lost in the transmission system.
In this paper, low-voltage DC transmission lines are used to transfer electricity from MG’s
DC sources into associated VSIs because they minimize power losses and eliminate reactive
power issues. Some of the benefits of DC transmission include enhancing grid performance
and protecting against cascading blackouts; environmental friendliness; distances are
not limited by stability; and no need for reactive power compensation [45]. The direct
resistances of the DC lines for connecting DC sources with related VSIs are represented by
[ Rd1, Rd2, Rd3, Rd4, Rd5 ]. The between DC lines’ impedances [ Rd1,2, Rd2,3, Rd3,4, Rd4,5, Rd5,1 ]
are inserted to make the grid more reliable in the event that a single DC power source has an
outage or requires repair. Localized AC transmission lines drive three-phase MG loads with
impedances denoted by [ RA1 + LA1, RA2 + LA2, RA3 + LA3, RA4 + LA4, RA5 + LA5 ]. Figure 3
illustrates the control structure scheme of each DG. This control architecture comprises
primary and secondary control layers. This structure’s measured signals are all in the d-q
frame. The power part of each DG consists of an inverter, an output power filter, and
the coupling inductor. The three parts of each local primary control scheme are power,
voltage, and current controllers. The power control loop establishes reference points for
the inverter’s output voltage and frequency based on the droop characteristics of P/f and
Q/V. The frequency and voltage droop coefficients are mp and nq. The droop controller
concepts are presented in Figures 3 and 4, which are (P/f, Q/V). The droop controller
concepts are presented in Figure 4, which are (P/f, Q/V). The slopes of the droop controller
characteristics have an effect on the system’s stability; thus, they need to be adjusted
such that active and reactive power are shared equally. Large slopes may be employed
to increase the rate of load sharing, but at the expense of the overall system’s stability.
However, with droop control, the steady-state frequency and voltage values are not always
at nominal levels; they drop at (V, f). Therefore, the droop controller has to be enhanced
by applying a suitable secondary controller to compensate the frequency and voltage
deviations (DV, Df) and restore the system voltage and frequency to their nominal levels
(Vo, fo) [46,47]. Power’s instantaneous active (P) and reactive (Q) components are injected
through low-pass filters with cut-off frequencies of 10π to remove rapid fluctuations from
power calculations. The virtual impedance method with (virtual resistor = 0.03 Ω and
virtual inductor = 0.57 Ω) is adopted to mitigate the line impedance of each DG with the
MG. The power controller and virtual impedance loops generate reference voltage and
frequency, as well as line impedance’ voltage drops, which are fed to voltage and current
controllers to generate reference voltages and currents of inverters in the dq0 reference
frame. Both current and voltage controllers are intended to remove persistent disturbances
while also dampening the output filter.
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Table 1. The MG line impedances.

AC Line
Impedance Value (Ω) DC Line

Impedance
Value

(Ω)

DC Line
Length

(km)

Impedance
between
DC Lines

Value
(Ω)

RA1 + jXA1 0.01273 + j0.219 Rd1 1 100 Rd1,2 0.0127
RA2 + jXA2 0.0159125 + j0.2748 Rd2 0.95 92 Rd2,3 0.0317
RA3 + jXA3 0.016549 + j0.2858 Rd3 0.76 80 Rd3,4 0.0317
RA4 + jXA4 0.019095 + j0.3298 Rd4 1.27 125 Rd4,5 0.0127
RA5 + jXA5 0.014003 + j0.2419 Rd5 1.14 115 Rd5,1 0.0381
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Table 2. The adopted droop coefficients and power filter parameters.

VSI Parameter Name Value

VSI 1 and VSI 2

Frequency Droop Coefficient 9.5 × 10−5

Voltage Droop Coefficient 1.3 × 10−3

Power Filter Resistance 0.1 Ω
Power Filter Inductance 1.35 mH
Power Filter Capacitance 500 µf

VSI 3, VSI 4 and VSI 5

Frequency Droop Coefficient 12.5 × 10−5

Voltage Droop Coefficient 1.5 × 10−3

Power Filter Resistance 0.1 Ω
Power Filter Inductance 1.35 mH
Power Filter Capacitance 500 µf

Table 3. Time-value-based active and reactive load power.

Time Duration (s) Activating Load Load Value (W + jVAR)

0–10 s Load 1 75,000 + j35,000
10–20 s Load 1 + Load 2 100,000 + j60,000
20–30 s Load 1 + Load 2 + Load 3 150,000 + j125,000
30–40 s Load 1 + Load 2 + Load 3 + Load4 200,000 + j150,000
40–50 s Load 1 + Load 2 + Load 3 150,000 + j125,000
50–60 s Load 1 + Load 2 100,000 + j60,000
60–70 s Load 1 75,000 + j35,000
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Because the droop controller cannot return the system frequency and voltage to their
nominal values, it is necessary to use an appropriate controller, such as a secondary con-
troller, to improve the droop controller method [48]. The secondary controller is responsible
for correcting steady-state errors that the droop controllers have ignored. The implemented
secondary GA and ANN-based frequency and voltage controllers are shown in Figure 3.
The frequency signal is measured instantly and then evaluated by comparing to its ref-
erence value, as previously mentioned. A power controller is used to supplement the
signal released by the appropriate PI controller. The method used to control the voltage
is very similar. The PI controllers’ parameters are adjusted to make the output voltage as
stable as possible. The secondary controller supervises the load end voltage and frequency
and produces a signal to supplement the DGs’ control set-points. Notably, the reference
points are only slightly modified by the control signals from the SCUs. Thus, they serve to
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supplement the primary control’s established limits. Therefore, accurate measurements
are carried out in an attempt to lessen load voltage and frequency fluctuations. When
it comes to ensuring the MG assembly runs smoothly and without incident, SCUs are a
crucial control process.

3. System-Generation Resource Modeling
3.1. Solar Photovoltaic

The equation that defines the I–V behavior of the PV cell circuit model with one diode
and two resistors is given in Equation (1) [49,50].

I = IPV − IO

{
exp

(
V + IRs

αVT

)
− 1
}
− V + IRs

Rsh
(1)

where IPV is the photocurrent, IO is the reverse saturation current of the diode, Rs is the
series resistor that accounts for losses in cell solder bonds, junction box, interconnection,
and other components, and Rsh is the shunt resistor that takes into account current leakage
through the highly conductive shunts across the p–n junction, whereas α is the ideality
factor that describes how far the diodes deviate from their ideal state; VT is the thermal
voltage of the diode and it is influenced by the number of series-connected cells (n), the
electron charge (q), the Boltzmann constant (k), and the temperature (T) of the diode:

VT = n
kT
q

(2)

3.2. Battery Energy Storage System

The terminal voltage and the SOC of a BESS are two crucial factors to represent the
battery state and they are represented as follows [51]:

Vo = Vb + Rbib − K
Q

Q +
∫

ibdt
+ A.eB

∫
ibdt (3)

SOC = 100
(

1 +

∫
ibdt
Q

)
(4)

where Rb denotes the internal battery resistance, Vo represents the open circuit battery
voltage, ib is the BESS charging current, K is the polarization voltage, Q is the capacity of
the battery, A is the exponential voltage, and B is the capacity of the battery.

4. Tuning of PI Control Parameters

As stated, each DG needs two inner controllers for the voltage and current and
frequency and voltage secondary feedback loops. The proportional gain and integral gain
coefficients are observed in every controller. As a result, there are a total of eight control
coefficients. The ability to adjust the parameters over a larger operating range is made
possible by the use of such evolutionary algorithms as GAs. GAs are adaptable enough
to work on multiple strings at once, each representing a unique solution to a particular
problem. Consequently, the search space is meticulously scanned. Higher confidence levels
are associated with the outcomes, drastically reducing the likelihood of hitting a local
minimum [52].

We set all eight parameters for all DGs to the same value. Applying GA to the
proposed system, the initial search space is constrained. On the basis of the ranges of
control parameter ranges, we establish a suitable range to provide adequate liberty for the
GA and a satisfying control procedure. In this model, a string serves as the chromosome
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containing eight genes coincident with their respective parameters. The following objective
function (O.F) is used to restore the frequency and voltage signals to their target values:

O.F =

√√√√√√√√
∑N

n=1

(
kvl

∣∣∣∣∣
((√

|vdLoad(n)|2 +
∣∣∣vqLoad(n)

∣∣∣2)− vnomAC(n)

)∣∣∣∣∣
)2


+
{

∑N
n=1 k f | fnom(n)− f (n)|2

}
+
{

∑N
n=1 kvo|vo(n)|2

} (5)

where N is the samples of the simulation time, n is the sample number, vdLoad and vqLoad
are the dq components of the load voltage, vnomAC is the nominal AC voltage of the MG
system, and fnom and f are the nominal and measured system frequency. The third term of
the objective function (vo) is related to the inverter output voltage and it exists if and only if
this voltage exceeded the nominal value. There are upper voltage and frequency deviation
limits in a low-voltage, 50 Hz, 220 V distribution system, respectively. Consequently, the
maximum voltage and frequency deviations, respectively, are 11 V (5% of 220) for the
voltage and 0.5 Hz (1% of 50). To fine-tune the control parameters, various loading states
are applied to the examined MG, as listed in Table 3. Figure 5 shows a flowchart of the GA-
based optimization method. After the initialization phase, the objective function calculates
initial control parameters and optimizes their performance. Finally, a new generation is
produced using crossover and mutation operators after the population is sorted to find
the members with the smallest voltage and frequency differences. The optimal control
parameters are determined once the termination criterion has been met.
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Intelligent and evolutionary algorithms are used to fine-tune control parameters in
real-time to enhance the capabilities of the secondary controllers. Therefore, we develop an
SCU based on ANN that interacts directly with the GA-optimization-based PI controller. To
preserve the nominal set-points of frequency and voltage parameters in an online manner,
initial process parameters adjusted by the GA require further additional adjustments. If the
control action is ineffective, the voltage and frequency of the MG could collapse. To prevent
this, we correct the control parameters using an ANN-based MG decentralized secondary
control. The proposed SCUs based on ANNs modify the parameters in an online fashion,
which extends the applicability of the proposed method to a more diverse set of operational
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conditions. The investigated system is currently collecting information on voltage and
frequency fluctuations. This information is used as an ANN’s inputs and the appropriate
learning rules are used to adjust the weights of the nodes controlled by the ANN. As
a result, accurate set-points are generated in all of the DGs. In this manner, a risk-free
control operation is accomplished, guaranteeing that the MG voltage and frequency will
remain constant.

An ANN-based controller is made up of three layers: the input layer, the output
layer, and the hidden layer. According to the information provided by the system expert,
we decided to use five neurons for the input layer. The hidden layer contains a total of
20 neurons. In the input layer, the neurons are of a linear type, whereas the neurons in
the hidden layer are nonlinear type. Because of the feature of nonlinearity, it is possible to
modify the relevant weights smoothly. The number of control variables determines how
many neurons are included in the output layer. As illustrated in Figure 2, the investigated
MG contains five DGs. Each of these DGs has two secondary controllers, one for voltage
signal and another for frequency. Every secondary controller features a proportional gain
in addition to an integral gain. Because of this, the output layer has two linear neurons for
every single SCU.

A neuron is the fundamental element that constitutes an ANN structure and it com-
prises three primary parts: the weights, which are represented by the notation

[
wij wjk . . .

]
,

the bias (θj), and the activation function f (net). The incoming data are denoted by the
labels xj. Equation (6) describes the relationship between these parameters [53].

yp
j = netp

j = f

(
n

∑
i=1

xp
i wp

ij − θi

)
(6)

where n represents the input layer neurons, wij denotes hidden layer weights. f (net) may be
logsigmoid, sign, tansigmoid, etc. Derivatives of the activation function ( f ′(net)) are required
for learning algorithms, such as back-propagation algorithm. Therefore, the chosen activation
function must be differentiated. In addition to this, it is essential to provide an ANN-based
controller with the appropriate initial conditions. The desired initial values for the voltage
and frequency signals are set as the nominal values, [220 V 50 Hz].

Differential of the activation function of the hidden layer is given by

f ′
(

netp
j

)
= f

(
netp

j

)[
1− f

(
netp

j

)]
(7)

The output layer nodes are calculated using

yp
k = netp

k = f

(
Q

∑
j=1

yp
j wp

jk − θj

)
k = 1, 2 (8)

where Q stands for the neurons in the hidden layer and wjk is the output layer’s weight vector.
The following equations can be used to calculate the two parameters in the PI controller:

Kp
P = Op

1 (9)

Kp
i = Op

2 (10)

When the mechanism of feed-forward is considered, the input vector is used to activate
the output and hidden layers. As was previously made clear, the primary objective behind
the design of the ANN structure is to minimize the already-present deviations in both
frequency and voltage, as a result, to enhance the MG’s stability. The feedback procedure
in this investigation makes use of the supervised learning approach to learning. The back-
propagation method is used as the basis for the implementation of the learning approach.
With regard to the objective of optimization, the proposed learning process makes an effort
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to reduce the error signal. The error function at the output of neuron k and p iteration is
given by [53]:

ep
k = ydp

k − yp
k (11)

where yp
k is the measured output variable and ydp

k is the variable denoting the desired output.
Using the error (ep

k ), the following updates are made to the weights.

wp+1
jk = wp

jk + ∆wp
jk (12)

wp+1
ij = wp

ij + ∆wp
ij (13)

where ∆wp
ij and ∆wp

jk are the weight changes caused by the system error value. The indices
i, j, and k denote neurons in the input, hidden, and output layers, respectively.

∆wp
jk = ηyp

j δ
p
k (14)

where η, a tiny positive constant, stands for the learning rate, and at iteration p, δ
p
k repre-

sents the error gradient in the output layer’s neuron k.
When the activation function’s derivative is multiplied by the error at the neuron’s

output, an error gradient is established. As a result, for output layer neuron k, we have

δ
p
k =

∂yp
k

∂Xp
k

ep
k (15)

where yp
k represents the output of neuron k at iteration p and Xp

k represents the net weighted
input to neuron k at the same iteration in the process. Equation (15) can be written as for a
sigmoid activation function:

δ
p
k =

∂

{
1

1+e−Xp
k

}
∂Xp

k
ep

k =
e−Xp

k{
1 + e−Xp

k

}2 ep
k (16)

As a result, we obtain:
δ

p
k = yp

k

(
1− yp

k

)
ep

k (17)

where
yp

k =
1

1 + e−Xp
k

(18)

The weight updating for the hidden layer can be determined using the same formula
as for the output layer:

∆wp
ij = ηxp

i δ
p
j (19)

where δ
p
j stands for the error gradient at the j neuron in the hidden layer.

δ
p
j = yp

j

{
1− yp

j

}
×

R

∑
k=1

δ
p
k wp

jk (20)

where R is output layer neuron count.

yp
j =

1

1 + e−∑n
i=1 xp

i wp
ij−θj

(21)

The learning process will keep going until the minimum error is reached.
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There are two secondary outputs for each ANN- and GA-based PI secondary con-
troller. The proposed controller’s outputs for frequency control are [Kp f ANN Ki f ANN ] and
[Kp f sKi f s], respectively. Similarly, the output control parameters for the voltage control are
[KpvANN KivANN ] and [KpvsKivs].

∆Vsec = KpvANNKpvs × Ev + KivANNKivs ×
∫

Ev (22)

∆ fsec = Kp f ANNKp f s × E f + Ki f ANNKi f s ×
∫

E f (23)

where Ev and E f are the error signals of the voltage and frequency, respectively. The error
signal represents the difference between the reference value and the measured one.

5. Decentralized Secondary Control Formulation

In the proposed decentralized secondary control, every DG unit has an SCU to remedy
voltage and frequency deviations and to ensure that the adopted parallel DGs are properly
sharing active and reactive power. Figure 6 illustrates the proposed system’s intelligent
decentralized secondary control structure.
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As depicted in Figure 3, the outputs of the power controller are given in
Equations (24) and (25):

ω = −mP + ωre f + ∆ fsec (24)

Vdre f = −nQ + Vre f + ∆Vsec , Vdre f = 0 (25)
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where ω is the frequency in (rad/sec.), P and Q are the measured signals of both active and
reactive power of the related DG, ωre f and Vre f are the reference values of the MG frequency
and voltage, ∆ fsec and ∆Vsec are the frequency and voltage deviations (outputs of the SCUs),
and Vdre f and Vqre f are the dq-frame reference voltages for the voltage controllers.

The secondary outputs are introduced to the conventional droop equations to be able
to suppress any deviations in voltage and frequency. To ensure the DGs share the load
power equally, virtual impedance loops were embedded in the primary control using
Equations (26) and (27):

Vdver = −ωre f Lv Iq + Rv Id (26)

Vqver = −ωre f Lv Id + Rv Iq (27)

where Rv and Lv are the virtual resistance and inductance, Id and Iq are the dq-frame in-
verter currents, and Vdver and Vqver are the drop voltages compensation due to mismatched
line impedances.

The outer voltage controller is used for supplying the reference dq-frame currents
(Idre f and Iqre f ) to the inner current controller using Equations (28) and (29)

Idre f =

{(
Vdre f −Vdinv −Vdver

)
Kpv +

∫ (
Vdre f −Vdinv −Vdver

)
Kiv

}
−ωre f C f Vqinv + Id (28)

Iqre f =

{(
Vqre f −Vqinv −Vqver

)
Kpv +

∫ (
Vqre f −Vqinv −Vqver

)
Kiv

}
−ωre f C f Vdinv + Iq (29)

where Vdinv and Vqinv are the dq-frame inverter voltages, Kpv and Kiv are the control
parameters of the voltage PI controller, and ωre f C f Vdinv and ωre f C f Vqinv are the cross-
decoupled quantities that are used to control the voltage independently along the dq
axis. C f is the output filter capacitor.

The inner current controller produces the reference inverter voltage in dq-frame
(Vdre f ,inv and Vqre f ,inv) using Equations (30) and (31):

Vdre f ,inv =

{(
Idre f − Id

)
Kpi +

∫ (
Idre f − Id

)
Kii

}
−ωre f L f Iq (30)

Vqre f ,inv =

{(
Iqre f − Iq

)
Kpi +

∫ (
Iqre f − Iq

)
Kii

}
−ωre f L f Id (31)

where Kpv and Kiv are the control parameters of the current PI controller, while ωre f L f Iq
and ωre f L f Id are the cross-decoupled quantities that are used to control the current inde-
pendently along the dq axis. Lastly, L f is the output filter inductor.

The voltage reference values of the inverter in dq0 frame are then transformed into
abc frame using the inverse of Park transformation as follows:Va

Vb
Vc

 =

 cos(ωt) − sin(ωt) 1
cos
(
ωt− 2π

3
)
− sin

(
ωt− 2π

3
)

1
cos
(
ωt + 2π

3
)
−sin

(
ωt− 2π

3
)

1

Vdre f ,inv
Vqre f ,inv

0

 (32)

where frequency in radian (ω) is given in Equation (24).
Then, these three phase signals are passed through the Pulse Width Modulation (PWM)

generator to trigger the power electronic switches of the related VSI.

6. Simulation Results and Discussion

The proposed islanded MG illustrated in Figure 2 is performed under load changes to
evaluate the performance of the proposed control structure. After applying load changes to
the MG, the system response, consisting of frequency and voltage profiles, is determined
in three scenarios. The first scenario is to test the system without adopting SCUs, the
second one is by using GA-based SCUs, and the third scenario is by using proposed
GA+ANN-based SCUs.
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Figure 7 illustrates the convergence curve of the GA for the investigated MG system.
Evidently, the problem is approaching its optimal solution. Consequently, the optimum
control parameters shown in Figure 8 are attained, where [Kpi Kii] are the proportional
and integral control parameters of the current controller-based primary control, [Kpv Kiv]
are the voltage controller parameter-based primary control, [Kpvs Kivs] are the secondary
voltage controller, and [Kpfs Kifs] are the secondary frequency controller parameters. A
quick time of convergence is not required and waiting longer may result in better control
parameters, as this is the first offline phase of the proposed method. The convergence and
optimal parameter values are obtained by making the simulation time 5.5 s and setting
the GA parameters as follows: number of population = 10, number of generations = 50,
the lower limits are all “0”, upper limit = [10 4000 1000 40,000 0.1 2 0.5 2]. The required
elapsed time is 31,998 s for the GA to obtain the control parameters’ optimal values using
the mentioned specifications.
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The voltage and frequency responses of the system under droop-control-based primary
control and GA-based secondary control are shown in Figures 9a and 10a, respectively. It is
clear that the system is not robust in the first case (primary control only) when the load
varies, as shown in Table 3. Voltage and frequency deviations induced by a changed load
lead these parameters to deviate from their nominal values. As shown in Figure 9b, the
system voltage is not robust. The controller cannot return to the reference voltage properly
during load changes in the second scenario (using SCUs based on GA-based offline tuning
parameters). However, the system frequency is acceptable and is attained to the nominal
value, as shown in Figure 10b, due to it being a global parameter.
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In the third scenario, the ANNs with GA-optimized PI controllers based on the pro-
posed method alter the SCU parameters in all DGs to respond to the operating point
changes to stabilize the frequency and voltage signals at their set-points. These parameter-
updated curves in all SCUs of the control system are shown in Figure 11. These data
demonstrate that ANN-based SCUs modify all DGs’ control parameters to achieve the
lowest possible voltage and frequency profile fluctuations.
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It is evident that the proposed methods have the desired performance under load
changes in terms of voltage and frequency deviation minimization (steady-state errors).
Figures 12 and 13 display the voltage and frequency of every DG, respectively. It can
be seen that the proposed control method is robust against load changes. The voltage
and frequency are settled at the nominal values (50 Hz and 220 V RMS phase voltage).
Figures 14 and 15 show the active and reactive power-sharing outcomes using the proposed
techniques. By adopting a virtual-impedance-based proposed control structure, the five
DGs are balanced for both transient and steady-state load sharing and all VSIs follow one
another. Therefore, the load power at any load step change is divided equally by five
according to the number of adopted DGs. Table 4 compares the conventional droop control
with the alternatives proposed.

Table 4. Traditional droop control vs. proposed alternatives.

Frequency
Restoration

Voltage
Restoration

Active Power
Sharing

Reactive Power
Sharing

Droop Control (without
Secondary control) 7 7 7 7

Offline Parameters
Tuning-Based Secondary

Control
4 4 > 7 4 4

Proposed Online Parameters
Tuning-Based Secondary

Control
4 4 4 4
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The traditional droop approach shows the inability to restore frequency and voltage
at a steady state and improper sharing of active and reactive power is seen in Table 4
for the traditional droop approach. Adopting ANN and GA allows the GA tuning-based
control parameter to be adjusted in real time continuously, whereas proposing secondary
controllers based on GA for offline tuning parameters does not correctly restore the system’s
voltage to nominal value because the control parameters are not adjusted simultaneously.
As a result, the active and reactive powers are distributed fairly and the voltage and
frequency may return to their normal levels. The difference between the power of DGs
and load power is identified as power losses in the system caused by the impedances
of the transmission lines. Figure 16 illustrates the active power losses of the MG’s lines
using LVDC transmission with the impedances of lines shown in Table 1. As can be seen
in Table 1, the impedance of the AC transmission lines is significantly lower than that of
the DC transmission lines. AC lines are adopted for short distances, while DC lines are
used for long ones because the DC line impedance is primarily resistive in low-voltage
wiring [54,55]. In Figure 17, the active power losses of the MG transmission lines are
shown and this figure is not deduced using the line impedances in Table 1; rather, the
resistance values of DC lines and AC lines are exchanged (the high resistance of DC lines
is placed instead of the resistance of AC lines and vice versa). The purpose of resistance
exchange is to observe and compare the active power losses obtained by long-distance
DC transmission (Figure 16) with transmission via AC lines (Figure 17). It is evident from
Figure 16 that the total active power losses in the DC lines are shown in yellow and blue
curves. The blue curve is related to the losses of the lines between the main or direct
DC transmission lines and it is close to zero watt as a result of the fact that the DC drop
voltage across each resistance (Rd1,2, Rd2,3, Rd3,4, Rd4,5, and Rd5,1) in these lines is close to
zero volt. Under the step changes in the loads, the main or direct DC lines are represented
by the yellow curve in the figure. This losses are equal to approximately 25% of the power
losses when transmitting electricity by the AC lines, as shown in Figure 17 (red curve).
In Figure 18, the AC transmission also suffers reactive power losses. The reactive power
losses in Figure 18a,b have low differences because the line inductances are the same with
long-distance DC transmission or AC transmission, respectively.
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7. Conclusions

In this paper, a robust decentralized MG control was proposed. This MG system
uses LVDCT to decrease power losses and remove reactive power issues, while short-
distance AC transmission lines provide MG AC loads. This research offered new ANNs
and GA-based SCUs as well as a changed principal control structure, employing a virtual
impedance approach with GA-optimized PI controller parameters. When load changes
occur, typical PI controllers cannot operate safely. Increasing load variations may induce
MG instability. Using offline methods, such as GAs or ANNs, to individually adjust
frequency or voltage does not achieve instantaneous tuning. The proposed method adjusts
frequency and voltage simultaneously, improving system operating indices. GA first
guided the parameter adjustments. This strategy improved the MG’s performance but
caused steady-state errors. The ANN method to fine-tune control parameters online solved
this issue. GA-based decentralized control improved ANNs’ learning and extensibility.
Our controller reduces frequency and voltage profile variations, regardless of the operating
point. Thus, steady-state errors were reduced and the proposed system ran normally
despite disruptions. The proposed method can manage a larger range of operating points
and enhance power equality, making it appropriate for MGs.

Possible future work on this subject might entail applying the proposed secondary
control with a consensus method to govern and distribute frequency, active power, voltage,
and reactive power of each DG with its neighbors. The future secondary controller will
suit any MG architecture, including mesh and ring configurations. Eventually, practical
applications and deployment in specific environments, such as ambient intelligence systems
or smart environments, might be considered [56].
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