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 Autonomous mobile robots have become very popular and essential in our 

life, especially in industry. One of the crucial activities of the robot is 

planning the path from a start point to a target point, avoiding obstacles in 

the environment. Recently, path planning received more attention, and many 

methodologies have been proposed. Path planning studies have shown the 

effectiveness of swarm intelligence in complex and known or unknown 

environments. This paper presents a global path planning method based on 

grasshopper optimization algorithm (GOA) in a known static environment. 

This algorithm is improved using the bias factor to increase the efficiency 

and improve the resulting path. The resulting path from this algorithm is 

further enhanced using an improved version multinomial logistic regression 

algorithm (MLR). The algorithms were evaluated using three different large 

environments of varying complexities. The GOA algorithm has been 

compared with the ant colony optimization algorithm (ACO) using the same 

environments. The experiments have shown the superiority of our algorithm 

in terms of time convergence and cost. 
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1. INTRODUCTION 

The field of the autonomous mobile robot has been focused in recent years due to the various 

applications in which the robots can be used. Many areas should be considered when studying autonomous 

robots, such as perception, localization, path planning, and motion control. Some of these problems are 

increasingly complex, which becomes difficult to solve and optimize using conventional mathematical 

methods. Path planning is one of the NP-Hard problems, which requires a high computational cost to be 

solved using classical methods [1]-[3]. Metaheuristic methods have been proposed to overcome the 

complexity of classical methods. Metaheuristic algorithms are often independent of problem domains; the 

word ”meta” means a higher level. These methods are widely used in fields like robotics and are based on 

natural phenomena, evolutionary processes, and swarm intelligence. Metaheuristic methods are approximate 

optimization algorithms that do not guarantee optimal solutions. However, they are still near optimum in the 

reasonable computational time used for complex and significant problems. Several classifications are used in 

[4]-[8] that can be summarized in Figure 1. 

One of the essential metaheuristic methods is population-based algorithms that combine different 

solutions with high fitness values to create good or excellent solutions. Every iteration, a new solution with 

higher fitness values gradually replaces the one with lower fitness values, finding an optimal solution. Swarm 

intelligence is another essential feature of bioinspired models based on population, which describes the 

https://creativecommons.org/licenses/by-sa/4.0/
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behavior of animals in a collective or self-organized manner (e.g., birds, bees, ants). Path planning and 

optimization problems can be solved using numerical methods, bio-inspired algorithms, or hybridization. 

Research is being expanded on techniques inspired by nature and methods derived from birds, insect 

colonies, and various animal swarms to solve path planning, obstacle avoidance, and path improvement, 

which include: ant colony optimization (ACO) [9], genetic algorithms [10], particle swarm optimisation 

(PSO) [11], bee colony optimization (BCO) [12], cuckoo search (CS) [13], bat algorithm (BA) [14], firefly 

algorithm [15], grey wolf optimization (GWO) [16], ant lion algorithm (ALO) [17], moth-flame optimization 

(MFO) [18], whale optimization algorithm (WOA) [19], dragonfly algorithm (DA) [20], salp swarm 

algorithm (SSA) [21], grasshopper optimization algorithm (GOA) [22]. 

 

 

 
 

Figure 1. Optimization algorithms types 

 

 

Many studies and research have focused on both fields of bio-inspired algorithms and path planning 

[23]. Bio-inspired algorithms incorporate mechanisms, structures, and strategies from biological systems into 

the design of new algorithms. Swarm intelligence and evolutionary algorithms are the most successful bio-

inspired algorithms. This paper utilizes a bio-inspired algorithm GOA in autonomous robot path planning. 

GOA is an AI method derived from natural grasshopper swarming behavior proposed by Saremi et al., [22]. 

It has improved complex problems in many fields, such as engineering, computer science, medicine, and 

economics. Elmi and Efe [24] proposed a multi-objective GOA for robot path planning in a static 

environment. They worked on several objectives such as distance, time, and generating smooth paths. 

Compared with the PSO, grasshopper optimization displays distinct advantages with time and smoothness. 

On the other hand, the same authors [3] presented safe and smooth pathfinding for a mobile robot that can 

traverse from a starting point to a destination point without colliding obstacles. Four circles (different radii on 

the range sensor) estimate obstacle direction. Then it finds areas where these circles and obstacles intersect. 

The grasshopper algorithm was used to help the robot avoid obstacles. The two papers did not discuss or 

provide solutions for the problems of grasshopper, local optimums, or slow convergence. 

Other studies have developed and used grasshopper algorithms in various disciplines and hybridized 

them with different algorithms. Arora and Anand [25] used the chaos theory throughout the GOA optimizer 

to speed up implementation. Researchers are using two parameters, one generated by a chaotic map to 

balance exploration and exploitation of the entire grasshopper swarm, and the other reducing zone attraction, 

comfort, and repulsion to guide the grasshoppers either to explore or exploit. 
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On the other hand, some studies suggested hybridizing GOA with different optimization algorithms, 

such as meta-heuristics and machine learning. Barman and Choudhury [26] used GOA and support vector 

regression (SVR) to predict the forecast for short-term load during periods with significant weather changes. 

For securing medical data, Alphonsa and Sundaram [27] proposed a hybrid optimization approach called 

GOAGA, which combined GOA with genetic algorithms (GA). GOAGA proved to be more effective in 

preserving sensitive healthcare data than the other algorithms. 

Moreover, that study was compared with the ACO, the most famous algorithm in the path planning 

field, an intelligent swarm algorithm. In this algorithm, the cooperative foraging behavior of ants is 

simulated. Among its benefits are positive feedback, high robustness, and parallel processing. In the ant 

colony algorithm [28]-[30], studies have been proposed to develop an algorithm such as a system based on 

Ant-Q, called AQS. MMAS (MAX–MIN ant system) and others were working on modifying the initial 

pheromone or enhancing the pathfinding by combining it with another algorithm. The contribution of this 

work can be summarized as follows: i) using GOA for planning robot paths, ii) get rid of falling in local 

minima associated with the grasshopper algorithm, iii) modifying the grasshopper algorithm by introducing 

the biasing towards the target with a specific probability, iv) multinomial logistic regression (MLR) with a 

new technique, multiphase multinomial logistic regression (MMLR), was used to reduce sharp zigzags 

caused by random grasshopper behavior for the initial path such that the resulting path is a near-optimal one. 

The rest of the paper is organized as follows: section 2 introduces the biological behavior of 

grasshoppers, section 3 presents the proposed GOA path planning, section 4 discusses the experiments and 

results, section 5 presents the conclusion and future works. 

 

 

2. BIOLOGICAL BEHAVIOR OF GRASSHOPPER 

Grasshoppers are insects that are found in the grass and are considered to be pests because fact that 

they damage crop production and agriculture. Grasshoppers have three phases in their life cycle: egg, nymph 

(doesn’t have wings), and adulthood (has wings) (Figure 2(a)). So, they create a swarm in the air and move 

quickly to a vast area. Grasshopper swarms have the following characteristics: i) during the nymph phase 

when grasshoppers do not have wings, they move slowly based on small steps, ii) as they become adults, 

grasshopper swarms can jump suddenly and travel long distances due to their wings, iii) during its food-

seeking process, the swarm divides the process into two phases: exploration and exploitation, as shown in 

Figure 2(b). 

 

 

  
(a) (b) 

 

Figure 2. Grasshopper (a) life cycle and (b) exploration and exploitation 

 

 

GOA is an optimization algorithm based on the grasshopper population, where each grasshopper 

represents a solution [22], [31], [32]. It can be mathematically formulated as in the following steps: 

 

 

2.1.  Determine the position of each solution in the swarm 

The mathematical model that was used to calculate each solution’s position Xi 

 

𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖 (1) 
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Si represents the social interaction between the ith solution grasshopper and the other grasshoppers, 

Gi represents the gravitational force acting on the ith grasshopper, and Ai represents wind advection. Adding 

random behavior to each solution results in (2): 

 

𝑋𝑖 = 𝑟1𝑆𝑖 + 𝑟2𝐺𝑖 + 𝑟3𝐴𝑖  (2) 

 

There are three random numbers in the range, r1, r2, and r3 [0, 1]. 

 

2.2.  Social interaction force 

The social interaction of a grasshopper with another grasshopper can be calculated as follows: 

 

𝑆𝑖 = ∑ 𝑠(𝑑𝑖𝑗)𝑑̂𝑖𝑗
𝑁
𝑗=1  , 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗 (3) 

 

𝑠(𝑟) = 𝑓 𝑒
−𝑟

𝑙 − 𝑒−𝑟 (4) 

 

Where 𝑑𝑖𝑗 = |𝑥𝑗 − 𝑥𝑖| represents, the distance between the ith and jth grasshopper, 𝑑̂𝑖𝑗 =  
𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
 describes the 

unit vector. Moreover, 𝑠 represents the attraction and repulsion between grasshoppers, in which 𝑓 is the 

intensity of attraction and 𝑙 is the attractive length scale. The coefficients 𝑙 and 𝑓 are critical in grasshopper 

social behavior. 

 

2.3.  Force of gravity 

Calculating gravity force, 𝐺𝑖 is shown by (5): 

 

𝐺𝑖 = −𝑔𝑒̂𝑔 (5) 

 

Where −𝑔 is the gravitational constant and 𝑒̂𝑔 is the unit vector toward the earth's center. 

 

2.4.  Wind direction 

Nymphs and adult grasshoppers are strongly affected by wind direction. Therefore, they move in a 

wind-related pattern 𝐴𝑖. It can be represented as (6): 

 

𝐴𝑖 = 𝑢𝑒̂𝑤 (6) 
 

Where 𝑢 is the drift constant, and 𝑒̂𝑤 is the unit vector in the wind direction. In (1) can be rewritten using S, 

G, and A as (7): 
 

𝑋𝑖 = ∑ 𝑠(|𝑥𝑗
𝑁
𝑗=1,𝑗≠𝑖 − 𝑥𝑖|)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
− 𝑔𝑒̂𝑔 + 𝑢𝑒̂𝑤 (7) 

 

Where N is the number of grasshoppers. 

To preserve optimality and prevent grasshoppers from jumping into their comfort zones as well as 

the swarm from failing to reach the target location (global optimum), there will be some changes in (7): 
 

𝑋𝑖 = 𝑐(∑ 𝑐
𝑈𝐵𝑑−𝐿𝐵𝑑

2
𝑠(|𝑥𝑗

𝑑𝑁
𝑗=1,𝑗≠𝑖 − 𝑥𝑖

𝑑|)
𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
) + 𝑇̂𝑑 (8) 

 

Where 𝐺𝑖 = 0, 𝑇̂𝑑 is the 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 in the dth dimension, 𝑈𝐵𝑑  and 𝐿𝐵𝑑  are the upper and lower bounds in 

the dth dimension, respectively. 

In (8) shows that the next grasshopper position is determined by the current position, the target 

position, and the position of all other grasshoppers. As iterations proceed, the inner c contributes to 

decreasing repulsion/attraction forces between the grasshoppers, while the outer c reduces the search 

coverage around the target. Iterations in exploration and exploitation must be balanced by decreasing 

parameter c proportionately. In this manner, exploitation increases with the number of iterations. According 

to (9), the coefficient c reduces the comfort zone proportionally to the number of iterations: 
 

𝑐 = 𝑐𝑚𝑎𝑥 − 𝑙
𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛

𝐿
 (9) 

 

Where 𝑐𝑚𝑎𝑥 is a maximum value, 𝑐𝑚𝑖𝑛  is a minimum value, 𝑙 indicates the current iteration, and 𝐿 is the 

maximum number of iterations. Algorithm 1 explains the steps of GOA. 
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Algorithm 1: Grasshopper Optimization Algorithm (GOA). 

1 Initialize the swarm 𝑋𝑖(𝑖 = 1, 2, … , 𝑛) 
2 Initialization 𝑐𝑚𝑎𝑥, 𝑐𝑚𝑖𝑛, and maximum number of iterations; 

3 Calculate the fitness of each agent; 

4 T = the best search agent; 

5 while ( 𝑙 < iterations ) do 
6           Update c using equation 9; 
7            foreach search agent do  

8                           Normalize the distances between grasshoppers in [1,4]; 

9                           Update the position of the current search agent by equation 

8; 

10                           Bring the current search agent back if it goes outside the 

boundaries; 

11            end 

12            Update 𝑇 if there is a better solution;  
13             𝑙 = 𝑙 + 1; 
14 end 

 

 

3. THE PROPOSED WORK  

 The proposed work utilizes the GOA to plan a path for an autonomous mobile robot. GOA is 

originally used to solve optimization problems and cannot be used directly because it produces a zigzag path, 

which may pass through obstacles. It may also easily fall in local optimum. This work aims at finding 

solutions to these two problems by enhancing the algorithm to suit the needs of the path planning problem. 

The following steps describe the proposed path planning method: 

 

3.1.  GOA path planning 

GOA is used over the entire environment to find the required path from the start point to the target 

point, avoiding obstacles. The grasshopper algorithm plans a path using exploration and exploitation phases. 

Initially, each grasshopper (solution) is assigned a location point randomly distributed around the start point. 

During the exploration phase, each grasshopper is evaluated using a fitness function to measure the suitability 

of the current position of each grasshopper. In the present work, the fitness value is the Euclidean distance 

from the grasshopper location to the target location. After each iteration, the location of each grasshopper is 

updated using (8) until one of the grasshoppers reaches the target. It is confirmed if the line segment between 

the old and new grasshopper locations does not intersect any environmental obstacles. Otherwise, the new 

location is omitted. Some parameters strongly affect the performance of this algorithm. One of these 

parameters is the Cmax and Cmin, which controls the size of the grasshopper jump at each iteration. Large 

Cmax values may avoid falling to a local minimum in large environments.  

Algorithm 2 shows the globally static obstacle avoidance path planning algorithm using GOA. 

Obstacles, start and end points, max number of iterations, individuals of a population, and boundaries are the 

input to the algorithm, and the path is the output. The algorithm calculates the fitness of each grasshopper in 

the population after each iteration. At each iteration, the algorithm calculates a new location of each 

grasshopper. The line segment between the new location and the previous one should not intersect with any 

edge of obstacles until reaching the target point. The resulting path is the successive locations of the reached 

grasshopper. If the max iterations have reached, the algorithm declares that no path found. 

 

3.2.  Bias-based GOA 

As with any probabilistic algorithm, GOA suffers from slow convergence, which means it takes a 

long time to reach the target. In this work, a bias parameter is added to the GOA to speed up convergence. 

This parameter means that, in some probability, we use the target point instead of the best solution 

(grasshopper) in (8). Significant probability leads to fast convergence but may fall in a local minimum. 

Moderated value is a trade-off between convergence and getting stuck in local minima. 

 

3.3.  Regression-based path optimization 

The resulting path from the GOA is always not optimal (zigzag) due to the randomization nature of 

the algorithm. Therefore, finding a shorter and smoother version of the original path is necessary. This work 

uses the MLR method to obtain a zigzag-free path as in Ansarry and Al-Darraji [33]. In this method’ the 

original path is regarded as a set of nodes X=X1, X2, X3,…, Xn. For all i=1, 2,…, n, and starting from node X1, 

all edges Eij for all j=n, n–1, n–2,…., i +1 are checked against obstacles. If no obstacle intersects edge Eij, it 

will be added to the new path. Otherwise, it will be omitted. 

However, this method is efficient with paths consisting of short segments such as those resulting 

from RRT and its variants. In methods like GOA that produce paths with irregular segments, MLR is not the 
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suitable method to get a smooth and short path. Therefore, a MMLR, an updated version of MLR, is 

proposed for short and semi-smooth path. Algorithm 3 presents the proposed path optimization. 

 
Algorithm 2: GOA path planning. 

 Input : start_point, target_point, obstacles, max_iterations, population_size, 

lower_bound, upper_bound 

 Output: path 

1 initialize the swarm positions Xi (i = 1, 2, …, population_size); 

2 initialize 𝑐𝑚𝑎𝑥 and  𝑐𝑚𝑖𝑛 ; 

3 paths = [] ; 

4 calculate the fitness of each grasshopper ; 

5 B = the best grasshopper ; 

6 iter = 1 ; 

7 while iter <= max_iterations do 

8         C =  𝑐𝑚𝑎𝑥- iter ((𝑐𝑚𝑎𝑥- 𝑐𝑚𝑖𝑛) / max_iterations) ; 

9         for i = 1 to population_size do 

10               normalize the distance between grasshoppers ; 

11               new_position = calculateNewPosition (Xi, C, B) 

12               if outsideBoundaries ( new_position, lower_bound, upper_bound) then 

13                   new_position = recalculate ( new_position, lower_bound, 

upper_bound); 

14               end 

15               line =  lineSegment (Xi , new_position) ; 

16               if not intersectObstacle (line, obstacles) then 

17                   Xi = new_position ; 

18                   path[i].append (Xi ) ;  

19                   if fitness (Xi ) < fitness (B) then 

20                       B = Xi ; 
21                   end 

22                   if  reached (Xi ) then 

23                         path = paths[i] ; 

24                         return path; 

25                   end 

26               end 

27               end 

28        iter = iter +1 ; 

29 end 

30 return no_path_found; 

 
Algorithm 3: Multiphase Multinomial Logistic Regression Algorithm. 

 input : path, obstacles, segment_length, phases 

 output: regression_path 

1 for phase = 0 to phases -1 do 

2       if phase > 0 then  

3           path = getSegmentedPath (path, segment_length); 

4       end  

5       shortpath = []; 

6       startsegment = round (phase * (length (path) /2 ) / phases)); 

7       for p= 0 to startsegment do 

8             shortpath.append (path [p])   

9       end  

10       i = startsegment ; 

11       while i < length (path) -1 do 

12              for k = length (path) -1 downto i do 

13                    line = lineSegment (path[i],path[k]); 

14                    if not intersectObstacle (line, obstacles) then 

15                          shortpath.append (path[k]) ; 

16                          i = k -1; 

17                          break; 

18                    end 

19              end 

20               i = i +1;  

21        end 

22        shortpath = reverse (shortpath) ; 

23 end 

24 if phases % 2 == 1 then  

25        shortpath = reverse (shortpath) ; 

26 end 

27        regression_path = shortpath ; 

28 return regression_path; 
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This method passes through multiple phases, in which the path is curved each phase, and the 

resulting intermediate path is reversed to give a chance to the two endpoints of the path. To not reach the 

steady state, the start point at each phase is shifted by several segments as the phase increases. The first phase 

of this method is similar to MLR, which begins from the start point to the target point to get rid of the zigzag. 

The following phases re-segment the path resulting from the previous phase into a set of fixed-size segments 

before the MLR is applied again. Figures 3(a) and (b) depict the original and short path, respectively. 

 

 

  
(a) (b) 

 

Figure 3. Path regression (a) original path and (b) short and semi-smooth path after 4 phases 

 

 

4. EXPERIMENTS AND RESULTS  

The experiments have been conducted using the robot operating system (ROS Noetic) simulation 

environment. This framework is operated under Linux (64-bit) operating system with (8GB) RAM and (intel 

Core-i7 11th Gen) processor. Three 1500x1500 cm maps with different complexities were used to evaluate 

the algorithm performance, as shown in Figures 4(a) to (c). The proposed algorithms were tested in different 

scenarios, then compared the results and evaluated their performance according to several factors 

(convergence time, cost, and path length). Three experiments were conducted; in each one, the algorithm was 

executed 100 times on the three maps. The first experiment compares several values of bias. The second 

compares GOA and ACO. The third experiment shows the effect of path regression. 

 

 

   
(a) (b) (c) 

 

Figure 4. Experimental maps (a) map-1 (b) map-2 and (c) map-3 

 

 

4.1.  Bias experiments 

These experiments focus on the bias effect on the algorithm. Bias is a probability coefficient 

(uniform distribution) with a certain percentage, either the grasshopper is heading toward the best 

grasshopper (the best solution), which is the original case (Bias=0), or towards the target point. We consider 

different bias values to observe their effect on the algorithm in different environments. Four bias values are 
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used 0, 0.25, 0.5, and 0.75. Figure 5 shows that the bias highly affects the convergence time, cost, and path 

length values. In map-1, the time to reach the goal is reasonable when there is no bias, whereas, in the other 

maps (more complex maps), it rises to 5.1 seconds. Different bias values decrease the time in each of the 

three maps, as shown in Figure 5(a). The experiments have also shown a high effect for the bias on the cost 

factor. Using a bias value highly decreased the cost, especially in map-3, as shown in Figure 5(b). Another 

factor is also affected by bias, which is the path length. Using bias values other than 0 decreased the path 

length, as shown in Figure 5(c). 

 

 

  
(a) (b) 

 

 
(c) 

Figure 5. Bias experiments (a) time convergence (b) cost and (c) path length 

 

 

4.2.  Comparative experiments 

This section presents comparative experiments between the GOA and the ACO under the same 

conditions and environments. As a result of these experiments, we demonstrated the superiority of GOA over 

ACO in terms of time and cost. Tables 1 and 2 show the average of 100 executions for both algorithms. 

 

 

Table 1. Time convergence 
Algorithm map-1 map-2 map-3 

ACO 5.2 8.8 7.9 

GOA 0.1 0.3 0.9 
 

Table 2. Cost 
Algorithm map-1 map-2 map-3 

ACO 200945 342195 352528 

GOA 350 712 2030 
 

 

 

4.3.  Regression experiments 

In complex environments, the resulting path from the GOA is always zigzag and needs to be 

enhanced using some smoothing methods. This experiment shows the regression algorithm's effect on 

enhancing and shortening paths. Figures 6(a) to (c) show the path planning of the ACO algorithm for map-1, 

map-2, and map-3, respectively. Figures 6(d) to (f) show the original path of the GOA algorithm as well as 

the semi-optimal paths using a regression for map-1, map-2, and map-3, respectively. On the other hand, 

Figure 7 and Table 3 depict the difference between the length of the original path and the semi-optimal path 

resulting from the regression. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Grasshopper optimization algorithm based path planning for autonomous mobile robot (Asmaa Shareef) 

3559 

 
 

Figure 6. Experimental maps (a) map-1 ACO (b) map-2 ACO (c) map-3 ACO (d) map-1 GOA (e) map-2 

GOA and (f) map-3 GOA 

 

 

 
 

Figure 7. Path length comparison 

 

 

Table 3. Path length 
Algorithm map-1 map-2 map-3 

ACO 3757 4284 4865 

GOA 3574 5014 7311 
R-GOA 1542 1912 2339 

 

 

5. CONCLUSION 

This paper presents a global path planning method based on the grasshopper optimization algorithm. 

The original algorithm is enhanced to suit the path planning and obstacle avoidance problem. The bias factor 
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was used to improve the algorithm according to factors such as time, cost, and path length. Another 

enhancement on the resulting path is obtaining a new short semi-smooth path using MMLR. The algorithm 

was compared with ACO. The experiments have shown that our algorithm improved the time convergence 

and cost. Using the regression, the experiments have also demonstrated a shorter path than ACO. Future 

works could include using the new global GOA path planning version in dynamic environments. 
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