
Egyptian Informatics Journal 23 (2022) 145–162
Contents lists available at ScienceDirect

Egyptian Informatics Journal

journal homepage: www.sciencedirect .com
Provably throttling SQLI using an enciphering query and secure
matching
https://doi.org/10.1016/j.eij.2022.10.001
1110-8665/� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Computers and Artificial Intelligence, Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: majunchao@sztu.edu.cn (J. Ma).

Peer review under responsibility of Faculty of Computers and Information, Cairo
University.

Production and hosting by Elsevier
Mohammed Abdulridha Hussain a,b, Zaid Alaa Hussien c, Zaid Ameen Abduljabbar a,b,d, Junchao Ma e,⇑,
Mustafa A. Al Sibahee e,f, Sarah Abdulridha Hussain g, Vincent Omollo Nyangaresi h, Xianlong Jiao i

aDepartment of Computer Science, College of Education for Pure Sciences, University of Basrah, Basrah 61004, Iraq
b Technical Computer Engineering Department, Al-Kunooze University College, Basrah 61001, Iraq
c Information Technology Department, Management Technical College, Southern Technical University, Basrah 61005, Iraq
dHuazhong University of Science and Technology, Shenzhen Institute, Shenzhen 430074, China
eCollege of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
fComputer Technology Engineering Department, Iraq University College, Basrah 61004, Iraq
gNational Center for Management Development and Information Technology, Basrah 61004, Iraq
h Faculty of Biological & Physical Sciences, Tom Mboya University, Homabay 40300, Kenya
iCollege of Computer Science, Chongqing University, Chongqing 400044, China

a r t i c l e i n f o
Article history:
Received 7 March 2022
Revised 12 September 2022
Accepted 13 October 2022
Available online 16 November 2022

Keywords:
SQL injection
Cryptography
Searchable encryption
Web application
Internet Security
a b s t r a c t

Web applications, which dominate the internet, act as communication media between customers and
service providers. Web applications are an internet innovation that provide customer services such as
e-banking, e-commerce and e-booking. Developing web applications has become increasingly compli-
cated because of security threats and service issues that involve valuable information. Attack methods
such as structured query language (SQL) injection insert malicious code within user input data requests
to gain unauthorised access, and then the attacker targets a database to manipulate information. In this
paper, we propose a prevention method against SQL injection attacks through cryptography and search-
able encryption. The proposed method uses a cryptography technique to encrypt all database informa-
tion, where each piece of user information is encrypted with a separate key. The rest of the database
information is ciphered with secret keys, and a searchable encryption technique is used for other data-
base operations to preserve privacy. The login process compares the ciphered username from the data-
base and user entry to authenticate the user. The proposed method is implemented on the PHP and
MySQL databases, which are open-source applications. The results show efficient prevention of SQL injec-
tion, and the database remains protected against SQL injection attacks
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Computers and Artificial Intel-
ligence, Cairo University. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The industry is moving toward web applications to support
remote services with ubiquity and cost efficiency [1]. Organisation
and companies rely on web applications to deliver services to cus-
tomers while reducing the cost to a minimum because the infras-
tructure is based on the internet. Services such as e-banking,
shopping, e-governance and reservations increase productivity in
daily life due to speed and utility flexibility [2].

Web applications are built upon a number of program layers in
tier architecture to handle complexity and specific functions. The
basic internet technology architecture is client–server, whereas a
web application adds a third level (i.e., database tier) to manage
information [3]. The database contains records for managing the
web application and authenticating users. However, any breach
in web application authorisation leads to the disclosure of all data-
base records and information [4]. Access to the database is con-
trolled by access control policies, but other data operations are
not controlled or limited. In other words, access policies define
how to access but not how to use data [5].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eij.2022.10.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eij.2022.10.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:majunchao@sztu.edu.cn
https://doi.org/10.1016/j.eij.2022.10.001
http://www.sciencedirect.com/science/journal/11108665
http://www.sciencedirect.com

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
The rapid development of the internet has become a primary
concern of businesses, and the growing amount of information
online has led to increasing concerns about information security
and threats. Moreover, businesses rely on the internet for valuable
transactions such as banking, which caused attackers to attempt
access to web application databases [6]. One web application
attack is known as a Structured Query Language (SQL) injection
attack (SQLI), which targets the database for unauthorised access.
SQLI attacks are classified as severe and harmful for web applica-
tions because SQLI can gain unauthorised access, manipulate data-
base information and may result in denial of service [7].

According to the Open Web Application Security Project
(OWASP) [8], SQL injection, which is defined as injecting untrusted
data into normal commands or queries to gain access to a database,
is the major threat to web application databases [9]. The attacker
injects malicious code in the SQL query that targets the back-end
web application database [10]. An attacker will cause a security
breach to a database, wherein the severity of impact depends on
the type of SQL injection and the web application problem [11].
An attacker’s intention involves a transaction between a web ser-
ver and a database, and the way SQL is written and called. The SQLI
method uses the normal SQL statement and rules, which is the rea-
son that the server–database communication needs to be validated
or the mode of communication needs to be hidden [12,13].

The attacker’s code is a normal text format which is interpreted
by the web server as an SQL command and executed in the data-
base. Thus, the code injected does not contain any special charac-
ters that further complicate detection [14]. Prevention is added in
complex analysis processes to the web server. This causes delays
and requires page coding for each user input field. The lack of a
prevention technique in a web application has severe conse-
quences such as loss in confidentiality, integrity and authentica-
tion [15].

In this paper, we present a method to prevent SQLIs. The pro-
posed method is based on the encryption of the database informa-
tion and searchable encryption. To authenticate the user, the
username is encrypted using a symmetric cipher with a key equal
to a password. Searchable encryption is used to preserve the pri-
vacy of the information while searching records. The results show
that the proposed method prevents SQLIs, and the results are com-
parable with those of the newestmethods in terms of time and size.

Fig. 1 illustrates the dominance of PHP in building web applica-
tions [16]. Some solutions of SQLI are based on the language level
[2,6,17,18,19], whereas PHP is targeted for the above reason. The
proposed method is based on a database and not on a specific ven-
dor or language, making the solution highly robust. In other words,
the proposal is independent of server compiler language, so it can
be deployed on any platform.
Fig. 1. Usage statistics of web applications [16].

146
The main contributions of this work are as follows:

� We present a method to prevent SQLI.
� The proposed method can protect web applications such as e-
banking from injection attacks.

� The encryption of information resists tautology and comment
attacks.

� Searchable encryption is presented to withstand other types of
SQLI.

� The proposed method is not specified for a platform or any pro-
gramming language.

� The results show that the proposal to counter SQLI does not
affect the system performance.

The remainder of this paper is structured as follows:
Section 2 provides preliminary and contextual information. Sec-

tion 3 describes previous works related to the subject. Section 4
explains the proposed method. Section 5 demonstrates the imple-
mentation and the experiments carried out to verify the proposal.
Section 6 presents the results of the experiment and a discussion.
Section 7 explains the security analysis carried out, and the final
section presents the conclusion and future works.
2. Preliminaries

2.1. SQL injection attack

SQL injection attacks exploit vulnerabilities in a database layer
[20]. Most vulnerabilities are caused by developers’ lack of knowl-
edge about SQLI threats or that they ignore such vulnerabilities
because a secure web application means higher costs. The follow-
ing are some of the most popular types of SQLI [21] and [22].

1) Tautology

An attacker exploits the condition format after (WHERE) clus-
tering in the SQL statement. The basic condition for a login query
is to check the username and password. Meanwhile, an attacker
injects an input that will always be true for the condition. The
result of such an attack is to gain access to a web application.
Table 1 provides an example of a tautology attack.

2) Commenting

An attacker inserts SQL comments, which are denoted by a dou-
ble dash: ‘‘--.” Practically, when a username is known, an attacker
comments the password fields to achieve an unauthorised login.
Table 2 provides an example of a commenting attack.

3) Piggybacked

The objective of such an attack is to insert a query to be exe-
cuted with the legal or original query. The second query is not built
by the developer, which means the web server cannot handle the
result. Hence, this scenario limits the attacker query options with-
out retrieved information. The basic query is updated and inserted,
but most of the used queries are deleted. This attack may be exe-
cuted on any page such as login, search or insert, and the result
directly affects the database without raising an alert. Table 3 pro-
vides an example of a piggybacked attack.

4) Union

An attacker inserts ‘‘UNION” after the original query to retrieve
more information about the original queried table. The result of the

Table 1
Example of tautology attack.

Attacker input

Username = a’ or ’a’=’a Password = a’ or ’a’=’a
Web server generate query

SELECT * FROM users WHERE username = ’a’ or ’a’=’a’ and password=’a’ or
’a’=’a’;
Database result
Attacker gain access to web application as legal user.

Table 2
Example of commenting attack.

Attacker input

Username = admin’ – Password = xx
Web server generate query

SELECT * FROM users WHERE username = ’admin’ – and password=’xx’;
Database result
Attacker gains access to web application as ’’admin.’’

Table 3
Example of piggybacked attack on search page.

Attacker input

search field (id) 5; drop table users;
Web server generate query

SELECT * FROM users WHERE id = 5; drop table users;
Database result
Users table is deleted from database, which prevents access to web
application

Table 4
Example of union attack.

Attacker input
Note:(admin, moh) is legal username and password pair

Username = admin Password = moh’ UNION ALL SELECT * FROM users;
Web server generate query

SELECT * FROM users WHERE username = ’admin’ and password = moh’
UNION ALL SELECT * FROM users;
Database result
Database displays user information to attacker

Table 5
Example of alternate encoding attack.

Attacker input
Note: char(0x73687574646f776e) is ’’shutdown’’

search field (id) 5; exec(char(0x73687574646f776e));
Web server generate query

SELECT * FROM users WHERE id = 5; exec(char(0x73687574646f776e));
Database result
The database turns off (shutdown) when query passes any character filter
mechanism.

Table 6
Example of logical incorrect attack.

Attacker input

Username = test’ Password = test
Web server generate query

SELECT * FROM users WHERE username = ’test’’ and password= ’test’;
Database result
Display error (syntax to use near ’’ and password = test’ at Line 1)

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
attack is to collect information for future use, but the attacker has
already gained direct access to the SQL database panel. Table 4 pro-
vides an example of a union attack where the attacker has an
authorised account and tries to retrieve all other accounts via a
union attack query.

5) Alternate encoding

The alternate method is based on transferring a query into a
code explainable by a database, such as ASCII. An attacker uses this
method to defraud a web server phrase filter, which is used to
block the injected query. Table 5 provides an example of an alter-
nate encoding attack where the attacker tries to override the stored
procedure keyword filter by changing ‘‘shutdown” to hexadecimal
encoding and pass the procedure through the search page.

6) Logical incorrect

An attacker’s objective is to collect information about a data-
base such as table names and column properties. The technique
is based on inserting incorrect symbols into the query to activate
147
a database exception to a user, which will display an error notifica-
tion such as a table name. Table 6 provides an example of a logical
incorrect attack where the attacker tries to insert a symbol in the
username field, which results in a database error.

7) Blind

An attacker needs a GET HTTP request to execute a blind attack,
which is based on inserting malicious code into the Uniform
Resource Locator (URL). The objective of this attack is to gather
information about the database by trying or comparing letters by
letters. An automatic tool such as SQL-map is proposed because
the manual method is rigorous and time-consuming. SQL-map
and other tools make a blind attack easy to perform. Table 7 pro-
vides an example of a blind attack where the attacker tries to find
if any table in database starts with ‘‘a” by condition result. In other
words, the search page will display if there is a table starting with
‘‘a.”.

8) Stored procedure

Database application becomes increasingly complicated, which
presents new items such as procedures and triggers. The procedure
is a code stored at the database end to perform a special task.
When an attacker runs a procedure remotely, a stored procedure
attack is achieved. Table 8 provides an example of a stored proce-
dure attack where the attacker tries to shut down a database remo-
tely through a stored procedure.

2.2. Searchable encryption

The well-known method to secure information uses cryptogra-
phy techniques, especially in a public environment such as the
cloud. As the name implies, searchable encryption allows searching
over encrypted information to preserve privacy [23].

One of the searchable encryption approaches is based on key-
word search. The information is encrypted and stored in the data-
base with information keywords in plain text. The database
retrieves records according to keywords [24].

2.3. System architecture model

The web application is a model based on the internet environ-
ment for communicating model parties and transferring data

Table 7
Example of blind attack.

Attacker input: on the URL

https://localhost/nor/searchbook.php?nam = 5 and 1=(SELECT 1 FROM information_schema.tables WHERE TABLE_SCHEMA=‘‘DBname” AND table_name REGEXP ’^[a]’
LIMIT 0,1)

Web server result
SELECT * FROM users WHERE username = ’test’’ and password= ’test’;
Database result
I If the search page displays a result page, then the database contains a table name starting with ’’a.’’ When there is no page display, there are no tables name starting
with ’’a’’

Table 8
Example of stored procedure attack.

Attacker input

search field (id) 5; exec(SHUTDOWN);
Web server generate query

SELECT * FROM users WHERE id = 5; exec(SHUTDOWN);
Database result
The database turns off (shutdown).

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
[25]. Fig. 2 shows three theoretical parties, namely, the client, ser-
ver and database. Practically, a client connects to a network and
provides a graphical user interface (GUI) for a user through a
web browser. A server handles client request–response using
web server applications such as Apache and connects to a database
that is mostly on the same server [4].

A web application communicates to the database owing to SQL
statements that restrict inserting, updating, deleting and selecting
commands. The use of SQL limits GUI pages to add, modify, delete,
search and login, in which the first three are handled in the same
way [26].

The modification or deletion of records from a database is exe-
cuted practically in two main scenarios.

Scenario A for modifying records:

1) A user requests the page.
2) The table main column is presented to the user as a drop-

down selection.
3) The user selects one selection and submits it to the server.
4) The fields of the selected record are viewed.
5) The required field(s) are modified.
6) The table is updated.

Note: When deleting records, the selected record is deleted
after step 3.

Scenario B for modifying records:

1) A user requests the page.
2) A page with an empty text box is viewed.
3) The value of the table main column (e.g., id) is entered and

submitted to the server.
Fig. 2. System arch

148
4) If the value exists, then view the fields. Otherwise, return an
error page.

5) The required field(s) are modified.
6) The table is updated.

Note: When deleting records, if the value indicated in step 4
exists, then the selected record is deleted.

3. Related works

The injection attack is claimed until reaching the first threat on
a web application according to OWASP 2021. In recent years, a con-
siderable amount of research has been conducted to detect and
prevent SQLI. The following are some proposed methods based
on encryption and encoding mechanisms to prevent SQLI.

Raj et al. [17] proposed a coded format to store data. This
method is based on the reversal insertion algorithm (RIA). After
reversing the input, a special character between each group of
two letters is inserted to cancel the (OR) appearance. The proposal
evaluates only the login page, and from Algorithm 2, multiple com-
putation and comparison combinations load to the web server,
which consumes more time.

D’silva et al. [27] proposed preventing SQLI by using the hashing
technique. The method calculates the hash value of the login query
with the correct values when a user creates and compares the
results of the query hash value during the login phase. The disad-
vantage of this method is that it can only be applied to the login
phase, and compression adds extra processing to the web server.

Anjugam et al. [28] proposed Advanced Encryption Standard
(AES) encryption on token SQL queries. The token generates a
dynamic client-side table, which is encrypted and sent to the ser-
ver with the original query. The server generates a lookup table
from the user query, decrypts the client dynamic table and then
compares both tables. If both tables are equal, then the query is
forwarded to the database; otherwise, the query is blocked. How-
ever, this duplicates the request size, which is sent to the server,
and consumes bandwidth between the client and server. The need
for a client to store a dynamic table may be blocked by blocking the
client-side script.

Kumar et al. [29] presented a method that is divided between a
client and server. The client-side function filters sensitive charac-
ters, and the query length is retrieved from the database, whereas
the server-side function compares the message authentication
itecture model.

https://localhost/nor/searchbook.php?nam

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
code (MAC) value during the user creation and login phases.
Retrieving information at the client-side filter increases traffic,
and the method protects only the login phase.

Namdev et al. [18] used the hash technique for securing logins.
The hash value computes for the username and password and then
calculates the EXOR between them. The login procedure depends
on the EXOR value to authorise a user. The approach protects only
the login from tautology attacks, and the EXOR calculation is eval-
uated on a web server.

Avireddy et al. [19] proposed a coding-based scheme where
each character maps up to four possible random characters. The
selected value from the table is based on the next character. The
lookup table must be maintained on the client and the server sides,
which is the main drawback of the scheme.

Balasundaram et al. [30] proposed a scheme based on AES to
verify a user. The database stores the username, password and
secret key for each user. The client encrypts the username and
password before being sent to the server. The server verifies the
username and password after decrypting the received query by
using the stored key in the database table. The disadvantage of
such a scheme is that users must enter their username, password
and secret key for each login. The scheme prevents only tautology
attacks.

Zhu et al. [31] proposed modular automation of the SQL state-
ment in which the module maintains a list for a known anomaly
pattern. The disadvantage is centred on pretreatment, which con-
sumes considerable time in a web server due to the extraction of
the pattern and extra size to store known patterns.

Dalai et al. [32] suggested comparing the string after the ‘where’
cluster in two cases. The first case is without user input, and the
second case has user input after removing the type of correct vari-
able. Their work was evaluated using Java and only handles select
clusters. The author evaluated the tautology and removes the
alphabet without removing (‘a’=’a’). The main drawback is that
the method does not solve the insert and update clusters.

Xiao et al. [33] detected SQL injection through behaviour and
response analysis. The method calculates the normal state and
Fig. 3. Propose

149
stores the results in the database. When a user requests, a service
is executed and compared with the stored result for any unusual
value. The first disadvantage is the overwhelming amount of data,
and the second disadvantage is that the request is first executed
and then blocks the user. Finally, saving the user IP and port in a
blacklist does not guarantee blocking the user where the user
may run some proxy.

Ghafarian [26] used a hybrid method from static and dynamic
analysis to prevent and detect SQLI. The main method is based
on extracting table names and conditions from the input query
and then reconstructing a SELECT query. If the result returns the
symbol from the database, then the query is rejected. The method
prevents only tautology attacks.

The proposed method is based on using encryption information
in the database to prevent SQLI. The encryption is used only with
the insertion of information and keyword search, which can
increase the time in contrast to the security offering. Searchable
encryption is used to preserve information privacy and save
decryption time.
4. Proposed method

According to Section 2, a security breach occurs within user
input fields, in other words, HTML text box fields. The proposed
method is extended from [34], which is based on encrypting all
user input before processing. This method helps defuse all mali-
cious codes. Encryption refers to a symmetric cipher that is being
handled at the database level, as shown in Fig. 3.

The related studies state that the majority solution covers only
the login phase/page. In contrast, the proposed scheme solves login
and other pages through encryption and searchable encryption.
Subsection 2.3 shows that the majority of website pages deal with
a database to store web application data and information. In such
web applications, login, insert and update pages can be protected
by encrypting user input. However, in this proposal, the search
page can be protected by applying searchable encryption. The role
of searchable encryption is to preserve privacy to the database’s
d method.

Fig. 4. Login procedure.

Table 9
Login checking code.

$userid = $_POST[’userid’];
$password = $_POST[’password’];
@ $db = new mysqli(’localhost’,’root’,’’,’libmoh’);
$pw = hash(’sha3-5120 , $password);
$query = ‘‘select * from users where username = AES_ENCRYPT
(’$userid’,’$pw’)‘‘;
$result = $db->query($query);
if ($result->num_rows) echo ’’Authorized Login’’; else echo ’’Not
Authorized’’;

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
encrypted information, so the database information is not revealed
by data decryption.

The following subsection will explain the proposed scheme on
the basis of page type and procedure (each entity function and
messages).
Fig. 5. Insert p

150
4.1. Login procedure

A user calls this procedure every time to access web applica-
tions. A user first calls a login form that contains an empty text
box for the username and password. The form is displayed as an
HTML page. Afterwards, a user fills in the text fields, and the brow-
ser submits the data to a web server script such as PHP. The web
server extracts the data from the HTTP request, calculates the
secret key and submits the data to the database. The key is gener-
ated through a hash function (SHA3 [35]) to the password text
value. The database engine encrypts the username using the secret
key and executes a select query for the cipher username. If found,
then the user is an authorised user; otherwise, an error page is dis-
played, as shown in Fig. 4 and Table 9.

Remark: MD5, SHA1 and SHA2 suffer from collision resistance,
which is an easier approach than a brute-force attack. While SHA-1
rocedure.

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
and SHA-2 aremathematically and structurally comparable, SHA-3 is
more secure due to its collision and preimage resistance. In light of
this, SHA-3 is increasingly replacing other hash functions [36,37].
4.2. Insert procedure

A user executes the insert procedure when entering the user
account with the authorised username. The first form is in HTML
Table 10
Insert code.

$un=$_POST[’n10];

$pw=$_POST[’n20];
@ $db = new mysqli(’localhost’,’root’,’’,’libmoh’);
$pw1 = hash(’sha3-5120 , $pw);
$query = ‘‘insert into users values(NULL,AES_ENCRYPT(’$un’,’$pw10))”;
$result = $db->query($query);
if ($result) echo $un.‘‘ is Added”; else echo ’’Error’’;

Fig. 6. Update

151
and contains the necessary information with username and pass-
word pairs. In modern forms, fields are required to be completed
by users, and any missing information causes the server to reject
the information and display an error. In normal scenarios, a web
server generates a secret key, which is the hash value (SHA3) from
the password and the secret key used to encrypt (e.g., AES [38,39])
the username to store ciphered in the database. As shown in Fig. 5
and Table 10, if the insertion is successful, then the web server
returns to the user an HTML page containing the succeeding insert
procedure.

Remark: The data encryption standard (DES) suffers from brute-
force attacks, whereas the advanced encryption standard (AES) is
the solution to DES drawbacks [40]. The AES key is the default size,
which is 128 bits. The SHA3 output is more than sufficient com-
pared with the key length, but such a size will deceive attackers
as a man-in-the-middle attack, and the key driven from SHA3 will
not be saved. In other words, there is no waste in database
information.
procedure.

Table 11
Update code.

$id=$_POST[’n10];

@ $db = new mysqli(’localhost’,’root’,’’,’libmoh’);
$key = hash(’sha3-5120 , ’subber’);
$query = ’’select * from books where id = AES_ENCRYPT(’$id’, ’$key’)‘‘;
$result = $db->query($query);
if ($result)
{
//View the record
echo ‘‘<table border = 1>”;
echo ‘‘<tr><td > id</td><td><input type=’text’ name=’n10 value = AES_DECRYPT(id, ’$key’)></td></tr>”;
echo ‘‘<tr><td > Book Title</td><td><input type=’text’ name=’n20 value = AES_DECRYPT(title, ’$key’)></td></tr>”;
echo ‘‘<tr><td > Author Name</td><td><input type=’text’ name=’n30 value = AES_DECRYPT(author, ’$key’)></td></tr>”;
echo ‘‘<tr><td > Details</td><td><input type=’text’ name=’n40 value = AES_DECRYPT(details, ’$key’)></td></tr>”; echo ‘‘</table>”;
}
else echo ’’Error: Not Found’’;
Update the Record
$id=$_POST[’n10]; $ti=$_POST[’n20]; $au=$_POST[’n30]; $de=$_POST[’n40];
@ $db = new mysqli(’localhost’,’root’,’’,’libmoh’);
$key = hash(’sha3-5120 , ’subber’);
$query = ’’update books set title = AES_ENCRYPT(’$ti’, ’$key’), author = AES_ENCRYPT(’$au’, ’$key’), details = AES_ENCRYPT(’$de’, ’$key’)where id = AES_ENCRYPT(’$id’,

’$key’)‘‘;
$result = $db->query($query);
if ($result) echo ’’Updated’’; else echo ’’Error’’;

Fig. 7. Delete procedure.

Table 12
Delete code.

$id=$_POST[’n10];

@ $db = new mysqli(’localhost’,’root’,’’,’libmoh’);
$key = hash(’sha3-5120 , ’subber’);
$query = ’’Delete * from books where id = AES_ENCRYPT(’$id’, ’$key’)‘‘;
$result = $db->query($query);
if ($result) echo ’’Deleted’’; else echo ’’Error: Not Found’’;

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
4.3. Update procedure

In this proposal, the update procedure is based on scenario B in
Section 2.3 because scenario A causes decryption of all table main
columns in the server to view in step 2.

The user input is encrypted using a secret key stored in the web
server and executes a select query in the database to find the
152
requested record. The database decrypts the found record, which
is displayed to the user by the web server. After a user submits
the required modification, the database encrypts the fields and
updates the table record, as shown in Fig. 6 and Table 11.

4.4. Delete procedure

The delete procedure is based on scenario B in Section 2.3 and is
demonstrated in Fig. 7 and Table 12. In this procedure, user input is
encrypted and a select query is run. The records are deleted if
found.

4.5. Search procedure

The search procedure in this proposal is based on searchable
encryption because the database information is encrypted. Search-

Fig. 8. Search procedure.

Table 13
Search code.

$nm=$_GET[’nam’];

@ $db = new mysqli(’localhost’,’root’,’’,’libmoh’);
$key = hash(’sha3-5120 , ’subber’);
$query = ‘‘select id, AES_DECRYPT(title, ’$key’) ti,AES_DECRYPT(author,

’$key’) au, AES_DECRYPT(details, ’$key’) de from books where kw like
AES_ENCRYPT(’$nm’, ’$key’)”;

$result = $db->query($query);
$num_results = $result->num_rows;
for ($i = 1; $i <=$num_results; $i++)
{
$row = $result->fetch_assoc();
$id=$row[’id’]; $ti=$row[’ti’];$au=$row[’au’]; $de=$row[’de’];
echo ‘‘<table border = 1>”; echo ‘‘<tr><td > id</td><td>$id</td></tr>”;
echo ‘‘<tr><td > Book Title</td><td>$ti</td></tr>”;
echo ‘‘<tr><td > Author Name</td><td>$au</td></tr>”;
echo ‘‘<tr><td > Details</td><td>$de</td></tr>”; echo ‘‘</table>”;
}

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
able encryption based on keywords is used, as mentioned in sub-
section 2.2, but here the keywords are encrypted and stored in
the database. The procedure starts by encrypting the user keyword
and executing the selected query in the database. If the keyword is
found, then it will display the related records to the user after
decryption, as shown in Fig. 8 and Table 13.
5. Implementation and experimental tests

The attack occurs at the application layer where the browser
defines the protocol rules [41]. The browser handles normal client
and attack requests in the same way regardless of the application
layer protocol carrying the request. Practically, HTTP or HTTPS will
handle browser requests, as in [6,17,32,33]. HTTP is used in the
experiment. The HTTP helps the network analyser program read
messages that are transferred in plain text.
153
5.1. Implementation

The proposal is implemented using XAMP 7.2.11 [42] as a local-
host server, which contains Apache 2.4.35, PHP 7.2.11 and MySQL
5.0.12. The web application consists of creating user accounts, log-
ging in, logging out and search functions. The ideal implementation
with previous proposals is implemented for comparison purposes.
These are listed in Table 14.

The main database tables are users, table1 and books, which
contain book information from the dataset in [43]. The dataset
information is split into title, author, details and keywords, where
the detailed column contains other uncategorised data. ’table10 is
meant to test piggybacked drop table attacks. If successful, table1
is removed. The ’users’ table is meant for storing authorised user
information for login purposes. The table ‘books’ is the same as
all previous proposals except the proposed method, and the user
table is different for all proposals, as shown in Table 14.

The created user account function is implemented by using two
pages. The first is the HTML page, and the second is the PHP page to
perform the insert query to the ’users’ table. The login function
contains a single PHP page, which executes select queries to the
’users’ table. If successful, then the session is created. The logout
is a single PHP page that ends the session and empties the session
variable. Finally, the search function is based on two pages, HTML
and PHP, which perform the selected query to the books table and
display the results. Table 15 shows the list of functions with
related files for each function.
5.2. Experimental tests

SQL attacks can be categorised depending on the level of injec-
tion, and the experiment is chosen according to each category. The
first category contains attacks that gather database information by
injecting malicious codes in URLs or by incorrect requests. This cat-

Table 14
Implementation and table columns of proposed method.

Proposal DB name Tables and columns

Normal (Ideal) libnormal users (id, username, password)
table1(id, name)
books (id, title, author, details)

Raj [17] libraj users (id, username, password, keyvalue, userlen)
table1(id, name)
books (id, title, author, details)

Dsilva [27] libdsilva users (id, username, password, hashdigest)
table1(id, name)
books (id, title, author, details)

Namdev libencp users(id, username, password, hashusername,
(ENCP)[18] hashpassword, hashexor)
table1(id, name)
books (id, title, author, details)

Kumar libmac users (id, username, password, qlength, smac)
(MAC) [29] table1(id, name)
books (id, title, author, details)

Our proposal libmoh users (id, username)
(moh) table1(id, name)
books (id, title, author, details, keywords)

Table 15
Functions and files.

Functions File name Called file name

Create user account inuser.html adduser.php
Login authmain.php authmain.php
Logout logout.php authmain.php
Search search.html search.php

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
egory includes blind and logical incorrect attacks, which are based
on trial and error and can be experimented with easily using the
sqlmap tool. All pages use the HTTP POST request in the Moh pro-
posal to withstand the first category attacks, as shown in Fig. 9.

The second category includes the Union attack, which needs
console access for the database because the victim site did not pre-
pare to handle the Union result; in other words, there is no exper-
imental test. The Moh proposal protected against Union attack;
this is proven in the security analysis section if the site is prepared
to handle all client queries. The third category is targeted at the
database procedures, which include stored procedures and alter-
nate encoding attacks. The proof is in the security analysis section.

The fourth category is targeted at the site input fields, which
include tautology, commenting and piggybacked attacks. The
experiment uses a localhost server, which runs Apache to handle
HTTP messages, a PHP compiler and MySQL database. Two situa-
tions, without and with attack, are used to evaluate browsing
web applications. Each function of the proposed method or solu-
Fig. 9. Experiment SQLm

154
tion is evaluated on the basis of the following experimental
procedure.

1) Create user account
ap on M
a) Run the browser application on the client.
b) Call inuser.html using a browser address bar.
c) Enter the username and password.
d) The server calls adduser.php and sends insert query to

the database.
e) The server displays the ‘user added successfully’

message.

2) Login
a) Run the browser application on the client.
b) Call authmain.php using the browser address bar.
c) Enter the username and password for login.
d) The server calls authmain.php and sends the select query

to the database.
e) If the user is authorised, then the server sets a session

variable and displays login successfully.
f) If the user is not authorised, then the server displays an

error message.

3) Logout
a) The user selects the logout link when the user success-
fully logs in.

b) The server calls logout.php and unsets the session
variable.

c) The server displays the ‘successfully logged out’ message.

4) Search
a) Run the browser application on the client.
b) Call search.html using browser address bar.
c) Enter search text or keyword.
d) The server calls search.php and sends a select query to

the database.
e) The server displays the results to the user.
The attack scenario injects the malicious code into the login and
search functions. The attacker uses the tautology and commenting
type of SQL injection on the login and a piggybacked attack on the
search function. Table 16 illustrates the attacks.
6. Results and discussions

The data collected from the above experiments are categorised
depending on functions without and with attacks. These functions
are mentioned in Section 5. The data are captured for each proce-
dure using Wireshark [44], where the information is extracted on
the basis of HTTP messages. HTTP messages are requests and
oh proposal.

Table 16
Text input in attacks.

Attack on function Input text

Tautology Login username: a’ or ’a’=’a
password: a’ or ’a’=’a

Commenting Login username: admin’ –
password: x

Piggy-backed Search London’; drop table table1

Fig. 10. RTT created account.

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
responses that have basic metrics of time and size. Round trip time
(RTT) is the time difference between the arrived response and sent
request. RTT includes the request time to reach the server, web ser-
ver calculation time, database access and retrieval time, and time
spent from the server to the client. Size indicates the amount of
data transfer between the client and server.

Table 17 shows the web server pages, tables and database sizes.
Some file sizes are fixed because the current proposal does not
affect page codes, such as inuser.html, logout.php and search.html.
The size changes in adduser.php can be ignored because the page is
called once for each user. The authmain.php page is called fre-
quently for each login where Kumar’s file size is the largest and
all others are within the normal state. Moh has the largest file size
for search.php caused by the keyword comparison code. The book
table size is greater because of the encrypted keywords for each
record. The number of columns for each proposal will affect the
user table size, where the Namdev table is the largest because of
the number of details for each user.

The proposal results were compared with other approaches and
methods that prevent SQLI attacks in web applications. The results
are shown in the next subsections. The following results are
divided on the basis of the function, and a result value of (0) means
the attack is blocked.
6.1. Create account

The created account function is tested against RTT, HTTP
request and HTTP response size to compare different proposals.
This function is not tested against attacks that are tested in depth
with a search function.

Fig. 10 and Table 18 demonstrate the RTT for the creation
account function, which includes the server processing time. The
Normal is the shortest RTT, which is evident because no encryption
or encoding process occurs. Namdev is the longest RTT because of
the number of processes where the hash function is calculated
twice and the EXOR operation for 160 bits. The Moh proposal is
the second longest, but this function is generated or called once
for each user.

The call web page sizes for request and response are the same
for all proposals because the content is equal. This is essentially
the HTML page part, as shown in Fig. 11 and Table 19. The created
account request has the same value because the information car-
ried is the username and password. Finally, the response size for
Table 17
Size of files, table and database (Bytes).

Normal Namdev Raj

inuser.html 381 381 381
adduser.php 684 826 900
authmain.php 1558 1725 189
search.html 295 295 295
search.php 1185 1183 118
table1.sql 995 993 992
users.sql 1518 2204 169
books.sql 317,543 317,541 317
database size 320,056 320,738 320

155
creating an account is based on the server HTML response after
successfully creating the user.

6.2. Login and logout

The logout function occurs when a user successfully logs in
authorised or unauthorised user scenarios. If no logout occurs, then
the attacker is blocked.

From Figs. 12, 13, 14 Tables 20, 21 and 22, the call web page is
calculated from the average where all proposals take almost the
same RTT, request and response size. The logout without attack
is equal for all proposals in all metrics. Kumar login is the longest
time and largest size because the number of operations is taken
into account, whereas the call page is large in response size
because of predefined conditions and values. Moh has the second
largest RTT value because of the encryption operation. All propo-
sals block tautology attacks with different RTTs, which is based
on the proposal complexity.

Notably, Namdev and Dsilva do not block or prevent comment-
ing attacks, which is prevented by other proposals, and the Moh
proposal takes a shorter RTT value. The response size is within
average means, RTT expresses the server decision time, which var-
ies, and Kumar takes the longest time to evaluate.

6.3. Search

The request size from Fig. 16 and Table 24 and the response size
from Fig. 17 and Table 25 explain the search function for all tested
proposals. All tested proposals have the same size in scenarios
without and with attacks. However, the Moh proposal for response
sizes under attack is different from the other scenarios because the
Dsilva Kumar Moh

381 381 381
756 774 717

2 1734 3723 1589
295 295 295

2 1185 1182 1223
995 992 992

8 1746 1788 1463
,540 317,543 317,540 545,602
,230 320,284 320,320 548,057

Table 18
RTT created account (milliseconds).

Normal Raj Kumar Dsilva Namdev Moh

Call web page 2.674 0.607 1.036 1.959 0.619 0.976
Create Account 34.262 44.279 65.745 77.803 145.474 139.457

Fig. 11. Created account (request–response size).

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
attacker is blocked from dropping the table. All input for Moh is
encrypted to generate the keyword that will defuse a piggybacked
attack.

Moh takes the longest time in RTT (Fig. 15 and Table 23) but
prevents piggybacked attacks during the time a decision is made.
On the one hand, this time period is reasonable compared with
the benefit of preventing a piggybacked attack. On the other hand,
the time delay in Moh is not very long in contrast to other tested
proposals and even the normal technique..
6.4. Discussions

HTML pages have fixed averages for RTT, HTTP request and
HTTP response size. The only difference is in PHP files or the
server-side script because that response is based on processing
user input to make decisions or to generate dynamic HTML pages.

The results indicate the robustness of the proposal (Moh). Over
time, the proposal prevents tautology, commenting and piggy-
backed attacks. No other proposals prevent or detect the attacker
related to the search function, such as a piggybacked attack.
Kumar’s proposal suffers from a long processing time to prevent
tautology and commenting. Raj’s proposal calls for a shorter time
Table 19
Created account (request-response size) (Bytes).

Normal Raj

Call web page (Request) 639 636
Create Account (Request) 701 695
Call web page (Response) 279 279
Create Account (Response) 464 536

156
to prevent login attacks because no cryptography is proposed.
Namdev and Dsilva prevent only tautology attacks and even the
use of cryptography.

7. Security analyses

Theorem 1. The Moh proposal is protected from the SQL Tautology
Attack.

Proof. According to Section 2, tautology attacks a login page
where the injection code places the username and password fields.
The Moh proposal method encrypts the username and password
from the client before being entered into the database. Table 26
shows the query result as an example of a tautology attack on
the Moh proposal.

Table 26 shows a proof that the Moh proposal is protected from
SQL tautology attacks and shows even how hard an attacker will
try to change the input combination. The proposal disables the
‘or’ effect by encrypting input text, which results in different text
named cipher text.

Theorem 2. If an attacker knows the username, then the attacker can
inject an SQL commenting attack, but the Moh proposal is immune to
such attacks.

Proof. As mentioned in Section 2, to accomplish a commenting
attack, an attacker must know the username in advance. An
attacker will disable the password condition by commenting on
the fields after the known username. Table 27 shows an example
of a commenting attack if the known username is ‘admin’.

Table 27 proves that Moh proposal is immune to SQL comment-
ing attacks even if an attacker knows the username in advance.
However, the proposal encrypts the input that will cancel the com-
menting ‘--’ effect on the following fields.

Theorem 3. Moh proposal prevents SQL Piggybacked attacks.

Proof. An attacker injects the piggybacked malicious code as a
second query, which can be made through the search page of any
web application. The Moh proposal prevents such attacks because
the proposal encrypts all client inputs and uses a searchable
encryption method to search the encrypted database. Table 28
demonstrates an example of such an attack.

Table 28 is a proof of preventing a piggybacked attack where
the keyword is encrypted rather than using plain text format.
Kumar Dsilva Namdev Moh

636 637 637 715
695 701 697 758
279 279 279 330
590 587 639 517

Fig. 12. RTT login–logout.

Table 20
RTT login-logout (milliseconds).

Normal Raj Kumar Dsilva Namdev Moh

Call web page 1.739 1.725 40.681 1.526 1.484 1.621
Login (without) 5.956 5.945 64.575 7.184 6.217 34.972
Logout (without) 1.73 2.223 2.488 3.087 2.197 4.113
Login (Tautology) 5.616 5.543 8.315 4.622 3.724 21.107
Logout (Tautology) 1.658 0 0 0 0 0
Login (Commenting) 7.336 6.532 16.623 17.838 6.512 8.293
Logout (Commenting) 1.567 0 0 2.103 1.62 0

Fig. 13. Request size login–logout.

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162

157

Table 21
Request size login-logout (Bytes).

Normal Raj Kumar Dsilva Namdev Moh

Call web page 583 577 577 583 579 684
Login (without) 708 702 1213 708 704 896
Logout (without) 583 577 577 583 579 623
Login (Tautology) 742 736 485 742 738 845
Logout (Tautology) 583 0 0 0 0 0
Login (Commenting) 712 706 485 712 708 815
Logout (Commenting) 583 0 0 583 579 0

Fig. 14. Response size login–logout.

Table 22
Response size login-logout (Bytes).

Normal Raj Kumar Dsilva Namdev Moh

Call web page 855 861 2832 874 874 972
Login (without) 615 692 3400 777 746 698
Logout (without) 550 550 550 550 550 602
Login (Tautology) 623 952 798 1056 1010 953
Logout (Tautology) 550 0 0 0 0 0
Login (Commenting) 622 1077 798 788 755 1056
Logout (Commenting) 550 0 0 551 551 0

Table 23
RTT search (milliseconds).

Normal Raj Kumar Dsilva Namdev Moh

Call web page 0.784 0.762 0.793 0.741 0.63 0.763
Search (without-Attack) 12.624 18.201 9.428 8.671 20.253 33.993
Search (Piggybacked) 10.388 17.29 8.387 9.381 7.222 0

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162

158

Fig. 15. RTT search.

Fig. 16. Request size search.

Fig. 17. Response size search.

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
Theorem 4. The Moh proposal is protected against SQL piggybacked
attacks even if the attacker knows the encryption key.

Proof. Knowing the secret key will enable an attacker to decrypt
the books table only if the attacker gains access to the database.
The searchable encryption technique will limit the search to
encrypted keywords. A malicious code from an attacker does not
exist in the keywords.

Theorem 5. If an attacker knows the encryption key, then the
attacker does not threaten users’ table privacy.

Proof. The encryption key is related to the books table or other
database table information, whereas the user table is encrypted
using a different key. Each user in the user table is encrypted using
Table 24
Request size search (Bytes).

Normal Raj

Call web page 639 636
Search (without-Attack) 619 613
Search (Piggybacked) 646 640

159
the hash digits from the password as an encryption key. Each user
uses a different key, which proves that disclosing the secret key
does not threaten the user table.

Theorem 6. The Moh proposal is protected from the SQL Union
Attack.

Proof. Table 29 shows the query result as an example of a Union
attack on the Moh proposal, which shows proof that encrypting
input text will disable the attack purpose or target.

Theorem 7. The Moh proposal is protected from the SQL alternate
encoding attack.

Proof. Table 30 shows the query result as an example of an alter-
nate encoding attack on the Moh proposal. This is proof that
encrypting input text will disable the attack purpose or target.

Theorem 8. The Moh proposal is protected from the SQL Stored
Procedure Attack.

Proof. Table 31 shows the query result as an example of a Stored
Procedure attack on the Moh proposal. This is proof that encrypting
input text will disable the attack purpose or target.

8. Conclusion and future works

An SQL injection attack is a web application safety threat whose
technique is based on injecting malicious code into user input
fields. An attacker’s objective is to target database information that
can be affected according to the injection type. According to SQL
injection types, an attacker may gain unauthorised access or
manipulate database information.

The proposed method encrypts all user input before contact
with the database and uses searchable encryption on the basis of
encrypted keywords. Symmetric encryption is applied, which
Kumar Dsilva Namdev Moh

636 638 637 636
613 619 615 615
640 646 642 642

Table 25
Response size search (Bytes).

Normal Raj Kumar Dsilva Namdev Moh

Call web page 279 279 279 279 279 279
Search (without-Attack) 6756 6758 6756 6756 6758 6758
Search (Piggybacked) 671 668 668 671 668 0

Table 26
Example of tautology attack on Moh proposal.

Attacker input

Username = a’ or ’a’=’a Password = a’ or ’a’=’a
Web server generate query
$pw = hash(’sha3-5120 , ’a’ or ’a’=’a’);

SELECT * FROM users WHERE username = AES_ENCRYPT(’a’ or ’a’=’a’,’$pw’)
SELECT * FROM users WHERE username = AES_ENCRYPT(’a’ or ’a’=’a’,’ 5e6b1a402c695983e878fb17ab80abb096a07f5b50491cc9a3eb8295eafd91984

580cf2baf15f8bca180886e10af17f5d55478129631251e3fcda46ab26322ca’)
SELECT * FROM users WHERE username=

(4641d08ce2cda412c1b8bc6e60ff3479)HEX
Database result
There is no match for the above username which display to the attacker ’Could not log you in’ message

Table 27
Example of commenting attack on Moh proposal.

Attacker input

Username = admin’ – Password = xx
Web server generate query
$pw = hash(’sha3-5120 , ‘xx’);

SELECT * FROM users WHERE username = AES_ENCRYPT(’admin’ – ’,’$pw’);
SELECT * FROM users WHERE username = AES_ENCRYPT(’admin’ – ’,’ ab585b96d532a05ebbff8653c430099964421248ac320dde44cab79388a78d1d2

230630e682cbe9e6ee3e2252cabbc8524fcb3b8f5a8efe42de278e2d33da3b00);
SELECT * FROM users WHERE username=

(0x4baa698de885afab73552073db7bb408)HEX
Database result
There is no match for the above username which display to the attacker ’Could not log you in’ message

Table 28
Example of piggybacked attack on Moh proposal.

Attacker input

search field (any keyword) London’; drop table users;
Web server generate query
$key = hash(’sha3-5120 , ’subber’);

SELECT * FROM books WHERE keyword = AES_ENCRYPT(’London’; drop table table1;’,’$key’);
SELECT * FROM books WHERE keyword=
(0x8bce6926813c7d985eb978d44d731bea1352f26465785a04. . .)HEX
Database result
The result keyword does not match any encrypted keyword, there are no result and the table 1 not drop

Table 29
Example of union attack on Moh proposal.

Attacker input

Username = admin Password = moh’ UNION ALL SELECT * FROM users;
Web server generate query
$pw = hash(’sha3-5120 , moh’ UNION ALL SELECT * FROM users;);

SELECT * FROM users WHERE username = AES_ENCRYPT(’admin’,’$pw’)
SELECT * FROM users WHERE username = AES_ENCRYPT(’admin’,’ 0c94d2d819b1c0deba625dc37133ec3e8d547baa8fe911e6188e88c7dab163876

4e447b8883b7f72f316ec176806a3f7b1610dc0687fa64e39a81024dc08aeac’)
SELECT * FROM users WHERE username=

(d4a8242e822289b27dc1003f2b627ce9)HEX
Database result
There is no match for the above username which display to the attacker ’Could not log you in’ message

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162

160

Table 30
Example of an alternate encoding attack on the Moh proposal.

Attacker input

search field (id) London’; exec(char(0x73687574646f776e));
Web server generate query
SELECT * FROM books WHERE keyword = AES_ENCRYPT(’London’; exec(char(0x73687574646f776e));’,’$key’);
SELECT * FROM books WHERE keyword= (69eaa388e5a8a9392e5b893c97ee4198ee12aad0d0c934c9. . .)HEX

Database result
The result keyword does not match any encrypted keyword, there are no result and procedure does not execute even if its encoded.

Table 31
Example of stored procedure attack on Moh proposal.

Attacker input

search field (id) London’; exec(SHUTDOWN);
Web server generate query
SELECT * FROM books WHERE keyword = AES_ENCRYPT(’London’; exec(SHUTDOWN);’,’$key’);
SELECT * FROM books WHERE keyword=

(bd79ef151b0beee216f4b2b4640044e5731b0d01aac0af6b. . .)HEX
Database result
The result keyword does not match any encrypted keyword, there are no results and procedure does not execute.

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
causes a slight delay in processing, as when creating an account.
The RTT is 139 msec, while in the normal state it is 34 msec. This
method prevents SQLIs, and the results are comparable with previ-
ous methods where the encryption process takes a long time but
can withstand attacks. The process time delay is reasonable
because any attack is prevented. The RTT metric is shown in Tables
21 and 23. The Moh proposal measurements are within the average
except a login without attack is 35 msec, login with tautology is 21
msec, and search without attack is 34 msec. Kumar’s proposal has
the longest login without attack at 65 msec, and Namdev’s pro-
posal has the second longest search at 20 msec. The request and
response size as expressed in Tables 21, 22, 24 and 25 are within
the average value of other proposals and normal states except for
Kumar’s proposal, which requires greater size in the login request
without attack at 1213 bytes with a response of 3400 bytes.

The proposal has no limitation for platform or language and is
applicable to any web application environment such as e-
banking. The results with security analysis prove that the proposal
is practical and secure. The future work of study will involve apply-
ing the idea to cloud architecture and determining whether it can
survive SQL injection assaults in various topologies.

Funding Statement

This work is supported by Natural Science Foundation of Top
Talent of SZTU (Grant No. 20211061010016).
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
References

[1] Rani, G. S. Sarika, and P. Rupa. ‘‘A Study of Prevention and Detection Analysis of
SQL Injection Attack”. AIP Conference Proceedings 2358, 2021.

[2] Sadalkar K, Mohandas R, Pais A. Model Based Hybrid Approach to Prevent SQL
Injection Attacks in PHP. Lecture Notes in Computer Science, vol 7011. Berlin,
Heidelberg: Springer; 2011. p. 3–15.

[3] Z. Hlaing and M. Khaing, ‘‘A Detection and Prevention Technique on SQL
Injection Attacks”. In Proceedings of the IEEE Conference on Computer
Applications(ICCA), IEEE, Myanmar, 2020.

[4] K. Mohanram and T. Mirnalinee, ‘‘Secured Data Storage and Retrieval
Techniques for Effective Handling of Transport Data,” in Proceedings of the
161
2nd International Conference on Recent Trends and Challenges in
Computational Models (ICRTCCM), pp. 239-243, India, IEEE, 2017.

[5] N. Johnson, J. Near, and D. Song, ‘‘Towards Practical Differential Privacy for SQL
Queries” in Proceedings of the VLDB Endowment, Vol. 11, No. 5, pp. 526-539,
ACM, 2018.

[6] B. Nagpal, N. Chauhan, and N. Singh, ‘‘SECSIX: security engine for CSRF, SQL
injection and XSS attacks,” International Journal of System Assurance
Engineering and Management, vol. 8, no. 2, pp. 631-644, Springer, Nov. 2017.

[7] Z. Marashdeh, K. Suwais and M. Alia. ‘‘A Survey on SQL Injection Attack:
Detection and Challenges”. In Proceedings of the International Conference on
Information Technology (ICIT), IEEE, Jordan, 2021.

[8] OWASP. Category: OWASP top ten project, https://owasp.org/www-project-
top-ten/ (accessed: 2020-02-20).

[9] C. Ping, ‘‘A second-order SQL injection detection method,” in Proceedings of
IEEE 2nd Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), pp. 1792-1796, Chengdu, IEEE, 2017.

[10] A. Maraj, E. Rogova, G. Jakupi, and X. Grajqevci, ‘‘Testing techniques and
analysis of SQL injection attacks,” in Proceedings of the 2nd International
Conference on Knowledge Engineering and Applications (ICKEA), pp. 55-59,
London, IEEE, 2017.

[11] A. Patil, A. Laturkar, S. Athawale, R. Takale, and P. Tathawade, ‘‘A multilevel
system to mitigate DDOS, brute force and SQL injection attack for cloud
security,” in Proceedings of the International Conference on Information,
Communication, Instrumentation and Control (ICICIC), pp. 1-7, Indore, IEEE,
2017.

[12] B. Thombare and R. Soni. ‘‘Prevention of SQL Injection Attack by Using Black
Box Testing”. In Proceedings of the 23rd International Conference on
Distributed Computing and Networking. 2022.

[13] F. Joe and V. Selvarajah. ‘‘A Study of SQL Injection Hacking Techniques”. In
Proceedings of the 3rd International Conference on Integrated Intelligent
Computing Communication & Security (ICIIC). 2021.

[14] A. Ramesh. A. Bhowmick, and A. Lal, ‘‘An Authentication Mechanism to Prevent
SQL Injection by Syntactic Analysis”, in Proceedings of the International
Conference on Trends in Automation, Communications and Computing
Technology (I-TACT-15),pp. 1-6, India, IEEE, 2015.

[15] N. Singh, M. Dayal, R. Raw, and S. Kumar, ‘‘SQL Injection: Types, Methodology,
Attack Queries and Prevention,” in Proceedings of the 3rd International
Conference on Computing for Sustainable Global Development (INDIACom),
pp. 2872-2876, India, IEEE, 2016.

[16] A. Marashdih and Z. Zaaba, ‘‘Cross Site Scripting Removing Approaches in Web
Application,” in Proceedings of the 4th Information Systems International
Conference (ISICO), pp. 647-655, Indonesia, Elsevier, 2017.

[17] S. Raj and E. Sherly, ‘‘ An SQL Injection Defensive Mechanism Using Reverse
Insertion Technique,” Smart and Innovative Trends in Next Generation
Computing Technologies (NGCT), Communications in Computer and
Information Science, vol 828, pp. 335-346, Springer, Singapore, 2017.

[18] Namdev M, Hasan F, Shrivastav G. A Novel Approach for SQL Injection
Prevention Using Hashing & Encryption (SQL-ENCP). Int J Comput Sci Informat
Technol (IJCSIT) 2012;3(5):4981–7.

[19] S. Avireddy, V. Perumal, N. Gowraj, R. Kannan, P. Thinakaran, S. Ganapathi, J.
Gunasekaran, and S. Prabhu, ‘‘Random4: An Application Specific Randomized
Encryption Algorithm to Prevent SQL Injection,” in Proceedings of the 11th
International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 1327-1333, IEEE, Liverpool, 2012.

[20] Y. Swarup, A. Kumar, A. Tyagi, and V. Kumar. ‘‘Prevention of SQL Injection
Attacks using Query Hashing Technique”. In Proceedings of the 2nd

http://refhub.elsevier.com/S1110-8665(22)00064-0/h0010
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0010
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0010
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0090
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0090
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0090

M. Abdulridha Hussain, Z. Alaa Hussien, Z. Ameen Abduljabbar et al. Egyptian Informatics Journal 23 (2022) 145–162
International Conference on Range Technology (ICORT), IEEE, Balasore, India,
2021.

[21] N. Palsetia, G. Deepa, F. Khan, P. Thilagam, and A. Pais, ‘‘Securing Native XML
Database-Driven Web Applications from XQuery Injection Vulnerabilities,”
Journal of Systems & Software, vol. 122, pp. 93-109, Elsevier, 2016.

[22] M. Hussain, S. Abbdal refish, M. Khalefa, S. Hussain, Z. Hussien, Z. Abduljabbar,
and M. Al sibahee. ‘‘Web application database protection from SQLIA using
permutation encoding”. In Proceedings of the 4th International Conference on
Information Science and Systems. ACM. Edinburgh Napier University, UK.
2021.

[23] J. Blömer and N. Löken, ‘‘ Cloud Architectures for Searchable Encryption, ” in
Proceedings of the 13th International Conference on Availability, Reliability
and Security (ARES), pp. 25:1-25:10, Hamburg, Germany, ACM, 2018.

[24] N. Pramanick and S. Ali, ‘‘A comparative survey of searchable encryption
schemes,” in Proceedings of the 8th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pp. 1-5, IEEE, Delhi,
2017.

[25] S. Mitra, S. Roy, M. Sarkar, S. Bhowmik, and S. Maur. ‘‘Prevention of SQL
Injection and Security Enhancement in Cyber Networks”. In Proceedings of the
5th International Conference on Electronics, Materials Engineering & Nano-
Technology (IEMENTech), IEEE, Kolkata, India, 2021.

[26] A. Ghafarian, ‘‘A hybrid method for detection and prevention of SQL injection
attacks,” in Proceedings of the Computing Conference (SAI), pp. 833-838, IEEE,
London, 2017.

[27] K. D’silva, J. Vanajakshi, K. Manjunath, and S. Prabhu, ‘‘An effective method for
preventing SQL injection attack and session hijacking,” in Proceedings of the
2nd IEEE International Conference on Recent Trends in Electronics,
Information & Communication Technology (RTEICT), pp. 697-701, IEEE,
Bangalore, 2017.

[28] Anjugam S, Murugan A. Efficient Method for Preventing SQL Injection Attacks
on Web Applications Using Encryption and Tokenization. Int J Adv Res Comput
Sci Softw Eng 2014;4(4):173–7.

[29] D. Kumar and M. Chatterjee, ‘‘ MAC based solution for SQL injection ,” Journal
of Computer Virology and Hacking Techniques, vol. 11, no. 1, pp. 1-7, Springer,
2015.

[30] Balasundaram I, Ramaraj E. An Authentication Mechanism to prevent SQL
Injection Attacks. Int J Comput Appl 2011;19(1):30–3.

[31] Zhu Y, Zhang G, Lai Z, Niu B, Shen Y. A Two-Tiered Defence of Techniques to
Prevent SQL Injection Attacks. Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), Advances in Intelligent Systems and Computing,
vol 612. Cham: Springer; 2017. p. 286–95.
162
[32] A. Dalai and S. Jena, ‘‘ Neutralizing SQL Injection Attack Using Server Side Code
Modification in Web Applications, ” Security and Communication Networks,
vol. 2017, pp. 12, Hindawi,2017.

[33] Z. Xiao, Z. Zhou, W. Yang and C. Deng, ‘‘An approach for SQL injection detection
based on behavior and response analysis,” in Proceedings of the 9th
International Conference on Communication Software and Networks
(ICCSN), pp. 1437-1442, IEEE, Guangzhou, 2017.

[34] Selvamani K, Kannan A. A Novel Approach for Prevention of SQL Injection
Attacks Using Cryptography and Access Control Policies,‘‘. Advances in Power
Electronics and Instrumentation Engineering PEIE, Communication in
Computer and Information Science, vol 148. Berlin, Heidelberg: Springer;
2011. p. 26–33.

[35] D. Kundi, A. Khalid, A. Aziz, C. Wang, M. O’Neill and W. Liu, ‘‘Resource-Shared
Crypto-Coprocessor of AES Enc/Dec With SHA-3,” in IEEE Transactions on
Circuits and Systems I: Regular Papers, pp. 1-14, 2020.

[36] W.Yu, C.Jianhua, and H. Debiao. ‘‘A new collision attack on MD5”. In
Proceedings of the International Conference on Networks Security, Wireless
Communications and Trusted Computing. 2009.

[37] T. Zhou, Y. Zhu, N. Jing, T. Nan, W. Li, and B. Peng. ‘‘Reliable SoC Design and
Implementation of SHA-3-HMAC Algorithm with Attack Protection”. In
Proceedings of the IEEE International Conference on Smart Cloud
(SmartCloud). 2020.

[38] T. Singha, R. Palathinkal and S. Ahamed, ‘‘Implementation of AES Using
Composite Field Arithmetic for IoT Applications,” 2020 Third ISEA Conference
on Security and Privacy (ISEA-ISAP), India, pp. 115-121, 2020.

[39] Wang H, Xia Z, Fei J, Xiao F. An AES-Based Secure Image Retrieval
Scheme Using Random Mapping and BOW in Cloud Computing. IEEE Access
2020;8:61138–47.

[40] M. Pranav and A. Rajab. ‘‘DES security Enhancement with Dynamic
Permutation”. In Proceedings of the International Conference on Applied and
Theoretical Computing and Communication Technology (iCATccT). 2015.

[41] M. Hussain, Z. Hussien, Z. Abduljabbar, S. Hussain, and M. Al Sibahee. ‘‘Boost
Secure Sockets Layer against Man-in-the-Middle Sniffing Attack via SCPK.” In
Proceedings of the 2018 International Conference on Advanced Science and
Engineering (ICOASE), IEEE, Kurdistan Region, Iraq. 2018.

[42] XAMPP, https://www.apachefriends.org/download.html (accessed: 2020-02-
20).

[43] Dataset from Gutenberg, http://www.gutenberg.org/ebooks/offline_catalogs.
html (accessed: 2020-02-20).

[44] Wireshark, https://www.wireshark.org (accessed: 2020-02-20).

http://refhub.elsevier.com/S1110-8665(22)00064-0/h0140
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0140
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0140
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0150
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0150
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0155
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0155
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0155
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0155
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0170
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0170
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0170
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0170
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0170
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0195
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0195
http://refhub.elsevier.com/S1110-8665(22)00064-0/h0195

	Provably throttling SQLI using an enciphering query and secure matching
	1 Introduction
	2 Preliminaries
	2.1 SQL injection attack
	2.2 Searchable encryption
	2.3 System architecture model

	3 Related works
	4 Proposed method
	4.1 Login procedure
	4.2 Insert procedure
	4.3 Update procedure
	4.4 Delete procedure
	4.5 Search procedure

	5 Implementation and experimental tests
	5.1 Implementation
	5.2 Experimental tests

	6 Results and discussions
	6.1 Create account
	6.2 Login and logout
	6.3 Search
	6.4 Discussions

	7 Security analyses
	8 Conclusion and future works
	Declaration of Competing Interest
	References

