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INTRODUCTION 
There are many problems that the researcher faces when estimating the nonparametric regression functions because 

the estimation methods depend on the data, as these estimates may be inaccurate, or they may not be suitable for 
the nonparametric model, so the aim of this study is to find the adaptive capabilities in the nonparametric regression 

using modern methods. To increase the efficiency of estimation through the use of adaptive estimators in 
nonparametric regression smoothing . We will discuss some studies that used the adaptive method and its use in 

nonparametric regression, including: 

-The study (Hill and others, 1988) used two nonparametric adaptive procedures to apply multiple comparisons and a 
test of alternatives required in a one-way ANOVA model, in comparison with the parametric normal theoretical 

procedure, and the rank-based non-parametric procedure where these procedures are applied to lung cancer data. 
The results showed the superiority of the adaptive procedures Nonparametric. [6] 

-A study (2021, page and Grunewalder) presented an Adaptive estimation using the modern Goldenshluger-Lepski 

method to choose parameters for the statistical estimator using only the available data without making strong 
assumptions about the estimation. Nucleus . This method was used to address two regression problems, the kernel 

regression was fixed in one of them and in the other an adaptation was used. [12] 
-The study (Breunig and Chen, 2022) aimed to find an adaptive estimation of the minimum quadratic function in the 

model of non-parametric automatic variables (NPIV), which is an important problem in the optimal estimation of non-
linear functions, this problem is solved through a choice based on data from Lepski type For the smoothing 

parameter, the results showed that the adaptive estimator of the quadratic function achieves the minimum optimum 

rate. [3].Adaptive estimator in nonparametric regression: [10][1][3][4][8][11] An adaptive estimator is defined as an 
effective estimator for only a partially specified model (“effective” meaning that it is asymptotically equivalent to a 

non-parametric “likelihood Maximum” local probability estimator Applicable), or a model whose distribution is 
unknown, so adaptive estimation aims to build estimations entirely based on data without making strong assumptions 

about the estimation. Nonparametric regression is also a form of regression analysis and a common and flexible tool 

for data analysis and modeling of the non-linear relationship between dependent and explanatory variables. , that is, 
it depends mainly on the data, Where the objective of the nonparametric regression is to estimate the regression 

function  without dependence or having prior knowledge of its functional form , and using adaptive methods, Classical 
methods can also be modified to be as robust as non-parametric methods . Studies to build a method for selecting 

data-based smoothing parameters in order to obtain adaptive estimates. The first adaptive estimate was proposed by 
(lepski 1990) and was developed in (1992) and its goal was to build capabilities from the data in the best possible 

way and reduce the risk of estimation, the adaptive methods in regression The non-parametric is strong in efficiency 
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as it cannot be outweighed by any non-adaptive method, as the exact adaptive procedure will work well with the 

data. So the adaptive approach is mainly divided into two types, The adaptive procedure for estimating unknown 

parameters is such as in a nonparametric regression, or the use of Data to determine the appropriate statistical 
procedure, the adaptive non-parametric approach on the one hand is estimating the parameters from the sample, or 

data-driven methods may be the best and most,  The first to suggest this approach (Randles and Hogg). So the main 
purpose of adaptive approaches may be to provide a relatively easy alternative to parameterization without much 

effort on how to choose one from a variety of methods, and to facilitate the decision on the use of the appropriate 

technique. Adaptive approaches can perform better based on the available information in terms of achieving the 
desired combination of robustness and efficiency. over the past ten years. Adaptive-order tests show that adaptive 

actions Adaptive method can increase the power of tests, If the distribution of random error is abnormal, the power of 
classical tests is much lower than adaptive tests.  

 
The formula for nonparametric regression is as follows: 

𝑦𝑖 = 𝑚(𝑥𝑖) + 𝜀𝑖      ….   (1)  ,      𝑖=1,2,…,n  ,    𝜀~N( 0,𝜎2) 
Yi: the response variable,  m (xi): the unknown function to be estimated,  xi: the explanatory variable , 𝜀𝑖: the values 

of the random variable, which is white noise that is normally distributed. 
The adaptive estimator for the parameter vector is as follows [15] : 

�̂�(𝑥) = �̂�𝑘(𝑥) = (𝜃𝑘
1(𝑥), … … , 𝜃𝑘

𝑝(𝑥))
𝑇

  … . (2)             𝑘 = 1, … . , 𝑝 

𝜃𝑘
1, … … , 𝜃𝑘

𝑝
 :Unknown parameter, θ is estimated based on sample observations  (𝑥𝑖 , 𝑦𝑖)  

 

KERNEL SMOOTHERS 
The positional polynomial regression smoother (LLS) is one of the best smoothing methods because it deals with 

static and random models, and it is sometimes called the weight or window function, as this function is continuous 

and symmetric, its integral is equal to the integer one, when (the bandwidth) is small very . [10] 
The formula for smoothers is as follows 

𝑚ℎ̂(𝑥) =
∑ 𝑦𝑖 𝑘𝑛

𝑖=1 (𝑥 − 𝑋𝑖)/ℎ

∑ 𝑘𝑛
𝑖=1 (𝑥 − 𝑋𝑖)/ℎ

  … . (3) 

𝑤𝑖(𝑥) =

𝑘(𝑥 − 𝑋𝑖)
ℎ

∑ 𝑘𝑛
𝑖=1 (𝑥 − 𝑋𝑖)/ℎ

  … . . (4)      

∑ 𝑘𝑛
𝑖=1 (𝑥−𝑥𝑖)

ℎ
 : represents the endodontic function ,   𝑤𝑖(𝑥): represents the weight function and one of its conditions is 

positive, h: represents the smoothing parameter (the bandwidth) in the estimator (𝑚(𝑥)). If its value is large, the 

function is smooth, and if its value is small, the function is not smooth.  [1] 
-The Gasser-Müller (GM) smoother is one of the most widely used gradient smoothing tools. The Gasser-Müller 
estimator which is a modification of the Priestley-chao, estimator is used to construct nonparametric estimates of the 

regression function,), a new type of kernel. [4] 
Its general form is as follows. [4] 

�̂�ℎ(𝑥) =
1

𝑛
∑ 𝑌𝑖

𝑛

𝑖=1
∫ 𝐾 (

𝑥 − 𝑢

ℎ
) 𝑑𝑢  …    (5)

𝑠𝑖

𝑠𝑖−1

   𝑠0 = 0    ,     𝑠𝑛 = 1      

        𝑠𝑖 =
𝑥𝑖 + 𝑥𝑖+1

2
      , 𝑥𝑖 ≤ 𝑠𝑖 ≤ 𝑥𝑖+1 

- Also, the nearest neighbor smoother (K-NN) depends on calculating the Euclidean distance between each point and 

the point closest to it. If the data are close to each other, the distance will be small and vice versa. [9] 

So, its general form is as follows: 

�̂�𝑘(𝑥) =

𝑘(𝑥𝑖 − 𝑥)
𝑘𝑙

∑
𝑘(𝑥𝑖 − 𝑥)

𝑘𝑙

𝑛
𝑖=1

              𝑘𝑙 → ∞ … (6)   

, 𝑘𝑙 = 𝑑(𝑖, 𝑗) = √∑(𝑥𝑖 − 𝑥𝑗)2

𝑛

𝑖=1

2

…  (7) 

𝑘𝑙:represents the Euclidean distance between x, k and : xi ,xj data points 

 

SPLINE SMOOTHER 
depend on the sum of the squares of the error as used when the regression line is divided into pieces, as the 

explanatory variable x with period (a,b) is divided and the lines cut are called slide nodes so that smoothing the slides 

overcomes the problem of choosing a node and from During the identification of new nodes or changing the existing 
nodes, they are divided into linear spline (SPL) and cubic spline (SPC). [2][9] 
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𝑆(𝑚) = ∑(𝑦𝑖 − �̂�(𝑥𝑖))
2

𝑛

𝑖=1

+ ∫ [�̂�⸗(𝑥)]2
𝑏

𝑎

𝑑𝑥 …  (8)  ,      > 0 

Whereas 

∑ (yi − m̂(xi))
2n

i=1 : It represents the sum of the squares of the error , 

m̂⸗(x): Represents the second derivative of the bootstrap function ,  ∶ Represents the penalty factor indicating the width 

of the appropriateness quality package represented by ∑ (𝑦𝑖 − �̂�(𝑥𝑖))
2𝑛

𝑖=1  And the smoothing of appreciation 

represented by ∫ [�̂�⸗(𝑥)]2𝑏

𝑎
𝑑𝑥 

Goldenshluger-Lepski adaptive bandwidth extends Lepski's method for performing adaptation across multiple 

parameters .This method has been used in different contexts as it was used for the first time in a multidimensional 

white noise model. As it has been widely used in recent studies of non-parametric estimation, the idea of this method 
for adaptive non-parametric estimation is to choose an estimator that reduces the sum of the unknown bias factor of 

variance. [8][12] 
 

The Goldenshluger-lepski formula is as follows [5] :  

ℎ̂(𝑥𝑖) = arg 𝑚𝑖𝑛ℎ∈Ꜧ𝑛
{�̂�(ℎ, 𝑥𝑖) + �̂�(ℎ, 𝑥𝑖)} … (9) 

�̂�(ℎ, 𝑥𝑖) = 𝑚𝑎𝑥ℎ′∈Ꜧ𝑛
([�̂�ℎ′(𝑥𝑖) − �̂� ℎ∨ℎ′(𝑥𝑖)]2 − 𝑉(ℎ′, 𝑥𝑖)). . (10)   

 �̂�(ℎ, 𝑥𝑖) = 𝑘𝜎2
ln𝑛

𝑛�̂�(ℎ)
 , ℎ ≠ 0 . . (11)   

K : represent a constant that does not depend on h , m̂h(xi): function estimator , Ꜧ
n
 : Represents a set of smoothing 

parameter (bandwidth) .  

V̂(h, xi): Represents an empirical analogue of variance , Â(h, xi)  : Represents an approximation of the term bias .  

In order to estimate the regression curve, there are several criteria that are relied upon in the differentiation, and 

among these criteria are the mean absolute error squares (MAS), the roots mean squares error (RMSE), and the 

mean squared error (MSE) standard [9][14]. The function was used Endodontic (Epanchnickov) and adaptive 
bandwidth (Goldenshluger-lepski) on the experimental side. 

MAE =
1

n
∑ |yi − m̂(x)|n

i=1  …        (12) 

RMSE = √
1

n
∑(yi − m̂(x))

2
n

i=1

2

    … (13) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�(𝑥))2 …  (14)

𝑛

𝑖=1

 

STATISTICAL ANALYSIS 
The analysis of this study is carried out using simulation, as it is known as a method that includes the use of a 

theoretical mathematical model and similar to the real model that represents the studied problem.  Simulation 
experiments were carried out using three sample sizes (n = 30, 60, 100) and with a frequency of 500 for each 

experiment. The nonparametric methods will be compared, and two models were used in the simulation. 

 first model          𝑚(𝑥𝑖) = 1 + 0.8ⅇ−200.(−0.5+𝑥)2
+ 2𝑥2 

The variables (independent and random error) were generated. The random errors are normally distributed with a 
mean of zero and variance 𝜎2, The nonparametric explanatory variable Xi is generated according to the standard 

normal distribution . 
 e𝑖~𝑁(0, 𝜎2) 
 X𝑖~ N(0,1) 
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TABLE 1. The first model, (RMSE, MSE, MAE) criteria for the first model according to the different sample sizes and 

levels of variation 

 

Source/ From the (R.4.1.2) Package using simulation method 
 

Explanation of  Table 1. for the first model 
1-The results showed, depending on the comparison criteria (RMSE) and (MSE) when the sample size is (n = 30, 60, 
100) and with a level of variance (𝜎2 = 0.5) that the best adaptive estimator is (ALLS), but when the level of variance 

is (𝜎2 = 1 ,1.5) and sample size (n = 30), then the best adaptive estimator is ((AGM). As for (n=60 , 𝜎2 = 1.5) the 

best adaptive estimator is (ALLS), then the adaptive estimator (ASPL) . 
2-The results showed that, depending on the comparison standard (MAE), when the sample size is (n=30,60,100) and 
with the level of variance 𝜎2 = 0.5, the estimator is (ALLS), then the estimator is (KNN), but when the variance level 

is (𝜎2 = 1) At the sample size (n=30,60), the best adaptive estimator is (ALLS), followed by the adaptive estimator 

(AGM), and when the level of variance is (𝜎2 = 1.5) at the sample size (n=30), the best estimator It is an adaptive 

estimator (ALLS), followed by an adaptive estimator (ASPC). 
 

 

RMSE 

𝝈𝟐 n ALLS AGM KNN ASPL ASPC 

𝝈𝟐 = 𝟎. 𝟓 30 0.516265 0.930748 0.893772 0.928897 0.932278 

60 0.558081 0.861925 0.809613 0.842828 0.868399 

100 0.51343 0.759951 0.803071 0.833716 0.818787 

𝝈𝟐 = 𝟏 30 1.304713 1.293053 1.391125 1.297777 1.300542 

60 1.033427 1.288025 1.256423 1.277987 1.282404 

100 1.134386 1.143293 1.373155 1.14562 1.155014 

𝝈𝟐 = 𝟏. 𝟓 30 1.757319 1.737183 2.094056 1.742326 1.738227 

60 1.661094 1.739168 2.06102 1.716176 1.72202 

100 1.540448 1.666366 1.550798 1.664799 1.680947 

MSE 

𝝈𝟐 = 𝟎. 𝟓 30 0.266529 0.866292 0.798829 0.862849 0.869143 

60 0.311454 0.742915 0.655473 0.710359 0.754118 

100 0.263611 0.577525 0.610768 0.695083 0.670413 

𝝈𝟐 = 𝟏 30 1.702275 1.671985 1.93523 1.684224 1.69141 

60 1.046111 1.659008 1.067971 1.633252 1.644561 

100 1.309619 1.307119 1.885555 1.312445 1.334058 

𝝈𝟐 = 𝟏. 𝟓 30 3.088172 3.024758 4.385072 3.035701 3.021432 

60 2.759233 3.024707 4.247802 2.945262 2.965353 

100 2.69107 2.776777 2.404973 2.771554 2.825582 

MAE 

𝝈𝟐 = 𝟎. 𝟓 30 0.412093 0.718155 0.715842 0.730157 0.727187 

60 0.471807 0.651849 0.627654 0.639025 0.652287 

100 0.39879 0.63034 0.601175 0.68473 0.673663 

𝝈𝟐 = 𝟏 30 0.997865 1.001918 1.116884 1.002198 1.014442 

60 0.955424 0.963265 1.013914 0.996628 0.993963 

100 0.851318 0.850425 0.826585 0.849166 0.867145 

𝝈𝟐 = 𝟏. 𝟓 30 1.343314 1.409301 1.678374 1.380658 1.379656 

60 1.281802 1.288404 1.525217 1.289815 1.332256 

100 1.258361 1.264312 1.241343 1.288155 1.316453 
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n=30      

 
  

n=60 

 
n=100 

FIGURE1.  The adaptive nonparametric capabilities of the first model when the sample size is (30, 60, 100) 

 

APPLIED ANALYSIS 
After obtaining the best adaptive estimator (ALLS) for the nonparametric regression model on the experimental side 

(simulation) and for three different criteria, in this aspect the best adaptive estimator (ALLS) will be applied to the real 
data through the use of five explanatory variables and a response variable, The data was obtained from the 

Directorate of Civil Defense in Basra Governorate for a period of three years for the period (2018-2020).  And the 

study variables are as follows :  X1: represents the electrical contact   , X2: Represents a cigarette butt , X3: 
Represents children's tampering , The dependent variable (Y) represents the total number of fires .  

 
TABLE 2  Estimated nonparametric adaptive functions 

Obs �̂�(𝑥1) �̂�(𝑥2) �̂�(𝑥3) 

1 0.228887309 0.120492996 0.207268802 

2 0.192097027 0.28166734 0.242724737 

3 0.197002368 0.265104151 0.20702813 

4 0.170260512 0.50441889 0.361497975 

5 0.299637381 0.28166734 0.3057311 

6 0.619300297 0.53478687 0.68408641 

7 0.647639433 0.53478687 0.70582833 

8 0.576975284 0.838661981 0.805051443 

9 0.541237077 0.263131001 0.615711808 

10 0.36774093 0.329188332 0.365872915 

11 0.138214313 0.077805087 0.106955038 

12 0.010981869 0.162130098 0.039099197 

13 0.210813314 0.120492996 0.161488039 

14 0.123128238 0.198472028 0.063214676 

15 0.119379087 0.263131001 0.2217636 

16 0.19829425 0.265104151 0.2217636 

17 0.281285794 0.28166734 0.290890761 
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18 0.697523475 0.492733375 0.290890761 

19 0.62397061 0.53478687 0.716552551 

20 0.6219929 0.50441889 0.571542824 

21 0.36774093 0.266575494 0.395207857 

22 0.271036442 0.240113407 0.361246217 

23 0.311749537 0.265104151 0.212019707 

24 0.210813314 0.198472028 0.126618638 

25 0.26318656 0.162130098 0.2217636 

26 0.281285794 0.265104151 0.212019707 

27 0.181764214 0.265104151 0.20702813 

28 0.088569838 0.411743182 0.216996127 

29 0.251460476 0.557401107 0.379633548 

30 0.558298159 0.521875542 0.523286152 

31 0.630571844 0.570845448 0.437083931 

32 0.619300297 0.496713116 0.361246217 

33 0.228887309 0.492733375 0.316031655 

34 0.194355126 0.492733375 0.216996127 

35 0.189988621 0.265104151 0.205834566 

36 0.219517763 0.162130098 0.126618638 

 

The criteria and coefficient of determination for each estimated function. 
MSE RMSE MAE 𝑅2 �̂�(𝑥) 

0.006526302 0.08078553 0.05766383 0.6082211 �̂�(𝑥1) 

0.02661572 0.1631432 0.1169859 0.4272434 �̂�(𝑥2) 
0.009416873 0.09704057 0.07678413 0.6979411 �̂�(𝑥3) 

 
Source/ From the (R.4.1.2) Package 

Explanation of   applied analysis 
The explanatory variables that achieved the lowest value for the MSE criterion, respectively (X1= 20.00652630    , 

X3=0.009416873, X2 =0.02661572) As for the coefficient of determination, the explanatory variables that reached the 
highest coefficient of determination That is, the explanatory variable explains a percentage of the changes that occur 

in the dependent variable and the rest is left to other factors , are  ) X3 ,X1 ,X2) That is, electrical contact and 

children's tampering are the main causes of fires .  

 
 �̂�(𝑥1)الدالة   

 
 �̂�(𝑥2)الدالة   
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 �̂�(𝑥3)الدالة   

The figure shows the behavior of the real data and how close the estimated values are to the real values. 
 

CONCLUSIONS 

1-When implementing simulation experiments using three sample sizes (n = 30, 60, 100) and with a frequency of 500 
for each experiment and depending on the comparison criteria at a level of variance (𝜎2= 0.5), it was found that the 

best estimator of the first nonparametric model is that the estimator (ALLS) is the best estimator, then It is followed 

by the estimator (KNN). 
2-But when the level of variance is (𝜎2=1) at the sample size (n=30), the best estimator for the first model is (ALLS), 

followed by (KNN) estimator, as the values of the criteria (RMSE), (MSE) and (MAE) are less. With increasing sample 

sizes and for all estimators used, and increasing the values of (RMSE), (MSE) and (MAE) for all estimators with 
increasing values of residual variance. 

3-Finally, we can say that the best estimation adaptive method for the three criteria and by increasing the sample 
sizes at three different levels of variance was the ALLS method, which represents the smoothing of the adaptive local 

polynomial regression. 

4- As for the applied analysis, it was found that The explanatory variables that achieved the lowest value for the MSE 
criterion, respectively (X1, X3, X2) , As for the coefficient of determination, the explanatory variables that reached the 

highest coefficient of determination are  ) X3 ,X1 ,X2) That is, electrical contact and children's tampering are the main 
causes of fires .  
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