
https://doi.org/10.31449/inf.v46i7.4279 Informatica 46 (2022) 95–102 95

Improved Salsa20 Stream Cipher Diffusion Based on Random

Chaotic Maps

Lamia A. Muhalhal1, Imad S. Alshawi*2

Email: allalemyaa@gmail.com1, emad.alshawi@uobasrah.edu.iq2

*Imad S. Alshawi

Department of Computer Science, College of Computer Science and Information Technology,

University of Basrah, Basrah, IRAQ

Keywords: NIST statistical test suite, lightweight stream cipher, salsa20 stream cipher, chaotic map, security

Received: July 8, 2022

To enhance stream ciphers, numerous studies have concentrated on the randomness, unpredictable nature, and

complexity of keystream. Numerous stream algorithms have been put forth. Most of them require a significant

amount of computational power. Salsa20 is a high-performance stream encryption solution that works on

computers with fewer resources and uses a secure method that is faster than AES. They suggest Salsa20 for

encryption in common cryptographic applications. Users who value speed over certainty should utilize the Salsa20

family of reduced-round ciphers, such as the (8,12) round cipher. It uses a 256-bit key and a hash algorithm. A

successful fusion makes use of both the Salsa20 algorithm's and the random maps' advantages to improve the

Salsa20 algorithm's shortcomings by increasing its unpredictability. Particularly now that Salsa20/7 has been

hacked and Salsa20/12 is no longer as secure as it previously was. As a result, Salsa20 needs to achieve a high

level of diffusion to withstand known attacks. Right now, salsa20 and its shortened versions rank among the fastest

ciphers. This study presents a novel lightweight approach to construct a strong keystream that is sufficiently

random to avoid being predicted by adversaries, achieve good diffusion, and withstand known assaults. A NIST test

found that the performance of the (Salsa20-chaotic maps) approach in terms of data integrity and secrecy is nearly

0.3131 higher than that of the Salsa20.

Povzetek: Predlagan je algoritem generiranja varnih gesel za kriptirni algoritem Salsa20, s čemer se

odpravi nedavno odkrite probleme.

1 Introduction
The protection of data from unauthorized access,

disclosure, alteration, or destruction while upholding

confidentiality, integrity, and availability is known as

information security (CIA) [1]–[3]. Cryptography is used

to protect data while it is in transit (either electronically

or physically) through networks. It is necessary to use

current cryptography techniques [1], [3], [4] . The

selection of a suitable crypto algorithm will have a

dynamic effect on a device's lifetime and performance in

terms of battery life, hardware memory, calculation time,

and communication bandwidth [4].

Conventional cryptography algorithms are slow,

complicated, and energy-intensive when used with

resource-constrained systems [5], [6]. The use of simple

algorithms is growing in popularity. Symmetric and

asymmetric algorithms for lightweight cryptography are

separated into two groups. The symmetric encryption

method uses the same secret key for both encrypting and

decrypting operations. Data is encrypted using a public

key and decrypted using a private key in asymmetric key

encryption (public-key encryption). Two further

symmetric key encryption techniques are block cipher

and stream cipher. Trivium, Grain, and Salsa 20/12 are

stream ciphers, whereas PRESENT, RECTANGLE,

SIMON, and SPECK are block ciphers [2]–[4], [7].

This project is part of the Cryptographic Stream

Project (ECRYPT), which was founded in 2005 [4], [7].

This project provides solutions that are both efficient and

secure, as well as popular and widely used [4], [7].

Salsa20 was among the winners. A more secure and

quicker variant of AES is called Salsa20 (20 rounds).

Due to its low hardware requirements and simple

structure, Salsa20 is an effective stream cipher for data

encryption [4], [7]–[9]. One of the quickest stream

ciphers currently accessible is Salsa20, as well as its

condensed variants. Salsa20/12 is no longer as secure as

it previously was, whereas Salsa20/7 has been broken.

To achieve good dissemination and withstand known

attacks, Salsa20 must therefore address this issue [10],

[11]. A chaotic system or computational intelligence (CI)

is therefore the ideal answer. Several techniques for

chaotic systems have been devised [12]–[16]. The

application of chaos theory, a kind of nonlinear system,

in cryptography has recently been made to address issues

with existing encryption techniques, which are losing

their ability to provide quick and secure encryption for

large amounts of data simultaneously [15]. Because of

their unique properties and high sensitivity to their

beginning conditions, chaotic systems are incredibly

unpredictable over the long term. Chaotic systems are

extremely sensitive to changes in beginning conditions

mailto:allalemyaa@gmail.com1
mailto:emad.alshawi@uobasrah.edu.iq

96 Informatica 46 (2022) 95–505 L. A. Muhalhal et al.

and parameter values, which allows for the formation of

a wide range of chaotic sequences. The chaotic

sequences that are generated [12], [13], [15], [17] are

neither periodic nor convergent.

There have been more and more real-world systems

in recent years, including wireless sensor networks, smart

cities, etc. Information security has faced significant

challenges due to the complexity and number of data that

are only increasing. To tackle these difficulties, many

computational intelligence approaches have been created

that can behave intelligently in complicated and dynamic

contexts to resolve complex real-world problems that are

challenging to solve manually (i.e., through mathematical

or traditional modeling). It has been employed to address

many information security difficulties, such as selecting

the optimum solution, determining normal and abnormal

behavior in an intrusion detection system, and data

concealing [18]–[21].

In this paper, we propose a stream cipher encryption

scheme based on these concepts. This method must meet

all NIST SP 800-22 requirements and be able to encrypt

and decode data rapidly and simply. In this way, not only

confidentiality is important, but also performance (speed,

memory reduction, etc.) Our approach is to accelerate

computation while maintaining the highest level of

security. In the Salsa20 method, the spread of a 64-byte

stream key is augmented using the chaotic maps (Henon,

Rabinovich Fabrikant equation, Lorenzo, and Chua

circuit) and also extends the initial matrix from 4x4 t0

4x8 [22].

The following is how the rest of the paper is

organized: The literature review will be discussed in the

next section. The chaotic map and the history of Salsa20

are covered in Section 3. Section 4 will go over the

preferred technique. The fifth section will consist of an

evaluation of the proposed method as well as a

discussion of the findings. Finally, in Section 6, the

conclusions will be provided.

2 Related work
Many different articles were used to develop Salsa20.

Table 1 summarizes the related works with their

methodology, performance, and results. According to

chaos theory [23]. To improve the speed of the Salsa20-

based cipher, an upgrade based on the logistic map is

presented. They've been able to achieve a faster spread

than the basic Salsa20. The majority of examples

revealed that a modern two-iteration strategy is faster

than a traditional four-iteration procedure while

maintaining the same diffusion grade. In comparison to

Differential Equations, the approach performed well.

Salsa20's array (4, 4) with 512 bits is changed to

Salsa20's array (3, 3) with 576 bits in [24], i.e. Each

location in the Salsa (20) array is 64-bit words, and each

iteration involves modifying their locations by applying

nine operations, resulting in a more diffuse result than

the simple Salsa (20). To break down salsa, a variety of

papers were used (20). Ahmad.G.et.al. in [25] generated

pseudorandom numbers and employed them with a

variety of encryption methods, including Salsa20. The

findings of NIST measures were used to assess different

encryption algorithms that used pseudorandom numbers,

and the results showed that utilizing random numbers

with the Salsa20 stream cipher algorithm obtained faster

implementation and more diffusion than the original

Salsa20 algorithm.

Eman L. Mohaisen. et.al [26] presented a review of a

variety of recent research that deals with stream ciphers

based on Chaotic functions, as well as testing the

randomness of these chaotic functions. The results of the

testing revealed that stream ciphers based on chaotic

functions are more secure and robust.

Maitra et al. [27] improved Salsa20's valid initial

state after just one round and increased Salsa20's non-

randomness after five rounds. It uses the Probabilistic

Neutral Bit (PNB) to lessen the complexity of typical

attacks by selecting appropriate parameters.

3 Background

3.1 Salsa20 algorithm

Salsa20 is a highly reliable stream cipher algorithm that

encrypts quickly with a key size of 128 or 256 bits

[8],[28], [29]. It is submitted to eSTREAM, the Encrypt

Stream Cipher Project. The hash function is used in

Salsa20, which takes 64-byte inputs and outputs 64

bytes. This hash function is implemented as a stream

cipher in counter mode [8], [28],[29].

Hash functions include the quarter round (QR), row

round (RR), column round (CR), and double round

functions (DR) as illustrated in algorithm 1 pseudo-code

and Figure 1. It accepts as input a 256-bit key (k0, k1...

k7), a 64-bit counter (t0, t1), a 64-bit nonce (v0, v1), and

128-bit constants (c0, c1... c3). Salsa20 operates on 32-

bit words and maps inputs to a 4 x 4 matrix. As in the

following Equations (1), (2), (3), (4), and (5)

[8],[28],[29].

𝑋 = [

𝑥0 𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6 𝑥7
𝑥8 𝑥9 𝑥10 𝑥11
𝑥12 𝑥13 𝑥14 𝑥15

] = [

𝜎0 𝑘0 𝑘1 𝑘2
𝑘3 𝜎1 𝑣0 𝑣1
𝑡0 𝑡1 𝜎2 𝑘4
𝑘5 𝑘6 𝑘7 𝜎3

] (1)

The QR (a, b, c, d) transformation updates the matrix

X four 32-bit words as below [8]. Where the symbol ≪

represents the rotation to the left, + is arithmetic addition,

and (⊕) represents a bitwise XOR.

QR = {

𝑏 = 𝑏 ⊕ [(𝑎 + 𝑑) ⋘ 7]

𝑐 = 𝑐 ⊕ [(𝑏 + 𝑎) ⋘ 9]

𝑑 = 𝑑 ⊕ [(𝑐 + 𝑏) ⋘ 13]

𝑎 = 𝑎 ⊕ [(𝑑 + 𝑐) ⋘ 18]

 (2)

Figure 1 : Salsa20 hash function operating [8],[28].

Improved Salsa20 Based on Random Chaotic Maps Informatica 46 (2022) 501–505 97

RR =

{

QR(𝑥0, 𝑥4, 𝑥8, 𝑥12)

QR(𝑥5, 𝑥9, 𝑥13, 𝑥1)

QR(𝑥10, 𝑥14 , 𝑥2, 𝑥6)

QR(𝑥15, 𝑥3, 𝑥7, 𝑥11)

, CR =

{

QR(𝑥0, 𝑥1, 𝑥2, 𝑥3)

QR(𝑥5, 𝑥6, 𝑥7, 𝑥4)

QR(𝑥10, 𝑥11, 𝑥8, 𝑥9)

QR(𝑥15, 𝑥12, 𝑥13, 𝑥14)

 (3)

𝐷𝑅 = (𝑋) = 𝑅𝑅(𝐶𝑅(𝑋)) (4)

Keystream = 𝑋 + 𝐷𝑅𝑟(𝑋) (5)

There are various types of rounds; for example,

Salsa20/12 and Salsa20/8 are considered to be the fastest

of the other stream cipher algorithms. Salsa20, on the

other hand, is faster than the AES cipher algorithm and is

therefore recommended for typical cryptosystems where

speed is more important than confidence [4], [7], [26],

[30].

3.2 Chaotic maps
a) Three-dimension chaotic Lorenz map
The Lorenz is a chaotic dynamical map in three

dimensions. Edward Lorenz invented the coupled

differential equation in 1963. When the Lorenz system is

plotted, it produces a Butterfly-like attractor. A simple

formula can be used to explain the system Equation (6)

[31].

𝑥′ = 𝑎(𝑦 − 𝑥)

y′ = (𝜎 − 𝑧)𝑥 − 𝑦

𝑧′ = 𝑥𝑦 − 𝑏𝑧

 (6)

b) Henon map
The Henon map looks to be one of the well-studied

instances of chaotic discrete-time dynamical systems. In

1978, the Henon chaotic map [32] was discovered for the

first time. Equation7 shows a two-dimensional map with

Table 1: Summarization table on the related works.

Ref Methodology Performance/Results

[23]  Chaotic

sequences

 Logistic map

 In order to overcome the problems of logistics maps. Some changes were made

in this study. According to the simulation results, the parameter ranges to

transform the logistic map distribution into a uniform distribution, which is very

suitable for elastic quantification, can be greatly expanded.

 The energy spectrum of the modified logistic map has been shown to be smooth

and identical to the logistic map. This indicates that the pseudo-chaotic quality,

which is crucial for the chaotic sequence generators.

[24]  Sponge function

 Salsa20

 Double - A

 The design decisions made when creating the Double-A cryptographic hash

algorithm by the sponge. First, the relative benefits of using a stream mode cipher

over a block style cipher are discussed.

 Secondly, a description of how a sponge works, how it is made, and what its

primary parts are follows.

 Finally , the selections of the states width, rounds, and operations in the

pseudorandom function are then thoroughly explained to demonstrate how and

why they are employed in the permutation of Double - A, following a brief recap

of the Salsa20 stream cipher and its structure.

[25]  Pseudo-Random

Sequences

 NIST tests

 Block Ciphers

 Stream ciphers

 Use The algorithm was deleted from the list after examining a variety of pseudo-

random number generators, as well as block and stream ciphers, to determine what

flaws each one has, in order to choose the optimal one using the model.

 An According to the studies that have been done, the algorithms AES256,

MT19937, and Salsa, which serve as block cryptographers, pseudorandom number

generators, and stream cryptographers, respectively, have successfully completed

all of the required steps and can be awarded the privacy certificate in accordance

with the model.

[26]  Chaotic maps

 keystream

 Randomness of

chaotic

 The majority of more recent investigations relied on chaotic map with cipher

systems, which had garnered the attention of most researchers in an effort to

increase their security and robustness.

 This paper provides an overview of contemporary chaotic map-based stream

ciphers. Additionally, it displays how chaotic maps' randomness is evaluated.

According to the survey, Chen map is the randomness approach.

[27]  Salsa20/12

 Probabilistic

Neutral Bit (PNB)

 ARX Cipher

 Describes how the Salsa20 state after one run can be used to create a valid initial

state. After five rounds, this helps examine the Salsa20's lack of randomness.

 It reconsiders the concept of probability neutral (PNB) and how the complexity

of existing attacks can be reduced by carefully choosing some parameters in order

to improve the results obtained today. For cryptanalysis against Salsa20, 8 rounds.

98 Informatica 46 (2022) 95–505 L. A. Muhalhal et al.

quadratic non-linearity that describes and represents it

[32], [31].

𝑥𝑖+1 = 1 − 𝑎𝑥2 + 𝑦𝑛
𝑦𝑖+1 = 𝑏𝑥𝑛

 (7)

c) Chua circuit map
The Chua circuit has a 3D continuous-time characteristic

and cited as a fundamental example of chaos, exhibits

chaotic behavior. That uses non-linear equations. Both the

Chua circuit and other chaos-based analogy circuits can be

used in a variety of applications. The Chua circuit's

equations are as follows [33].

𝑥′ = 𝛼(𝑦 − 𝑥 − 𝑔(𝑥))

𝑦′ = 𝑥 − 𝑦 + 𝑧

𝑧′ = −𝛽𝑦

 (8)

d) Rabinovich Fabrikant equation map

The Rabinovich–Fabrikant equations are a set of three

linked ordinary differential equations that exhibit chaotic

behavior given definite constraint values. They were first

named in 1979 [14] by Mikhail Rabinovich and Anatoly

Fabrikant. The chaotic system Rabinovich-Fabrikant,

which is connected to the Lorenz chaotic system, is

defined as follows [14].

𝑥′ = 𝑦(𝑧 − 1 + 𝑥2) + 𝛾𝑥

𝑦′ = 𝑧(3𝑧 + 1 = 𝑥2) + 𝛾𝑥

𝑧′ = −2𝑧(𝛼 + 𝑥𝑦)

 (9)

4 Salsa20 and chaotic maps
The proposed approach builds a stream cipher using

chaotic maps and the Salsa20 algorithm. The plaintext

and keystream are XORed to encrypt streams of data.

The proposed method also uses the same keystream XOR

with the plaintext to produce the ciphertext. Every

stream cipher has the benefit of being easy to use. On the

other side, the keystream generation process completely

determines how strong these ciphers are. To build a

strong enough unexpected keystream that attackers won't

expect, the goal of this research is to enhance the Salsa20

algorithm. The cipher system's complete recommended

block diagram is shown in Figure 2. The following issues

will be covered.

We modify the Salsa20 algorithm to make the Salsa20

algorithm more diffusion and randomness using (the

Lorenzo map (L), Henon map (H), Rabinovich Fabrikant

equation map (RF), and Chua circuit map (CC)) Because

they have good qualities that are suited for keystream

generation, that are utilized to modify the Salsa20

algorithm. So using this chaos to generate the input

Salsa20 algorithm (key, nonce, counter, constants), is

used to generate a keystream. Salsa20 algorithm accepts

a key 256-bit (kL1, kH1, kRF1, kCC1, kL2,kH2,kRF2,kCC2,
 kL6, kH5, kRF5, kCC5, kL8,kH8,kRF8,kCC7),a 64-bit

counter (tL3, tRF3, tL7,tRF6]), 64-bit nonce (vCC3,

vCC3, vCC6, vCC7), and 128-bit constants (σL4, σH4, σRF4,

𝜎CC4,𝜎L5, 𝜎H6, 𝜎RF7, 𝜎CC8]). (L, H, RF, and CC) is the chaotic

map, and (1, 2, 3, 4) is the number of random number

strings that result from the chaos. Extends Equation (1)'s

initial 4x4 matrix (X) to a 4x8 matrix (X) [22], modify

Equation (2) quarter-round QR (a, b, c, d) shown in

Figure 3, modify column round(CR) and row

around(RR) shown in Table 2 . Where K key generate

by chaos and (L, H, RF, CC) is a chaotic map, and (1, 2,

3, 4) is the number of random number strings that result

from the chaos. Equations (4), and (5) are still the same.

𝑋 = [

𝜎L4 𝑘L1 𝑘H1 𝑘RF1
𝑘CC1 𝜎H4 𝑣CC3 𝑣H3
𝑡L3 𝑡RF3 𝜎RF4 𝑘L2
𝑘H2 𝑘RF2 𝑘CC2 𝜎CC4

𝜎L5 𝑘L6 𝑘H5 𝑘RF5
𝑘CC5 𝜎H6 𝑣CC6 𝑣H7
𝑡L7 𝑡RF6 𝜎RF7 𝑘L8
𝑘H8 𝑘RF8 𝑘CC7 𝜎CC8

] (10)

Algorithm 1: Salsa20 Keystream generator [8],[28].

Input: key (k), block counter (c) and nonce (n)

Output: keystream

 1: X ← IntMatrix(k,c,n)

 2: for i=0 to r=9 do

 ▷ Column Round (CR)

 3: (x0, x4, x8, x12) ← QR(x0, x4, x8, x12)

 4: (x5, x9, x13, x1) ← QR((x5, x9, x13, x1)

 5: (x10, x14, x2, x6) ← QR(x10, x14, x2, x6)

 6: (x15, x3, x7, x11) ← QR(x15, x3, x7, x11)

 ▷ Row Round (RR)

 7: (x0, x1, x2, x3) ← QR((x0, x1, x2, x3)

 8: (x5, x6, x7, x4) ← QR(((x5, x6, x7, x4)

 9: (x10, x11, x8, x9) ← QR(x10, x11, x8, x9)

10: (x15, x12, x13, x14) ← QR(x15, x12, x13, x14)

13: DR ← RR(CR(X))

14: Keystream ← X + 𝐷𝑅𝑟(X)

15: end for

Table 2 Salsa20 Column Round(CR) , Row Round(RR)

Column Round(CR) Row Round(RR)

(x0, x4, x8, x12) (x0, x1, x2, x3)

(x5, x9, x13, x1) (x5, x6, x7, x4)

(x10, x14, x2, x6) (x10, x11, x8, x9)

(x15, x3, x7, x11) (x15, x12, x13, x14)

(x16, x20, x24, x28) (x16, x17, x18, x19)

(x21, x25, x29, x17) (x21, x22, x23, x20)

(x26, x30, x18, x22) (x26, x27, x24, x25)

(x31, x19, x23, x27) (x31, x28, x29, x39)

Figure 2 : Salsa20-chaotic system

Improved Salsa20 Based on Random Chaotic Maps Informatica 46 (2022) 501–505 99

QR =

{

 𝑏 = 𝑏 ⊕ [(𝐾L5⊕ (𝑎 + 𝑑)) ⋘ 7]

𝑐 = 𝑐 ⊕ [(𝐾RF5⊕ (𝑏 + 𝑎)) ⋘ 9]

𝑑 = 𝑑 ⊕ [(𝐾CC5⊕ (𝑐 + 𝑏)) ⋘ 13]

𝑎 = 𝑎 ⊕ [(𝐾H5⊕ (𝑑 + 𝑐)) ⋘ 18]

 (11)

5 Results and discussion
In this paper, we propose lightweight stream encryption

based on the Salsa20 algorithm and chaotic maps to

achieve a high level of randomness and propagation to

resist known attacks. A good fusion combines the

qualities of both the Salsa20 algorithm and the random

maps to become more random to improve the

weaknesses of the Salsa20 algorithm. Especially after the

Salsa20/7 algorithm was broken and Salsa20/12 is no

longer as safe as it was before. As a result, Salsa20

achieves a high level of diffusion to resist known attacks.

Salsa20 and its reduced variations are among the fastest

ciphers currently available.

The proposed method was built and

implemented in a Python 3.9.7 environment, on a

machine with an Intel(R) Xeon(R) CPU E3-1545M v5

running at 2.90 GHz and 8 GB of RAM running

Windows 10, Intel(R) Xeon(R) CPU E3-1545M v5

running at 2.90GHz.

Several statistical tests are also available to

evaluate the randomness features of cryptographic

algorithms. Statistical analysis is evaluated using NIST

SP 800-22. Based on the significance value, the NIST

tests determine whether the sequence ratio is random.

When the P-value is less than 0.01, the sequence is

considered random or vice versa and the non-random

sequence is called [34],[35]. The proposed method and

the Salsa20 cipher algorithm are subjected to each of the

15 NIST tests [34],[35]. Test results will also be

discussed below.

 Frequency Test: The proposed method is generally

superior to the Salsa20, as shown in Table 3. , which

increases nearly 0.1724 more than the Salsa20

algorithm, according to NIST tests.

 Frequency Block Test: The proposed method is

generally superior to the Salsa20, as shown in Table

3. , which increases nearly 0.4008 more than the

Algorithm 2: Salsa20 with chaotic maps.

Input : key (k), block counter (b) , nonce (n), constants (c)
Output : keystream

▷ Chaotic maps

 1: 𝑅𝐹𝑖(𝑖 ,1 to 8)= Rabinovich-Fabrikant map Generation(1 to 8)

 2: 𝐿𝑖(𝑖 ,1 to 8)= Lorenz map Generation(1 to 8)

 3: 𝐻𝑖(𝑖 ,1 to 8)= Henon map Generation(1 to 8)

 4: 𝐶𝐶𝑖(𝑖 ,1 to 8)= Chua-circuit map (1 to 8)

▷ Initial matrix

 5:k=[𝑘L1, 𝑘H1, 𝑘RF1, 𝑘CC1, 𝑘L2,𝑘H2,𝑘RF2,𝑘CC2,
 𝑘L6, 𝑘H5, 𝑘RF5, 𝑘CC5, 𝑘L8,𝑘H8,𝑘RF8,𝑘CC7]
 6: c=[𝜎L4, 𝜎H4, 𝜎RF4, 𝜎CC4,𝜎L5, 𝜎H6, 𝜎RF7, 𝜎CC8]

 7: b=[𝑡L3, 𝑡RF3, 𝑡L7, 𝑡RF6]
 8: n=[𝑣CC3, 𝑣CC3, 𝑣CC6, 𝑣CC7]
 9: X ← IntMatrix(k,c,b,n)

▷Quarter Round (QR)

 10: x1 ← XOR (x1,Left Shift (XOR(𝐾L5, Add(x0 + x3)), 7)

 11: x2 ← XOR (x2,Left Shift (XOR(𝐾RF5, Add(x1 + x0)), 9))

 12: x3 ← XOR (x3,Left Shift (XOR(𝐾CC5, Add(x2 + x1)), 13))

 13: x4 ← XOR (x4,Left Shift (XOR(𝐾H5, Add(x3 + x2)), 18))
 14: for i=0 to r=9 do

▷ Column Round (CR)
 15: (x0, x4, x8, x12) ← QR(x0, x4, x8, x12)

 16: (x5, x9, x13, x1) ← QR((x5, x9, x13, x1)

 17: (x10, x14, x2, x6) ← QR(x10, x14, x2, x6)
 18: (x15, x3, x7, x11) ← QR(x15, x3, x7, x11)

 19: (x16, x20, x24, x28) ← QR(x16, x20, x24, x28)
 20: (x21, x25, x29, x17) ← QR(x21, x25, x29, x17)

 21: (x26, x30, x18, x22) ← QR (x26, x30, x18, x22)

 22: (x31, x19, x23, x27) ← QR(x31, x19, x23, x27)

▷ Row Round (RR)

 23: (x0, x1, x2, x3) ← QR(x0, x1, x2, x3)
 24: (x5, x6, x7, x4) ← QR(x5, x6, x7, x4)

 25: (x10, x11, x8, x9) ← QR(x10, x11, x8, x9)

 26: (x15, x12, x13, x14) ← QR(x15, x12, x13, x14)
 27: (x16, x17, x18, x19) ← QR(x16, x17, x18, x19)

 28: (x21, x22, x23, x20) ← QR(x21, x22, x23, x20)

 29: (x26, x27, x24, x25) ← QR(x26, x27, x24, x25)
 30: (x31, x28, x29, x30) ← QR(x31, x28, x29, x30)

 31: DR ← RR(CR(X))

 32: Keystream ← X + 𝐷𝑅𝑟(X)
 33: end for

Figure 3 : QR for Salsa20-chaotic

Table 3 NIST Statistical Test Suite
NIST Tests Salsa20 Proposed

Algorithm

Frequency 0.3748 0.5472

Block Frequency 0.3659 0.7667

Cumulative Sums 0.2409 0.5892

Runs 0.4168 0.8867

Longest Run 0.1381 0.7607

Rank 0.0356 0.3626

FFT 0.24904 0.5309

Non Overlapping 0.9993 0.9999

Overlapping Template 0.1515 0.9517

Universal 0.3319 0.6951

Approximate Entropy 0.9999 0.9999

Random Excursions 0.4798 0.5178

Random Excursions Variant 0.4236 0.6046

Serial 0.3595 0.8231

Linear Complexity 0.3833 0.6101

100 Informatica 46 (2022) 95–505 L. A. Muhalhal et al.

Salsa20 algorithm, according to NIST tests.

 Runs Test: The proposed method is generally

superior to the Salsa20, as shown in Table 3. , which

increases nearly 0.4699 more than the Salsa20

algorithm, according to NIST tests.

 Longest Run Test: The proposed method is

generally superior to the Salsa20, as shown in Table

3. , which increases nearly 0.6226 more than the

Salsa20 algorithm, according to NIST tests.

 Binary Matrix Rank Test: The proposed method is

generally superior to the Salsa20, as shown in Table

3. , which increases nearly 0.327 more than the

Salsa20 algorithm, according to NIST tests.

 Discrete Fourier Transform Test: The proposed

method is generally superior to the Salsa20, as shown

in Table 3. , which increases nearly 0.28186 more

than the Salsa20 algorithm, according to NIST tests.

 Non-overlapping Template Matching Test: The

proposed method is generally superior to the Salsa20,

as shown in Table 3. , which increases nearly 0.0006

more than the Salsa20 algorithm, according to NIST

tests.

 Overlapping Template Matching Test: The

proposed method is generally superior to the Salsa20,

as shown in Table 3. , which increases nearly 0.8002
more than the Salsa20 algorithm, according to NIST.

 Universal Test: The proposed method is generally

superior to the Salsa20, as shown in Table 3. , which

increases nearly 0.3632 more than the Salsa20

algorithm, according to NIST tests.

 Linear Complexity Test: The proposed method is

generally superior to the Salsa20, as shown in Table

3. , which increases nearly 0.2268 more than the

Salsa20 algorithm, according to NIST tests.

 Serial Test: The proposed method is generally

superior to the Salsa20, as shown in Table 3. , which

increases nearly 0.4636 more than the Salsa20

algorithm, according to NIST tests.

 Approximate Entropy Test: The proposed method

is generally equal to the Salsa20, shown in Table 3.

 Cumulative Sums (Cusum) Test: The proposed

method is generally superior to the Salsa20, as shown

in Table 3. , which increases nearly 0.3483 more than

the Salsa20 algorithm, according to NIST tests.

 Random Excursions Variant Test: The proposed

method is generally superior to the Salsa20, as shown

in Table 3. , which increases nearly 0.181 more than

the Salsa20 algorithm, according to NIST tests.

 Random Excursions Test: The proposed method is

generally superior to the Salsa20, as shown in Table

3. , which increases nearly 0.038 more than the

Salsa20 algorithm, according to NIST tests.

6 Conclusion
Salsa20/7, on the other hand, was broken, and Salsa20/12

is no longer as safe as it once was. As a result, Salsa20

requires greater randomness and diffusion. To improve

Salsa20 is described in this paper as a cipher that uses

four types of chaotic maps (3D Lorenzo map, 2D Henon

map, 3D Rabinovich Fabrikant equation map, and 3D

Chua circuit map) to obtain a decent diffusion level and

speeds up the cipher. The proposed method improves

security by using more randomization and a hash

function, the hash function, and key generation, and it

could be used with other techniques like a lightweight

block cipher. Key generation raises the complexity of

keys and adds greater flexibility. Salsa20 has been

updated so that it can be used as a lightweight stream

cipher on devices with limited resources. The

performance of random ciphers was evaluated using 15

NIST statistical tests, which were developed to evaluate

pseudo-random numbers in cryptographic applications

and successfully bypassed the randomness of the

proposed method. According to a NIST test, the

performance achieved by the proposed method is

increased by nearly 0.3131 more than that achieved from

the Salsa20 in terms of data integrity and confidentiality.

 References
[1] H. Wu and H. Wu, “Research on Computer Network

Information Security Problems and Prevention Based

on Wireless Sensor Network,” in 2021 IEEE Asia-

Pacific Conference on Image Processing, Electronics

and Computers (IPEC), 2021, pp. 1015–

1018,https://doi.org/10.1109/IPEC51340.2021.94213

03.

[2] K. Gupta, D. Gupta, S. K. Prasad, and P. Johri, “A

Review on Cryptography based Data Security

Techniques for the Cloud Computing,” in 2021

International Conference on Advance Computing and

Innovative Technologies in Engineering (ICACITE),

2021, pp. 1039–1044,

https://doi.org/10.1109/ICACITE51222.2021.940456

8.

[3] M. A. Latif, M. Bin Ahmad, and M. K. Khan, “A

Review on Key Management and Lightweight

Cryptography for IoT,” in 2020 Global Conference on

Wireless and Optical Technologies (GCWOT), 2020,

pp. 1–7, doi: 10.1109/GCWOT49901.2020.9391613.

[4] S. S. Dhanda, B. Singh, and P. Jindal, “Lightweight

cryptography: a solution to secure IoT,” Wirel. Pers.

Commun., vol. 112, no. 3, pp. 1947–1980, 2020,

https://doi.org/10.1007/s11277-020-07134-3.

[5] R. Anusha, M. J. Dileep Kumar, V. S. Shetty, and N.

Prajwal Hegde, “Symmetric Key Algorithm in

Computer security: A Review,” in 2020 4th

International Conference on Electronics,

Communication and Aerospace Technology

(ICECA), 2020, pp. 765–769,

https://doi.org/10.1109/ICECA49313.2020.9297547.

[6] H. H. Al-badrei and I. S. Alshawi, “Improvement of

RC4 Security Algorithm,” Adv. Mech., vol. 9, no. 3,

pp. 1467–1476, 2021.

[7] L. Jiao, Y. Hao, and D. Feng, “Stream cipher designs:

a review,” Sci. China Inf. Sci., vol. 63, no. 3, pp. 1–

25, 2020, https://doi.org/10.1007/s11432-018-9929-x.

[8] D. J. Bernstein, “The salsa20 family of stream

ciphers,” in Lecture Notes in Computer Science

https://ieeexplore.ieee.org/document/9421303
https://ieeexplore.ieee.org/document/9421303
https://doi.org/10.1109/ICACITE51222.2021.9404568
https://doi.org/10.1109/ICACITE51222.2021.9404568
https://doi.org/10.1007/s11277-020-07134-3.
https://doi.org/10.1109/ICECA49313.2020.9297547
https://doi.org/10.1007/s11432-018-9929-x

Improved Salsa20 Based on Random Chaotic Maps Informatica 46 (2022) 501–505 101

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics),

vol. 4986 LNCS, M. Robshaw and O. Billet, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,

pp. 84–97,https://doi.org/10.1007/978-3-540-68351-

3_8.

[9] Z. M. J. Kubba and H. K. Hoomod, “A hybrid

modified lightweight algorithm combined of two

cryptography algorithms PRESENT and Salsa20

using chaotic system,” in 2019 First International

Conference of Computer and Applied Sciences

(CAS), 2019, pp. 199–203,

https://doi.org/10.1109/CAS47993.2019.9075488.

[10] T. Ishiguro, S. Kiyomoto, and Y. Miyake, “Latin

dances revisited: new analytic results of Salsa20 and

ChaCha,” in International Conference on Information

and Communications Security, 2011, pp. 255–266,

https://doi.org/10.1007/978-3-642-25243-3_21.

[11] S. Maitra, “Chosen IV cryptanalysis on reduced

round ChaCha and Salsa,” Discret. Appl. Math., vol.

208, pp. 88–97, 2016,

https://doi.org/10.1016/j.dam.2016.02.020.

[12] A. Gaeini, A. Mirghadri, G. Jandaghi, and B.

Keshavarzi, “Comparing some pseudo-random

number generators and cryptography algorithms using

a general evaluation pattern,” IJ Inf. Technol.

Comput. Sci., vol. 9, pp. 25–31, 2016,

https://doi.org/10.5815/ijitcs.2016.09.04.

[13] L. O. Tresor and M. Sumbwanyambe, “A selective

image encryption scheme based on 2d DWT, Henon

map and 4d Qi hyper-chaos,” IEEE Access, vol. 7,

pp. 103463–103472, 2019,

https://doi.org/10.1109/ACCESS.2019.2929244.

[14] A. Alghafis, N. Munir, and M. Khan, “An

encryption scheme based on chaotic Rabinovich-

Fabrikant system and S8 confusion component,”

Multimed. Tools Appl., vol. 80, no. 5, pp. 7967–7985,

2021, https://doi.org/10.1007/s11042-020-10142-x.

[15] M. Hamdi, J. Miri, and B. Moalla, “Hybrid

encryption algorithm (HEA) based on chaotic

system,” Soft Comput., vol. 25, no. 3, pp. 1847–1858,

2021, https://doi.org/10.1007/s00500-020-05258-z.

[16] N. Mohananthini, M. Y. Mohamed Parvees, and J.

Abdul Samath, “Lightweight Image Encryption: A

Chaotic ARX Block Cipher,” J. Circuits, Syst.

Comput., vol. 30, no. 02, p. 2150026, 2021,

https://doi.org/10.1142/S0218126621500262.

[17] R. Anandkumar and R. Kalpana, “Analyzing of

Chaos based Encryption with Lorenz and Henon

Map,” in 2018 2nd International Conference on I-

SMAC (IoT in Social, Mobile, Analytics and Cloud)

(I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics

and Cloud) (I-SMAC), 2018 2nd International

Conference on, 2018, pp. 204–208,

https://doi.org/10.1109/I-SMAC.2018.8653652.

[18] A. H. Jabbar and I. S. Alshawi, “Spider monkey

optimization routing protocol for wireless sensor

networks.,” Int. J. Electr. \& Comput. Eng., vol. 11,

no. 3, 2021,

https://doi.org/10.11591/ijece.v11i3.pp2432-2442.

[19] I. S. Alshawi, A.-K. Y. Abdulla, and A. A. Alhijaj,

“Fuzzy dstar-lite routing method for energy-efficient

heterogeneous wireless sensor networks,” Indones. J.

Electr. Eng. Comput. Sci., vol. 19, no. 2, pp. 906–

916, 2020,

https://doi.org/10.11591/ijeecs.v19.i2.pp906-916.

[20] G. Singh and S. Garg, “Fuzzy Elliptic Curve

Cryptography based Cipher Text Policy Attribute

based Encryption for Cloud Security,” in 2020

International Conference on Intelligent Engineering

and Management (ICIEM), 2020, pp. 327–330,

https://doi.org/10.1109/ICIEM48762.2020.9159961.

[21] A. Abdaoui, A. Erbad, A. Al-Ali, A. Mohamed, and

M. Guizani, “Fuzzy Elliptic Curve Cryptography for

Authentication in Internet of Things,” IEEE Internet

Things J., p. 1, 2021,

https://doi.org/10.1109/JIOT.2021.3121350.

[22] M. Mahdi and N. Hassan, “A suggested super salsa

stream cipher,” Iraqi J. Comput. Informatics, vol. 44,

no. 2, pp. 5–10, 2018,

https://doi.org/10.25195/ijci.v44i2.51.

[23] J. Zhang, Y. Zhu, H. Zhu, and J. Cheng, “Some

improvements to logistic map for chaotic signal

generator,” 2017 3rd IEEE Int. Conf. Comput.

Commun. ICCC 2017, vol. 2018-Janua, no. 1, pp.

1090–1093, 2018,

https://doi.org/10.1109/CompComm.2017.8322711.

[24] A. Issa, M. A. Al-Ahmad, and A. Al-Saleh,

“Double-A-A Salsa20 Like: The Design,” Proc. -

2015 4th Int. Conf. Adv. Comput. Sci. Appl. Technol.

ACSAT 2015, pp. 18–23, 2016,

https://doi.org/10.1109/ACSAT.2015.25.

[25] A. Gaeini, A. Mirghadri, G. Jandaghi, and B.

Keshavarzi, “Comparing Some Pseudo-Random

Number Generators and Cryptography Algorithms

Using a General Evaluation Pattern,” Int. J. Inf.

Technol. Comput. Sci., vol. 8, no. 9, pp. 25–31, 2016,

https://doi.org/10.5815/ijitcs.2016.09.04.

[26] E. L. Mohaisen and R. S. Mohammed, “Stream

Cipher Based on Chaotic Maps,” 1st Int. Sci. Conf.

Comput. Appl. Sci. CAS 2019, pp. 256–261, 2019,

https://doi.org/10.1109/CAS47993.2019.9075490.

[27] S. Maitra et al., “Salsa20 Cryptanalysis : New

Moves and Revisiting Old Styles,” Int. Work. Coding

Cryptogr., p. 11, 2015,

https://eprint.iacr.org/2015/217.

[28] Z. M. Jawad Kubba and H. K. Hoomod, “A Hybrid

Modified Lightweight Algorithm Combined of Two

Cryptography Algorithms PRESENT and Salsa20

Using Chaotic System,” in 2019 First International

Conference of Computer and Applied Sciences

(CAS), 2019, pp. 199–203,

https://doi.org/10.1109/CAS47993.2019.9075488.

[29] E. L. Mohaisen and R. S. Mohammed, “Improving

Salsa20 Stream Cipher Using Random Chaotic

Maps,” in 2020 3rd International Conference on

Engineering Technology and its Applications

(IICETA), 2020, pp. 1–6,

https://doi.org/10.1109/IICETA50496.2020.9318902.

[30] S. Maitra, “Chosen IV cryptanalysis on reduced

round ChaCha and Salsa,” Discret. Appl. Math., vol.

208, pp. 88–97, 2016,

https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1109/CAS47993.2019.9075488
https://doi.org/10.1007/978-3-642-25243-3_21
https://doi.org/10.1016/j.dam.2016.02.020
https://doi.org/10.5815/ijitcs.2016.09.04
https://doi.org/10.5815/ijitcs.2016.09.04
https://doi.org/10.1109/ACCESS.2019.2929244
https://doi.org/10.1007/s11042-020-10142-x
https://doi.org/10.1007/s00500-020-05258-z
https://doi.org/10.1142/S0218126621500262
https://doi.org/10.1109/I-SMAC.2018.8653652
https://doi.org/10.11591/ijece.v11i3.pp2432-2442
https://doi.org/10.11591/ijeecs.v19.i2.pp906-916
https://doi.org/10.1109/ICIEM48762.2020.9159961
https://doi.org/10.1109/JIOT.2021.3121350
https://doi.org/10.25195/ijci.v44i2.51
https://doi.org/10.25195/ijci.v44i2.51
https://doi.org/10.1109/CompComm.2017.8322711
https://doi.org/10.1109/ACSAT.2015.25
https://doi.org/10.5815/ijitcs.2016.09.04
https://doi.org/10.1109/CAS47993.2019.9075490
https://eprint.iacr.org/2015/217
https://doi.org/10.1109/CAS47993.2019.9075488
https://doi.org/10.1109/IICETA50496.2020.9318902

102 Informatica 46 (2022) 95–505 L. A. Muhalhal et al.

https://doi.org/10.1016/j.dam.2016.02.020.

[31] R. Anandkumar and R. Kalpana, “Analyzing of

chaos based encryption with Lorenz and Henon map,”

Proc. Int. Conf. I-SMAC (IoT Soc. Mobile, Anal.

Cloud), I-SMAC 2018, pp. 204–208, 2019,

https://doi.org/10.1109/I-SMAC.2018.8653652.

[32] L. O. Tresor and M. Sumbwanyambe, “A selective

image encryption scheme based on 2D DWT, henon

map and 4D Qi hyper-chaos,” IEEE Access, vol. 7,

pp. 103463–103472, 2019,

https://doi.org/10.1109/ACCESS.2019.2929244.

[33] F. Caldarola, P. Pantano, and E. Bilotta,

“Computation of supertrack functions for Chua’s

oscillator and for Chua’s circuit with memristor,”

Commun. Nonlinear Sci. Numer. Simul., vol. 94, p.

105568, 2021,

https://doi.org/10.1016/j.cnsns.2020.105568.

[34] L. E. Bassham III et al., “Sp 800-22 rev. 1a. a

statistical test suite for random and pseudorandom

number generators for cryptographic applications.”

National Institute of Standards \& Technology, 2010,

https://dl.acm.org/doi/pdf/10.5555/2206233.

[35] E. A. Luengo and L. J. G. Villalba,

“Recommendations on Statistical Randomness Test

Batteries for Cryptographic Purposes,” ACM

Comput. Surv., vol. 54, no. 4, May 2021, doi:

https://doi.org/10.1145/3447773.

https://doi.org/10.1016/j.dam.2016.02.020
https://doi.org/10.1109/I-SMAC.2018.8653652
https://doi.org/10.1109/ACCESS.2019.2929244
https://doi.org/10.1016/j.cnsns.2020.105568
https://dl.acm.org/doi/pdf/10.5555/2206233
https://doi.org/10.1145/3447773

