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Abstract—In the present study, we investigate even–even 236−246Pu isotopes with triaxial interacting
boson model. Calculations for the energy levels and E2 transition probability were performed using the
cubic terms. The study of the influence of cubic [d× d× d] and quadrupole [Q×Q×Q] interactions on
the structure of these nuclei is undertaken. The potential energy surfaces as functions of the deformation
parameters were calculated. It has been demonstrated how the cubic term L = 3 gives rise to a number of
the observed properties of the Pu-nuclei. The comparison between the model results and available experi-
mental data have shown that the structure of these nuclei can be investigated by an SU (3) Hamiltonian.
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1. INTRODUCTION

The nuclei with the mass number A > 200 have
been the subject of various theoretical and exper-
imental studies due to their unique structure and
properties. This was a decisive factor in a revival of
interest in it so may provide rich references of data
for researchers. We cite several experimental [1–
13]. Theoretically, there has been wide investiga-
tion in an attempt to study their structures, stability,
and other properties [14–18]. In the earlier version
of Interacting Boson Model IBM-1, the collective
states can be reduced to a system of NB identical
bosons. These bosons are the s-boson, with angular
momentum L = 0, and the d-boson with angular-
momentum L = 2 state [19–22]. The study by Wilets
and Jean [23] confirmed that the degrees of freedom
of the deformation parameter play an important role
in determining the geometric shape of nuclei in which
quadrupole deformities occur. To give the geometric
image of the nucleus in its excited collective states,
Bohr and Mottelson explained through their geomet-
ric model that the shape of the nucleus deviates from
the axial symmetry [24].

The Interaction Boson Model (IBM) Hamiltonian
has been solved in the Hartree–Fock approximation
and that can be seen as a link between the IBM
and the geometric model [25–28]. In terms of the
quadrupole shape variable, a pictorial representation
of the IBM Hamiltonian can be produced through the
energy surface derived by taking the expectation value
of the IBM Hamiltonian in the intrinsic state. This
can give us an idea of the equilibrium and stability
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of the nucleus [29]. Anther investigation about so-
called classical limit by Isacker and Chen [30] includ-
ing derived a Hamiltonian for each U5, SU(3), and
O(6) dynamic symmetry. The issue of high-order in-
teraction of d-boson state then has been considered.
As well as proved that the stable shapes are shown
by the classical limit of IBM Hamiltonian not to be
stable triaxial shapes. Heyde et al. [31] show that
by incorporating cubic terms in the Hamiltonian of
the IBM, one may obtain a stable triaxially shaped
nucleus and study the influence of such terms on the
energy spectrum in each of the three dynamic sym-
metries. These analyses were completely restricted to
the IBM-1. In contrast Dieperink and Bijker [28, 32]
confirmed that triaxiality also occurs in particular dy-
namic symmetries of the IBM-2 that does distinguish
between protons and neutrons.

A three-body interaction between the d-bosons
has been included to the Hamiltonian of several nu-
clei, heavy 76Os and 78Pt isotopes were studied. The
signature splitting of the γ-vibration band and B(E2)
transition were analyzed. It was shown that in none of
the nuclei evidence for a stable, triaxial ground-state
shape is found [33]. The interacting boson model
of Arima and Iachello has been foundational to the
description of rotational band in two 156Gd and 234U
isotopes. Moreover, the Hamiltonian for 2 and 4-body
interaction had been discussed [34].

In the present work of 236−246Pu investigating,
the structure of band levels, electric quadrupole tran-
sition rates B(E2), and Potential Energy Surfaces
(PES) are purposed. However, the main goal is to
determine the effect of three-body boson interactions.
Furthermore, we also calculate the PES and the role
of three-body interaction in existing of stable triaxial
shape within the specified quadrupole deformation
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parameters. We will show the behavior of the PES
as a function of the deformation angle γ concerning a
χ degree of freedom.

2. INTERACTING BOSON MODEL

The contributions of the interacting boson model
are very important in describing the heavy and su-
perdeformed structure nuclei [35–37]. Here, we pro-
vide some detailed analysis of interactions between
bosons. In the first version of Arima and Iachello
IBM [19–21], two types of bosons are considered:
the s-boson, with angular momentum L = 0, and the
d-boson with angular-momentum L = 2 state. In a
given nucleus a total number of bosons is conserved,
i.e., the number of creation and annihilation boson
operators are equal. The ability to describe the nu-
clear structure by connection with the group U (6) of
unitary transformation in six dimensions is one of the
major advantages of the model. However, the nuclei
which exhibit collective properties have already been
classified by geometric model [38] into vibrational and
rotational properties. The interacting boson model
can be described analytically by producing a Hamilto-
nian within the second quantized formula for a system
of creation and annihilation boson operators. Because
the total number of bosons are conserved by IBM-1
Hamiltonian, this leads to being written in terms of
36 operators [39]:

G
(k)
k (l, l)′ = [b†l × b̃l′ ]

(k)
k (1)

=
∑

μ1μ2

〈lμ1l
′μ′

2|Kk〉b†lμ1
(−1)μ

′
2 b̃l′,−μ′

2
,

where b̃l′(b
†
l ) represents the annihilation (creation)

operators of s- and d-boson with (l, l′) = 0 and 2
angular momenta respectively. We will obviate the
delve into the U (6) algebra and its subalgebra but
suffice it to say that IBM has three dynamic sym-
metries contained in the group U (6), the vibrational
symmetry U (5) describes spherical nuclei, rotational
symmetry SU (3) describes axially deformed nuclei
and transitional symmetry describes γ-unstable nu-
clei [39, 40]. The general form of the Hamiltonian
operator of bosons’ interactions:

Ĥ = H(1) +H(2) +H(3), (2)

where H(1) includes only one-body terms is given by:

H(1) = εs[s
† × s](0) + εd

√
5[d† × d̃](0), (3)

the superscription on the rhs refers to the bosons
which coupling in zero angular momentum. The first
and second terms in Eq. (2) can be written as [29]:

Ĥsd = εss
† · s+ εd

∑

μ

d†μ · d̃μ +
1

2
u0[(s

† × s†)0 (4)

× (s× s)0](0) + u2[(d
† × s†)2 × (d̃× s)2](0)

+
1√
2
ν̃0[(d

† × d†)0 × (s× s)0 + (s† × s†)0

× (d̃× d̃)0](0) + ν̃2[(d
† × d†)2 × (d̃× s)2

+ (d† × s†)2 × (d̃× d̃)2](0) +
∑

L=0,2,4

1

2
(2L+ 1)1/2

× CL[(d
† × d†)(L) × (d̃× d̃)(L)](0).

To specify the two-body interaction parameters for
the Hamiltonian, it is possible to use the “multipole
expansion” of the Hamiltonian [41]:

Hsd = εdn̂d + a0P̂ P̂ + a1L̂L̂ (5)

+ a2Q̂Q̂+ a3T̂3T̂3 + a4T̂4T̂4,

where εd represents the d-boson energy, n̂d is the d-
boson number operator and L̂ =

√
10[d† × d̃](1) is the

angular momentum operator. The P̂ and Q̂ represent
the paring and quadrupole operators, where:

P̂ =
1

2
[(d̃ · d̃)− (s · s)], (6)

Q̂ = [d† × s+ s† × d̃](2) − χd† × d̃](2). (7)

The χ is a shape parameter. The last two terms
T̂r = [d† × d̃](r)(r = 3 and 4) are the octopole and
hexadropole operators, respectively. For triaxiality,
there is a long history in the theoretical description
of the nuclear structure which helps to think about
the influence of the cubic term on the energy spectra
and consequently the shape of nuclei [26, 29, 30].
By incorporating the three-body terms in the Hamil-
tonian of the IBM-1, we can understand a triaxial
behavior in nuclei that exhibit a triaxial minimum in
the potential energy surfaces at the nuclei equilibrium
shape. The third term H(3) in Eq. (2) represents
three-body interaction [33]:

H(3) =
∑

L

ṽLl1l2l3l′1l′2l′3
[[d† × d†](λ) × d†](L) (8)

× [[d̃× d̃](λ)
′ × d̃](L).

There are 17 linear independent combinations.
So, we can find five linear combinations of the type
(d†d†d†)(L) · (d̃d̃d̃)(L), where (L = 0, 2, 3, 4, 6) and
(λ = 0, 2, 4) (for more details see [33, 42]).

The triaxial effects will appear explicitly if we
modify Hamiltonian in Eq. (4) this can be described
through an equation such as the following:

Ĥ = Hsd +
∑

L

θL[d
†d†d†](L) · (d̃d̃d̃)(L), (9)
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Table 1. Hamiltonians’ parameter values (in MeV unit) used for the description energy scheme of the Plutonium isotopes
chain, θ3 = −0.004 MeV, and q3 = 0.0001 MeV and χ = −1.3227 for all isotopes

Isotopes 236Pu 238Pu 240Pu 242Pu 244Pu 246Pu

NB 14 15 16 17 18 19

a1 0.0018 0.0020 0.003 0.0036 0.0042 0.0050

a2 –0.0130 –0.0110 –0.0080 –0.0066 –0.0060 –0.0060

Table 2. The parameters’ value of electric transition operator in (eb) unit

Isotopes 236Pu 238Pu 240Pu 242Pu 244Pu 246Pu

α2 0.159 0.151 0.143 0.139 0.133 0.127

β2 –0.240 –0.230 –0.220 –0.210 –0.200 –0.190

where θL (L = 0, 2, 3, 4, 6) represent the interaction
parameters most often used to describe the triaxiality.
The presence of the cubic term L = 3 is so necessary
to achieve stable triaxial shapes in the potential en-
ergy surfaces [31].

With (Q̂× Q̂× Q̂)(0) term based on the third-
order moments of quadrupole operator in the ground
state within (L = 0) degree of triaxiality [43–47], the
total Hamiltonian can be written as:

Ĥ = a1(L̂ · L̂) + a2(Q̂ · Q̂) (10)

+
∑

λL

θL[(d
† × d†)(λ) × d†](L) · [(d̃× d̃)(λ) × d̃](L)

− q3[Q̂× Q̂× Q̂](0).

3. RESULTS AND DISCUSSION

3.1. Energy Levels

Firstly, we would like to ensure before going into
highlight and comment on a nuclear structure of
Plutonium isotopes, whether it has an exact SU (3)
limit referred by the typical energy ratio E4+1

/E2+1
=

3.333 and bands position [20]. Secondly, 236−246Pu
isotopes have neutron number N = 142–152. To
produce a deformed structure of Pu isotopes, it is of
course necessary to determine the a1 and a2 parame-
ters. The energy values of the ground band are close
to those of the J(J + 1) rotor spectra. The variety
of system parameters and E2 transition parameters
have been listed in Tables 1 and 2. These values
served as a powerful tool to reproduce more close
results to those of available experimental [48]. Within
Eq. (10) we have implicitly three Hamiltonians taken
into account. The HIBM, is a standard SU (3) Hamil-
tonian which includes only the angular momentum
and quadrupole interaction terms (a1 and a2) [5, 49].

The HIBMC represents the calculation with a1, a2
and θ3. While HIBMCQ represents the calculations
with a1, a2, θ3 and q3. The eigenvalue problem of
the Hamiltonian can be solved by numerical diago-
nalization utilizing the IBM code [51]. The results
of the IBM, IBMC, IBMCQ for the ground state,
and other excited states energy for the nuclei being
examined were calculated. Here we have six energy
level schemes, and the rich experimental data 240Pu
scheme has been plotted in Fig. 1.

A good agreement between the IBM and EXP re-
sults is observed in g.s-band levels. Overall as seen in
Fig. 1, the energy value of β-band levels (K = 0) are
affected hardly by adding the cubic term. In contrast,
the levels of γ-band (K = 2) had risen as a result
of adding L = 3 term. Turning now to the specific
action of adding cubic quadrupole term to Hamilto-
nian Eq. (9) with the a1, a2, θ3, and q3 parameters
would produce a significant risen in energies’ level
of γ-band moreover the β and g.s.-band. For N =
142–152 the difference in energy between IBM and
IBMC results for γ-band particularly at high angular
momentum Iπ = 24+ is 0.15, 0.17, 0.20, 0.23, 0.26,
and 0.29 MeV. For Jπ = 25+ is 0.22, 0.24, 0.26, 0.28,
0.31, and 0.34 MeV, respectively.

Towards middshell (N = 152), the difference in
energy was found at angular momentum Jπ = 29+

and 30+ equal to 0.37 and 0.28 MeV, respectively.
For γ-band levels, it should be noted that at high
odd-J they are more affected by the cubic term and
the operator of the cubic quadrupole than at even-J .
Therefore, we will collect a clustering pattern which
leads to a slightly odd-even staggering observed at
Jπ � 15+ from IBMC furthermore IBMCQ calcula-
tion. For example, the γ-band energy levels cluster
as (15+γ , 16

+
γ ), (17

+
γ , 18

+
γ ), and so on [52]. Also, the

PHYSICS OF ATOMIC NUCLEI Vol. 84 No. 6 2021



CUBIC INTERACTION AND TRIAXIALITY 829

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

E
ne

rg
y,

 M
eV

IBMC EXPIBM IBMCQ IBMC EXPIBM IBMCQ IBMC EXPIBM IBMCQ

(30+)

(26+)

(24+)

28+

2+

12+

14+

16+

18+

20+

22+

24+

26+

10+

8+

6+
4+

30+

28+

2+

12+

14+

16+

18+

20+

22+

24+

26+

10+

8+

6+

4+

30+

28+

2+
0+

12+

14+

16+

18+

20+

22+

24+

26+

10+

8+

6+

4+

30+

γ-bandβ-bandg.s.-band240Pu

14+

16+

12+

10+

8+

6+

4+

2+3+
5+

7+
9+

11+

13+

15+

17+

19+

21+

23+

18+

20+

22+

24+

25+

26+

27+

28+

29+

(28+)

(14+)

(22+)

(18+)

(16+)

(20+)

(6+)

(10+)
(8+)

(12+)

2
4

0+

0+ 0

(63)−

+
+
−

−(51)
(43)
(31)
(23)

Fig. 1. Comparison of calculated energy levels of 240Pu isotope with available experimental data [48].

energy spacing between each pair of these levels is al-
most equal. We have observed in 240Pu calculations,
that the theoretical results for this isotope seem to be
consistent with available experimental data of γ- and
β-band levels. Clearly for the low-lying β-band, the
IBMCQ results in good agreement with experimental
ones. On the other hand, the IBMC results are
consistent with available experimental data.

3.2. Electric Quadrupole Transition Probability

The IBM electric quadrupole transition can be
written as [22, 53–55]:

T (E2) = α2[d
† × s+ s† × d̃](2) (11)

+ β2[d
† × d̃](2),

the matrix elements in Eq. (11) are calculated using
the wave functions of the states generated by the
energy level calculation. Knowing the reduced matrix
element (〈Jf ||T (E2)||Ji〉), one can directly determine
the electric transition probability B(E2):

B(E2;Ji → Jf ) =
(〈Jf ||T (E2)||Ji〉)2

2Ji + 1
. (12)

The value of α2 parameter is estimated to repro-
duce the experimental value B(E2; 2+1 → 0+1 ), the β2
is taken negative to achieve the selection rules for
intraband and interband transitions [56]. The B(E2)
values for 236−246Pu isotopes have been listed in Ta-
bles 3 and 4. From these tables, it can be seen that
the B(E2; 2+1 → 0+1 ) values increase with the number
of bosons. The theoretical values are in good agree-
ment with available experimental data [48]. From the

B(E2) values, one can see that B(E2; (8+1 → 6+1 ))
value is stronger as compared to other g → g tran-
sition, furthermore β → β and γ → γ transition. For
high spin states, the transitions decreased progres-
sively, possibly due to the occurrence of backbending
in yrast spectra [57].

However, we note the currently available β → g
and γ → g transitions have vanished [22] in both
IBM, IBMC, and IBMCQ calculations. Closer in-
spection of the IBM, IBMC results in Tables 1, 2
shows very weak transitions. Moreover, in IBM
calculation there is a clear trend of increasing the
γeven → γeven transitions but faling in value when
L = 3 is included. As Fig. 2 clarifies, the B(E2)
values are larger in 236Pu and 244Pu than in other iso-
topes, since in SU (3) symmetry they increase as N2.

The results obtained from the IBM and IBMC

calculations for the ratio Bβ =
B(E2; 4+2 → 4+1 )

B(E2; 4+2 → 2+2 )
are

shown in Fig. 3a, with the cubic term, it has values
flowing from (7.29 to 6)× 10−5 at N = 142, 152
respectively. Without this term, the ratio Bβ has a
maximum value at N = 146. In Fig. 3b, there is

a clear trend of increase in Bγ =
B(E2; 3+1 → 4+1 )

B(E2; 3+1 → 2+2 )
according to IBMC calculation and it stoops at N =
146 with value Bγ = 4.5× 10−2, beyond this point, it
decreases slowly with increasing neutron number. In
IBM, the behavior is like in IBMC, but the increasing
breaks down at N = 144, 146 with (2.7, 2.68) × 10−4

in succession. The IBMC calculation for Bγ was
closer to that investigation in the study of [58].
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Table 3. The calculated B(E2) values in e2b2 unit, the available experimental data [48] of B(E2; 2+1 → 0+1 ) equal
to 2.4955(437), 2.5420(974) for 238,240Pu isotopes and B(E2; 2+2 → 0+1 ), B(E2; 2+2 → 4+1 ) equal to 0.0341(105),
0.0271(875), respectively, for 238Pu isotope

Transition 236Pu 238Pu 240Pu

J+
i → J+

f IBM IBMC IBMCQ IBM IBMC IBMCQ IBM IBMC IBMCQ

2+1 → 0+1 2.3975 2.3975 2.3975 2.4827 0.4827 2.4827 2.5374 2.5374 2.5374

4+1 → 2+1 3.3856 3.3856 3.3856 3.5108 3.5108 3.5108 3.5925 3.5925 3.5925

6+1 → 4+1 3.6507 3.6507 3.6507 3.7958 3.7958 3.7958 3.8926 3.8926 3.8926

8+1 → 6+1 3.7032 3.7032 3.7032 3.8660 3.8660 3.8660 3.9778 3.9778 3.9778

10+1 → 8+1 3.6448 3.6448 3.6448 3.8266 3.8266 3.8266 3.9553 3.9553 3.9553

12+1 → 10+1 3.5097 3.5097 3.5097 3.7132 3.7132 3.7132 3.8617 3.8617 3.8617

14+1 → 12+1 3.3129 3.3129 3.3129 3.5411 3.5411 3.5411 3.7125 3.7125 3.7125

16+1 → 14+1 3.0619 3.0619 3.0619 3.3181 3.3181 3.3181 3.5159 3.5159 3.5159

18+1 → 16+1 2.7608 2.7608 2.7608 3.0487 3.0487 3.0487 3.2762 3.2762 3.2762

20+1 → 18+1 2.4124 2.4124 2.4124 2.7355 0.7355 2.7355 2.9962 2.9962 2.9962

22+1 → 20+1 2.0180 2.0180 2.0180 2.3800 2.3800 2.3800 2.6776 2.6776 2.6776

24+1 → 22+1 1.5790 1.5790 1.5790 1.9835 1.9835 1.9835 2.3214 2.3214 2.3214

26+1 → 24+1 1.0960 1.0960 1.0960 1.5468 1.5468 1.5468 1.9286 1.9286 1.9286

28+1 → 26+1 0.5695 0.5695 0.5695 1.0704 1.0704 1.0704 1.4997 1.4997 1.4997

30+1 → 28+1 – – – 0.5547 0.5547 0.5547 1.0351 1.0351 1.0351

2+2 → 0+1 0.0010 0.0020 0.0002 0.0011 0.0002 0.0002 0.0012 0.0002 0.0002

2+2 → 2+1 0.0015 0.0002 0.0002 0.0017 0.0003 0.0003 0.0019 0.0003 0.0003

2+2 → 4+1 0.0001 0.0005 0.0005 0.0001 0.0006 0.0006 0.0001 0.0006 0.0006

2+2 → 0+2 0.0175 1.9464 1.9468 0.0162 2.0447 2.0451 0.0147 2.1164 2.1166

4+2 → 2+2 1.1262 2.7424 2.7438 1.1857 2.8863 2.8874 1.2292 2.9919 2.9929

2+3 → 4+1 0.0005 0.0001 0.0001 0.0006 0.0001 0.0001 0.0006 0.0001 0.0001

2+3 → 2+1 0.0002 0.0015 0.0015 0.0003 0.0017 0.0017 0.0003 0.0018 0.0019

3+1 → 4+1 0.0009 0.0009 0.0009 0.0010 0.0009 0.0009 0.0010 0.0010 0.0010

3+1 → 2+1 0.0017 0.0017 0.0017 0.0019 0.0019 0.0019 0.0021 0.0021 0.0021

3+1 → 2+2 3.4285 0.0278 0.0272 3.6016 0.0250 0.0245 3.7278 0.0220 0.0217

3.3. Potential Energy Surface
Starting from the classical limit of Hamiltonian,

the Potential Energy Surfaces (PESs) as a function
of two deformation parameters β and γ have been
written [31]:

E(βγ) =
NB

1 + β2

(
g1 + g2β

2
)
+

NB(NB − 1)

(1 + β2)2
(13)

× (g3β
4 + g4β

3 cos 3γ + g5β
2 + g6),

where NB represents the total number of bosons and
gi(i = 1 to 6) are the linear combinations of the model

Hamiltonian parameters. With the triaxiality, the
relation turns into:

E(βγ) =
NB

1 + β2

(
g1 + g2β

2
)
+

NB(NB − 1)

(1 + β2)2
(14)

× (g3β
4 + g4β

3 cos 3γ + g5β
2 + g6)

+
NB(NB − 1)(NB − 2)

(1 + β2)3
(g7β

6 + g8β
6 cos2 3γ).

The deformation parameter γ is marking the orien-
tation of nuclear shape while β is related to Bohr
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Table 4. The calculated B(E2) values in e2b2 unit, the available experimental data [48] of B(E2; 2+1 → 0+1 ) equal to
2.6874(134), 2.7159(271) for 242,244Pu isotopes respectively

Transition 242Pu 244Pu 246Pu

J+
i → J+

f IBM IBMC IBMCQ IBM IBMC IBMCQ IBM IBMC IBMCQ

2+1 → 0+1 2.3975 2.3975 2.3975 2.4827 0.4827 2.4827 2.5374 2.5374 2.5374

2+1 → 0+1 2.6589 2.6589 2.6589 2.7083 0.7083 2.7083 2.7308 2.7308 2.7308

4+1 → 2+1 3.7682 3.7682 3.7682 3.8415 3.8415 3.8415 3.8761 3.8761 3.8761

6+1 → 4+1 4.0905 4.0905 4.0905 4.1764 4.1764 4.1764 4.2195 4.2195 4.2195

8+1 → 6+1 4.1914 4.1914 4.1914 4.2892 4.2892 4.2892 4.3419 4.3419 4.3406

10+1 → 8+1 4.1835 4.1835 4.1835 4.2946 4.2946 4.2946 4.3589 4.3589 4.3590

12+1 → 10+1 4.1049 4.1049 4.1049 4.2313 4.2313 4.2313 4.3094 4.3094 4.3055

14+1 → 12+1 3.9720 3.9720 3.9720 4.1161 4.1161 4.1161 4.2106 4.2106 4.2106

16+1 → 14+1 3.7933 3.7933 3.7933 3.9576 3.9576 3.9576 4.0709 4.0709 4.0709

18+1 → 16+1 3.5734 3.5734 3.5734 3.7604 3.7604 3.7604 3.8952 3.8952 3.8953

20+1 → 18+1 3.3151 3.3151 3.3151 3.5276 3.5276 3.5276 3.6864 3.6864 3.6864

22+1 → 20+1 3.0203 3.0203 3.0203 3.2608 3.2608 3.2608 3.4463 3.4463 3.4463

24+1 → 22+1 2.6901 2.6901 2.6900 2.9614 2.9614 2.9614 3.1761 3.1761 3.1761

26+1 → 24+1 2.3253 2.3253 2.3253 2.6302 2.6302 2.6302 2.8767 2.8767 2.8767

28+1 → 26+1 1.9266 1.9266 1.9266 2.2677 2.2677 2.2677 2.5488 2.5488 2.5488

30+1 → 28+1 1.4945 1.4945 1.4945 1.8745 1.8745 1.8745 2.1927 2.1927 2.1927

2+2 → 0+1 0.0009 0.0001 0.0001 0.0008 0.0001 0.0001 0.0007 0.0001 0.0001

2+2 → 2+1 0.0014 0.0002 0.0002 0.0013 0.0002 0.0002 0.0011 0.0002 0.0002

2+2 → 4+1 0.0001 0.0005 0.0005 0.0001 0.0004 0.0004 0.0001 0.0004 0.0004

2+2 → 0+2 0.0134 2.2399 2.2402 0.0130 2.3031 2.3033 0.0125 2.3417 2.3419

4+2 → 2+2 1.3056 3.1705 3.1713 1.3460 3.2632 3.2639 1.3716 3.3208 3.3214

2+3 → 4+1 0.0005 0.0001 0.0001 0.0004 0.0001 0.0001 0.0004 0.0001 0.0001

2+3 → 2+1 0.0002 0.0014 0.0014 0.0002 0.0012 0.0012 0.0002 0.0011 0.0011

3+1 → 4+1 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0006 0.0006 0.0006

3+1 → 2+1 0.0016 0.0016 0.0016 0.0014 0.0014 0.0014 0.0013 0.0012 0.0013

3+1 → 2+2 3.9552 0.0203 0.0202 4.0696 0.0183 0.0182 4.1406 0.0166 0.0166

Collective Model (BCM) as [59]:

βIBM =
A

2.36N
βBCM, (15)

where A, N are the mass number and neutrons num-
ber. A rotational symmetry has a sharp minimum at
γ = 0 and β =

√
2, this can be achieved by minimiz-

ing Eq. (13) [27].

The rotational Hamiltonian can produce a classi-

cal limit of SU (3) dynamical symmetry [26, 29, 30]:

ESU(3)(β, γ) = a2

[
N

1 + β2

[
5 +

11

4
β4

]
(16)

+
N (N − 1)

(1 + β2)2

[
β4

2
+ 2

√
2β3 cos 3γ + 4β2

] ]

+ a1
6Nβ2

1 + β2
.

By adding the cubic term to the Hamiltonian of
SU (3) dynamical symmetry, the nucleus can have
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Fig. 2. Essential values of B(E2) as a function of grand-band level for 236−246Pu.
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Fig. 3. Branching ratio calculation Bβ (a) and Bγ(b) as function of neutron number for 236−346Pu.

transformed in its equilibrium shapes from axial to
triaxial [30]:

ESU(3)C(βγ) = ESU(3)(βγ) (17)

+
θ3
7
N(N − 1)(N − 2)

β6

(1 + β2)3
(−1 + cos2 3γ).

It has been shown from the potential energy given
in Eq. (16), that there are no explicitly appearing
triaxial effects without included cubic d-boson term
[30]. To get these effects, only the (L = 3) term was
chosen. We should point out, that potential energy
with SU(3) limit is γ-dependent this resides only in
cos 3γ term. From Figs. 4, 5 we can see the depen-
dence of PESs on the β and γ deformation parameters
in which β ranges from 0 to 3 and γ is customary to
take 0◦ to 60◦. Additionally, the basic topology of the
energy surface can be determined with and without
cubic term. Note that a sign of the cos3γ term in
Eq. (16) is related to the value of χ in Eq. (7), thus if
χ < 0 it becomes a negative term, the consequence is
a prolate minimum. Whereas an oblate minimum oc-
curs when χ > 0 [29]. Incidentally, Figs. 4, 5 show an

example of prolate-shape nuclei, this always be desir-
able for several reasons; the deep minima in PESs as
obtained with the IBM computations for 236Pu up to
236Pu are equal to (Emin = −5.213, –4.992, –4.101,
−3.749, –3.720, –4.089) in succession and all these
values of PESs correspond to just β = 1.5 and γ =
0◦. Moreover, it has the maxima in PESs Emax =
(−0.333, –0.257, –0.106, 0.055, 0.085, 0.175) but
these values correspond to just β = 3 and γ = 45◦.
This is illustrated in the first rows of Figs. 4, 5.

It is perhaps a matter that requires some con-
sideration and attention, in which the minimum and
maximum PESs values with their β − γ space indi-
cate that all the considered Plutonium isotopes have
axially symmetric shapes. To obtain a complete
picture of the potential energy surfaces for Pu iso-
topes, a cubic term of three-boson interactions has
been added. The plots on the second rows of Figs. 4,
5 illustrate the alters of the potential energy surfaces
when including the cubic interactions, we must note
that the deep minima of PESs for 236−246Pu isotopes
described above was without cubic term. It will be
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Fig. 5. As in Fig. 4 but for 242−246Pu.

after having this term, Emin = (−4.42, –4.55, –3.06,
–2.58, –2.35, –2.5), respectively, in conformity with
β = 1 and also 0◦ < γ < 15◦.

These contours have the minimum potential en-
ergy followed by other contours’ line with their ener-

gies which gradually increasing. A rising in the max-
imum potential energies surface has been observed as
a result of cubic interactions, these energies (Emax =
2.838, 4.6, 4.77, 5.97, 7.19, 8.16) are also increasing
as a function of the mass number, these maximum
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Fig. 6. (Color online) Inspection of the prolet–oblete transition for the potential energy of 236,238Pu isotopes: (a, c) with θ3 = 0,
(b, d) with θ3 = −0.004.
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Fig. 7. As in Fig. 6, but for 240,242Pu.

values seem to correspond to similar β and γ space of
the maximum without cubic interactions (axial case)
mentioned earlier. If we think more about the bold
contour which is labeled by the minimum value and
the other contours behind it in the second rows of
Figs. 4, 5 we find it narrower compared to those con-

tours in the first. It can be observed from the second
row of Fig. 5 that there is a widening in the sharpness
of a black contour line labeled by the value (–2.575)
with increasing the mass number. However, it is been
necessary to say that the breakdown of contour lines
is due to the highly dependent term proportional to
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Fig. 8. As in Fig. 6, but for 244,246Pu.

cos23γ. An important implication of this tendency is
that it enhances the role of three-boson interactions
in inducing the appearance of stable triaxial shapes
on the PESs of the Plutonium chain. We think that
an increase in the potential energy surface will make
the Plutonium isotopes more stable and therefore
improve the importance of having triaxial interactions
together with that axial intrinsic in the nuclei.

In order to show the effect of the cubic term on
potential energy values with different values of χ the
PES values have been calculated with 0 � γ0 � 60
and −1 � χ � +1. The results are summarized in
Figs. 6–8. The figures show that there have been
gradual changes in the shape of the nucleus and its
potential form. In this investigation the one parameter
of significance is a2 in the Q operator (Eqs. (7) and
(10) [59–61]. The values of χ were selected to repre-
sent SU(3) prolate with (χ = −1) passing through
an O(6) (χ = 0) to SU(3) oblate with (χ = +1). In
the first rows of Figs. 6–8 we see that the potential
with θ3 = 0 is γ-dependent at (χ = −1, –0.5, –0.2,
+0.2, +0.5, +1) but is not at (χ = 0). In contrast, we
can see in the second rows that the values of PES at
(χ = 0) are γ-dependent, this is due to the three-body
interactions (θ3 = −0.004).

4. CONCLUSIONS

To summarize, we have calculated the spectra and
E2 transition probabilities of Pu nuclei in the frame of
IBM-1 plus cubic and quadruple terms. The obtained

results have shown that it is instructive to introduce
these terms into IBM, thus such interaction terms
giving a new expansion and features to the model
in some aspects. The 236−246Pu isotopes are axially
symmetric at low angular momentum but at high
angular momentum, they have been found in triax-
ial shapes. Finally, to describe the structure of the
triaxial nuclei, we should consider much of the cubic
terms.
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