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Renewable energy systems, particularly in countries with limited fossil fuel

resources, are promising and environmentally sustainable sources of

electricity generation. Wind, solar Photovoltaic (PV), and biomass gasifier-

based systems have gotten much attention recently for providing electricity

to energy-deficient areas. However, due to the intermittent nature of renewable

energy, a completely renewable system is unreliable and may cause operation

problems. Energy storage systems and volatile generation sources are the best

way to combat the problem. This paper proposes a hybrid grid-connected

wind-solar PV generation Microgrid (MG) with biomass and energy storage

devices to meet the entire value of load demand for the adopted buildings in an

intended region and ensure economic dispatch as well as make a trade in the

electricity field by supplying/receiving energy to/from the utility grid. The

control operation plan uses battery storage units to compensate energy gap

if the priority resources (wind turbine and solar PV) are incapable of meeting

demand. Additionally, the biomass gasifier is used as a fallback option if the

batteries fail to perform their duty. At any time, any excess of energy can be

utilized to charge the batteries and sell the rest to the utility. Additionally, if the

adopted resources are insufficient to meet the demand, the required energy is

acquired from the utility. A Hybrid Grey Wolf with Cuckoo Search Optimization

(GWCSO) algorithm is adopted for achieving optimal sizing of the proposed

grid-connectedMG. To assess the proposed technique’s robustness, the results

are compared to those obtained using the Grey Wolf Optimization (GWO)

algorithm. The GWCSO method yielded a lower total number of component

units, annual cost, total Net Present Cost (NPC), and Levelized Cost Of Energy

(LCOE) than the GWO algorithm, whereas the GWCSO algorithm has the lowest

deviation, indicating that it is more accurate and robust than the GWO

algorithm.
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1 Introduction

Renewable-based hybrid energy systems have gained traction

recently as environmental concerns, energy demand, fuel prices,

and fossil fuel depletion have increased (Alhasnawi et al., 2021a;

Alhasnawi et al., 2021b; Alhasnawi et al., 2021c). Increased

energy consumption by a specific region’s buildings and

households during peak demand necessitates the operation of

extra generation units, which consumes a lot of fuel and raises the

cost of electricity. Because wind and solar energy have relatively

low marginal costs (fuel is not required), increasing the supply of

renewable energy tends to decrease the average price per unit of

electrical energy. Thus, renewable energy substantially reduces

the overall amount of expensive electricity to fulfil the load’s

energy and ensure “economic dispatch”. In a renewable energy-

based system, it is critical to integrate wind energy with solar PV

because solar energy cannot be adopted at night or in cloudy

conditions, whereas wind energy can be used even at night. In

addition, wind energy is more efficient than solar energy. Wind

turbines emit a lower amount of carbon dioxide into the

atmosphere. Many studies have been done to determine

whether wind-powered systems are viable and how large they

should be to maximize their efficiency (Abouzahr and

Ramakumar, 1990; Elhadidy and Shaahid, 1999; Elhadidy and

Shaahid, 2004).

The major disadvantages of solar energy are its stochastic

nature, which raises concerns about the user’s power reliability.

As a result, the hybridization of wind and solar energy is a viable

option for increasing reliability (the strength of another can

compensate for weakness). However, it adds to the complexity of

the system (Yang et al., 2008). Due to the unpredictable nature of

both wind and solar resources, a standalone solar-wind energy

system is limited in its ability to operate without the use of

backup power. In the case of an autonomous hybrid system,

backup is typically provided by a diesel generator or energy

storage devices such as batteries or ultra-capacitors. Using a

diesel generator in a hybrid system increases both the cost and

the environmental impact. Fortunately, as technology advances,

other renewable energy sources such as biogas, biomass, micro-

hydro, and fuel cells have been integrated alongside solar and

wind energy (Patil et al., 2010). Among the renewable energy

sources mentioned previously, biomass appears to be the more

viable option, particularly in agriculturally rich countries.

Biomass can be converted into a variety of different products,

including heat, electricity, and biofuels (Singh et al., 2008). Due to

advancements in biomass gasification technology, biomass

gasifier-generated electricity is gaining popularity, particularly

in rural areas. Biomass power plants have a high load factor and

are economically viable (Patil et al., 2011).

According to an earlier discussion, grid-connected and

standalone MG adopting wind-PV-biomass for electricity

generation, with or without storage devices, is a viable and

cost-effective option, especially in developing countries

(Bhattacharjee and Dey, 2014; Singh and Kaushik, 2016a). As

a result, using renewable energy sources to generate electricity in

MG system can allow for grid reconnection in the event of

inadequate energy and also provide extra energy to the utility. In

the case of hybrid systems, various factors such as the system’s

total cost or the size and capacity of renewable energy sources

play a significant role. Sizing determines the MG’s resource

coordination, proper system configuration, and the

component’s capacity to meet the load demand. In the

interim, optimization is necessary to ensure that the system

operates more efficiently, maximizing economic benefit while

minimizing energy consumption, pollutants, and other

objectives. Sizing and optimization are interdependent and

mutually supportive. This is essential for resolving oversizing

and under sizing issues to improve supply reliability. Two critical

parameters, the cost of generating energy and the system’s

reliability, present significant challenges in hybrid systems. A

well-designed system should make the best component selection

possible while still ensuring the system’s reliability (Nehrir et al.,

2011).

There is little existing literature incorporating wind, PV, and

biomass hybrid MG systems with energy storage. The authors in

(Akram et al., 2018) proposed two constraint-based iterative

search algorithms for optimal sizing of wind turbines, solar PV,

and battery energy storage systems in a grid-connected MG. The

first algorithm, called source sizing, determines optimal

Renewable Energy Resource (RER) sizes, while the second,

called battery sizing, determines optimal Battery Energy

Storage System (BESS) capacity. Borowy and Salameh (1996)

introduced the Loss of Load Probability (LLP) concept for sizing

a battery bank and a PV array in a hybrid wind and PV system by

building the curve representing the relationship between PV

modules and batteries reduces the system cost. Kaabeche et al.

(2011) used iterative optimization to follow the Deficiency of

Power Supply Probability (DPSP) and the Levelised Cost of

Energy (LCE). Belmili et al. (2014) used Loss of Power Supply

Probability (LPSP) technique to develop a techno-economic

algorithm able to determine the system that would guarantee

a reliable energy supply with the least investment. Nacer et al.

(2015) described a novel approach for sizing grid-connected

hybrid renewable energy systems that include photovoltaic

and wind turbines but do not include storage devices or

biomass gasifiers. The hybrid system is used to generate

environmentally friendly self-consumed energy. Unmet load

demand is purchased from the grid, ensuring the system’s

reliability at all times. Unlike standalone systems, surplus

energy is injected into the grid at a prime rate determined by

local policy, reducing the grid-connected system’s cost. Singh and

Kaushik (2016b) investigated the sizing problem for grid-

connected and off-grid photovoltaic/biomass hybrid systems.

The results indicate that grid-connected systems outperform

off-grid systems. Wang and Xu Wang et al. (2018)

determined the optimal size for a grid-connected
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photovoltaic/wind/battery hybrid system. The results indicate

that grid connectivity is economically advantageous. Abushnaf

and Rassau (2018) determined the optimal size of a grid-

connected photovoltaic/battery hybrid system and selected a

number of photovoltaic panels, batteries, and inverters as

decision variables. Cingoz and Sozer Badawy et al. (2016)

pinpointed battery storage sizing for a grid-connected

photovoltaic/battery hybrid system for various scenarios and

the optimal size was derived for each scenario. The optimal

size for a PV/wind/battery hybrid system was set in (Nadjemi

et al., 2017), and the results indicate that the cost of the system is

significantly influenced by the initial cost of the PV and the

selling price of renewable electricity. Zhang et al. (2017) explored

the sizing and operation of a photovoltaic/battery hybrid system.

The results indicate that battery usage is not advantageous with

commonly used operation methods. Using the Genetic

Algorithm (GA) and Particle Swarm Optimization (PSO)

algorithms presented in (Gonzalez et al., 2015), a grid-

connected solar PV and wind turbine system has been

designed. The results indicated that feeding the load demand

could minimize the energy cost. Using the algorithms of GA,

firefly algorithm, and GWO, (Biswas and Kumar, 2017),

presented a techno-economic analysis of a standalone hybrid

system incorporating hybrid pumped and battery energy storage

with PV. Considering the case study for feeding a low load, the

GWO is capable of minimizing the energy cost of the system. GA

has been used to optimize the design of a hybrid energy system

for minimizing environmental impacts in an agricultural case

study (Kaab et al., 2019) to increase energy-use efficiency.

9ndividual optimization algorithms are used to size and

optimize the energy systems to reduce costs (Ahmed et al.,

2022). In this article, a PV plant with fuel cell (FC) and

battery storage devices has been configured as a standalone

MG to supply a nuclear power plant emergency loads. This

paper applies and compares the optimization algorithms of bat

optimization (BAT), equilibrium optimizer (EQ), and black-

hole-based optimization (BHB). The authors of reference

(Kyriakarakos et al., 2015) discussed the design and research

of decentralized systems for energy management for an

autonomous polygeneration MG in a remote area. This was

designed to meet the needs of a remote area, such as

providing electricity, heating and cooling for buildings, and

drinkable water. With the decentralized energy-management

system, each component of the MG can be controlled

individually. The system design was based on a multi-agent

scheme and was implemented using Fuzzy Cognitive Maps. In

order to model the strategy exchange between two players/agents

as a non-cooperative power management game or a cooperative

one, depending on the level of the energy generated by the

renewable electricity sources and the energy stored in the

battery bank, the energy management problem was

formulated through the application of game theory (Karavas

et al., 2017). This was done to achieve optimal energy controlling

and managing of the MG operation.

Unlike the above studies, the current work proposed a new

energy management system with GWCSO algorithm to optimize

the size of a grid-connected biomass/photovoltaic/wind/energy

storage device hybrid AC/DC MG. To the authors’ knowledge,

the optimal sizing of such a hybrid system and algorithm has not

been considered in the prior literature. Along with size

optimization, this article introduces two new indices for

determining power exchange between the hybrid system and

the grid: selling and purchasing energy. The contributions of this

paper are pointed as:

1. This study proposes a new hybrid gridconnected MG system

that includes a photovoltaic, wind, and biomass energy system

equipped with a battery bank to provide reliable power to on-

grid areas. The mathematical modeling of the proposed

system’s various components and operational processes

have been discussed in depth.

2. The optimal sizing of a grid-connected hybrid AC/DC MG

using wind, photovoltaic, and gasifier energy sources with

battery storage has been analyzed and the energy exchange of

the proposed MG with the utility grid has been optimally

achievedThis study uses the adopted GWCSO. This algorithm

has been adopted to determine the size of the optimal

components for the proposed system with the lowest

annual cost, LCOE and minimizing the system’s NPC. To

the best of our knowledge, the sizing of solar PV, wind turbine,

storage batteries as well as biomass gasifier units have not been

extracted previously by combining GWO and CS in a grid-

connected MG.

3. The cost analysis results using the adopted GWCSO algorithm

have been compared to those obtained using the GWO

algorithm to determine the most cost-effective algorithm.

4. This study provides an illustration of the techno-economic

and environmental consequences of grid-connected hybrid

systems at various integration levels by optimally reducing the

total number of used components and giving priority to

renewable energy units to meet power demands, making it

easier for investors to select the most appropriate system for

their investment objectives.

5. The weather data for Basrah city in Iraq have been adopted in

cost analysis and for meeting virtual load demand by weather-

based renewable units by adopting both GWCSO and GWO

algorithms.

The organization of this paper is divided up into five sections.

Section 2 discusses the mathematical modeling of the various

components. Section 3 provides a formulation of the problem, an

operational strategy, and a brief introduction to the adopted

algorithm. In Section 4, the simulation results are illustrated.

Section 6 concludes the paper.
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2 Proposed system mathematical
modeling

This work focuses on developing a hybrid system capable of

meeting the demand profile for Residential Loads (RL),

Commercial Loads (CL), and Industrial Loads (IL) by

supplying reliable power to the grid-connected area. The

proposed microgrid’s various components are depicted in

Figure 1.

As illustrated in Figure 1, the AC bus connects the AC loads,

wind turbines, and biomass gasifiers. Solar PV panels and

batteries are connected to the AC bus via the bidirectional

converter. Additionally, a charge controller is used to ensure

the smooth flow of power and to regulate the charging and

discharging rates of the batteries. The proposed system will aid in

reducing reliance on the utility grid through the use of renewable

energy sources. The storage devices are used to manage the

energy generated by wind, solar, and biomass. The battery banks

are adopted here to optimize power distribution, which reduces

the intermittency of renewable energy sources. In addition to the

energy management strategy, the system under this work focuses

on the optimal sizing of each component while maintaining the

system’s reliability. The following subsections discuss the

mathematical models for various components.

2.1 Solar photovoltaic panel

According to (Ahmad and Enayatzare, 2018; Ramli et al.,

2018), the following equation incorporates all important

FIGURE 1
The proposed grid connected MG.
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parameters that influence the PV output, such as temperature

and solar radiation. The power output of a solar photovoltaic

(Psol(t)) panel can be expressed as,

Psol(t) � Pnom
PV

G
Gref

[1 + K(Tamb + (NOCT − 20
800

G) − Tref)]
(1)

In this equation, Pnom
PV denotes the nominal power of PV under

standard test conditions, G denotes solar radiation (watts per

square meter), Gref = 1 kW/m2 denotes reference solar radiation,

and K is the coefficient of power at different temperatures.

Tambstands for ambient temperature, NOCT is the nominal

operation temperature, while Tref = 25°C is the reference

temperature under standard conditions.

2.2 Wind turbine power generation

The amount of energy produced by a wind turbine (PWT(t))
can be calculated as follows:

PWT(t) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 V(t)≤Vcin and V(t)≥Vcout

PW
r Vrat ≤V(t)≤Vcout

PW
r

V(t) − Vcin

Vrat − Vcin
Vcin ≤V(t)≤Vrat

(2)

where PW
r denotes the rating of a single wind turbine, Vcin

represents the cut-in speed, Vrat denotes the rated wind

speed, Vcout acts the cut-out speed, and V(t) denotes the

desired reference height wind speed. Wind speed at hub

height varies according to site and geographical location and

is not identical to reference height. Additionally, it is

expressed as,

V(t) � Vr(t)(HWT

Hr
)λ

(3)

where V(t) represents the wind speed at height (HWT), Vr(t)
represents the wind speed at the reference height Hr, and λ

denotes the friction coefficient. The friction coefficient λ is

typically 1/7 for smooth surfaces and well-exposed locations

(Malheiro et al., 2015; Wu et al., 2015; Singh et al., 2016).

2.3 Biomass gasifier

Biomass gasification technology converts solid bio-residue

into a gaseous fuel that is then used to generate electricity. The

producer gas is produced during partial combustion and is a

combustible gas composed of H2 (20%), CO (20%), CH4

(1–2%), and inert gases. The producer gas is used as an

input fuel in the case of a biomass gasifier. The annual

electricity output (Ebmg) of a biomass gasifier can be

calculated as follows:

Ebmg � Pbmg(8760 ∗ CUF) (4)

wherePbmg denotes the system’s rating power and CUF denotes

the capacity utilization factor. In the case of a biomass-based

energy system, a few parameters such as the calorific value of the

biomass, its availability (Tonyr ), and the hours of operation of the

biomass gasifier all play a significant role. The maximum rating

for a biomass gasifier installed in a specific area is as follows:

Pm
bmg �

Total biomass avialable(Ton
yr ) ∗ 1000 ∗ CVbm ∗ ηbmg

365 ∗ 860 ∗ operating hours/day
(5)

where ηbmgdenotes the overall efficiency of biomass to electricity

conversion and CVbmdenotes the calorific value of the biomass

(Nouni et al., 2007; Gupta et al., 2010; Singh et al., 2016).

2.4 Battery bank

Batteries can be used in hybrid renewable energy systems to

store excess energy and to discharge it when renewable energy

sources are unavailable or insufficient. Energy measurement is

possible with the proper estimation of the state of charge (SOC).

The SOC of a battery is a function of time and can be calculated as

follows (Singh et al., 2016):

SOC(t)
SOC(t − 1) � ∫T

T−1
Pb(t)ηbatt

Vbus
dt (6)

where Vbusis the bus voltage, Pb(t) is the battery’s input/output
power, and ηbattis the battery’s round trip efficiency. If Pb(t)is
positive, the battery is charging; if it is negative, the battery is

discharging. Additionally, a battery’s round-trip efficiency is

defined as follows:

ηbatt �
�������
ηcbattη

d
batt

√
(7)

where ηcbatt and ηdbatt denote the battery’s charging and

discharging efficiency, respectively (Nouni et al., 2007;

National Renewable Energy Laboratory, 2022). The battery

bank’s round-trip efficiency is estimated to be 92 percent.

Additionally, charging and discharging efficiencies are

assumed to differ, at 85 percent and 100 percent, respectively.

SOCmax is the maximum state of charge and is equal to the

battery bank’s aggregate capacity (Cn). It is expressed as follows:

Cn(Ah) � Nbatt

Ns
batt

Cb(Ah) (8)

where Cb denotes the capacity of a single battery, Nbattdenotes

the total number of batteries, and Ns
batt denotes the number of

series-connected batteries. The battery bank cannot be

discharged below a specified minimum state of charge,

referred to as SOCmin. This limit can be used as a system

constraint depending on the battery bank’s usage.
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Batteries are connected in series to achieve the desired bus

voltage. The series connection of batteries can be calculated as,

Ns
batt �

Vbus

Vbatt
(9)

where Vbattis the single battery’s voltage.

Another critical factor to consider when modeling batteries is

the highest (maximum) charge or discharge power available at

any given time. It is proportional to the maximum charge current

and is calculated using the following equation:

Pb
max � NbattVbattI max

1000
(10)

where I maxdenotes the maximum charging current of the battery

in amps.

2.5 Power converter

A power converter must be used if there are both AC and DC

elements in the system. Solar PV and batteries produce DC

output, whereas the considered load is AC. The size of the

converter is determined by the peak power of demand

(Pm
L (t)). The inverter rating (Pinv(t)) is figured out as shown

in Eq. 1 (Singh et al., 2016).

Pinv(t) � Pm
L (t)
ηinv

(11)

where ηinvstands for the efficiency of the inverter.

3 Problem formulation

This research developed a grid-connected hybrid energy

system with both cost-effectiveness and reliability in

operation. The rating and sizing of solar PV panels, wind

turbines, battery banks, and biomass gasifiers are among the

most important decision factors. The operational strategy of the

system, the objective function and constraints, and a brief

introduction to the algorithm, that has been used, are all

discussed in this section.

3.1 Operational strategy

It is necessary to have proper power management in any hybrid

energy system in order to achieve system reliability. In this system,

the biomass gasifier is kept at the bottom of the priority list, which

means that it is only activated when solar, wind, and batteries are

unable to meet the load demand. The system’s operating strategy is

depicted in the flow chart below (Figure 2). The steps of the

proposed operation strategy are illustrated as follows:

1. Input weather and load data.

2. Modeling of solar, wind, inverter, battery and gasifier.

3. Check to see if solar and wind energy are sufficient to meet the

electricity demand.

4. If yes, solar and wind energy will be used to meet the load, and

any excess energy will be used to charge the batteries.

3.1.1 Charging function
5. Determine how much extra energy is available for charging.

6. Check to see if all of the energy can really be stored in the

battery; if so, store what is available in the battery.

7. Otherwise, sell the excess energy to the grid after charging the

batteries.

3.1.2 Discharging function
8. The total amount of energyis required to meet load demand

that cannot be met through solar or wind.

9. Determine whether the battery alone can meet the load

demand.

10. If the answer is yes, discharge the battery to meet the load

demand.

11. Else, determine whether a gasifier operating independently

of the grid can meet the load.

12. The gasifier is responsible for meeting the insufficient load.

13. Else take power from the grid to make up for the shortfall.

3.2 Constraints and objective functions

This study minimizes the proposed hybrid system’s total

NPC while maintaining an optimal energy flow. For optimal

configuration, four major decision factors were chosen: the

number of wind turbines, solar photovoltaic panels, batteries,

and biomass gasifier rating. Economic analysis is conducted

using the system Annualized Cost (ANC), NPC, and LCOE

concepts. When all other constraints and parameters are

satisfied, the solution with the lowest values of them is

evidenced to be the optimal one. The objective function of

the total system cost contains of three components: (i)

replacement cost, (ii) total capital cost, and (iii) operational

and maintenance cost. Installation and civil works costs are

included in the component’s capital costs. The following

function is taken as the primary objective function that must

be minimized within specified constraints (Singh et al., 2016):

Minimize ANC

ANC � F(NsolCsol + NWTCWT + NbattCbatt + PinvCinv

+ PbmgCbmg) (12)

Where CWT, Csol, Cinv andCbattare the cost of wind turbine (per

kW), solar PV panel (per kW), inverter (per kW) and battery (per

unit) respectively. The cost of the biomass gasifier (per kW) is

Frontiers in Energy Research frontiersin.org06

Jasim et al. 10.3389/fenrg.2022.960141

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.960141


denoted byCbmg, and the rating of the biomass gasifier is denoted

by Pbmg. Pinv is the inverter’s rating.NWT, Nsol andNbatt are the

total units number of wind turbines, solar PV panel and batteries.

The capital and installation costs (Cci), replacement costs

(Cr), annual maintenance costs (Cm), operation costs (Cf), and

salvage costs (Cs)are all included in the ANC of the installed

component. Additionally, the total ANC value for each

component can be expressed as follows:

Csol � Cci
sol + Cr

sol + Cm
sol − Cs

sol (13)
Cwind � Cci

WT + Cr
WT + Cm

WT − Cs
WT (14)

Cbatt � Cci
batt + Cr

batt + Cm
batt − Cs

batt (15)
Cinv � Cci

inv + Cr
inv + Cm

inv − Cs
inv (16)

Cbmg � Cci
bmg + Cr

bmg + Cm
bmg − Cs

bmg (17)

With the help of a factor known as the Capacity Recovery Factor

(CRF), it is possible to calculate the annualized cost of any

component. The CRF (Eq. 18) can be used to compute the

present value of money:

CRF(N , i) � i(1 + i)N
(1 + i)N − 1

(18)

whereN is the number of years in the lifetime and i is the yearly

interest rate. The objective function is minimized while enforcing

a number of constraints, which can be summarized as follows:

1≤Nsol ≤Nm
sol (19)

1≤NWT ≤Nm
WT (20)

1≤Pbmg ≤Pm
bmg (21)

1≤Nbatt ≤Nm
batt (22)

SOC min ≤ SOC ≤ SOC max (23)
The maximum number of solar PV panels is represented byNm

sol,

the maximum number of batteries is represented by Nm
batt, the

maximum number of wind turbines is represented by Nm
WT, and

the maximum rating of biomass gasifier is represented by Pm
bmg.

The most cost-effective and reliable configuration is chosen

based on the LCOE and reliability. The LCOE is defined as the

average price per kWh of useful energy generated by the system:

FIGURE 2
The operating strategy flow chart of the proposed system.
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TABLE 1 Technical and economic specifications of the proposed system components.

No. Component name Parameter Value

1 Wind turbine Rated power 1 kW

Height 50 m

The reference height at which meteorological data is taken 20 m

Min. wind speed for power generation 2 m/s

Cutout speed 40 m/s

Rated speed 9 m/s

Capital cost/kW 2300$

Replacement cost/kW 1500$

Operation and maintenance cost/kW 2$/year

Life time 20 years

2 Solar PV Rated power 1 kW

Derating factor (f loss) 88%

Capital cost (per kW) 1200$

Replacement cost (per kW) 1200$

O & M cost (per kW) 4$/year

Life time 20 years

3 Battery Nominal voltage 6 V

Max charging current 18 A

Minimum state of charge 30%

Maximum state of charge 100%

Round trip efficiency 92%

Capital cost (per unit battery) 167 $

Replacement cost (per unit) 67 $

O & M cost (per unit) 1.67 $/yar

Life time 5 years

Nominal capacity 41 Ah

O & M cost (per kW) 1

4 Biomass Gasifier Calorific value of biomass 18 MJ/kg

Conversion efficiency 21%

Capital cost (per kW) 2300 $/kW

Replacement cost (per kW) 1500 $/kW

O & M cost (per kW) 2 $/year

Life time 15,000 h

Rated power 115 kW

5 Inverter Rated power 100 kW

Efficiency 95%

Inverter cost 127

Replacement cost 127

Operation and maintenance cost 1

Life time 20 years

6 Other Interest rate (i) 6%

Project Life 20 years

Bus voltage (DC) 120V
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LCOE � ANC( $
Year)

Total usef ul energy served(kWh
Year) (24)

Table 1 shows all the technical and economic parameters

associated with the components used in the proposed MG.

Several papers were considered during for the purpose of

parametrization, while the most proper were selected (Shakti

et al., 2016; Karavas et al., 2019).

3.3 Hybrid grey wolf optimization and
cuckoo search algorithm

3.3.1 Overview
Recently, hybridizing two or more algorithms has gained

popularity as a method of identifying superior solutions to

optimization problems. The incorporation into hybrid

optimized algorithms of many well-known optimization

techniques has made them more efficient in dealing with the

issues.

The GWO algorithm simulates the hunting mechanism and

leadership hierarchy of grey wolves. Grey wolves typically live in

groups in the wild. The group consists of four distinct species of

wolves. The group’s leader wolf is referred to as alpha (α), and it is
located at the top of the pyramid. While the alpha may not be the

strongest wolf in the pack, it must be the best leader. It is in

charge of making critical group decisions, such as predation

behavior and food distribution. Beta (β) is located on the second

floor of the pyramid and serves as an alpha assistant, assisting

alpha in managing the group. It needs only respect the alpha to be

able to command others. The third level wolf is delta (δ), which
must follow alpha and beta’s instructions. When alpha and beta

reach the end of their useful lives, they are downgraded to delta.

The base of the pyramid is referred to as omega (ω). Omega must

submit to the rest of the group (Karavas et al., 2019 and

Mahmoud et al., 2020).

GWO and cuckoo search (CS) are two popular meta-

heuristic algorithms. Nevertheless, their search mechanisms

are distinct. GWO is inspired by the hunting behavior of grey

wolves and utilizes three types of wolves to search the solution

space: the alpha wolf, the beta wolf, and the delta wolf. CS is

influenced by the obligatory brood parasitic behavior of

cuckoo and utilizes Lévy flight to generate novel solutions.

Numerous studies revealed that GWO excels at exploitation

(Long et al., 2018; Gupta and Deep, 2019; Saxena et al., 2019),

whereas CS is more interested in global exploration (Mlakar

et al., 2016). The GWO algorithm has been used in this work

to determine the optimal size of the proposed system

components, thereby lowering the system’s cost and

meeting load demand. When GWO inspects an individual

with a high fitness value, a weak global search ability occurs,

allowing to fall into the local optimum more easily. A Cuckoo

Search Algorithm (CSA) updates the nest’s position with a

probability that is independent of the search path and in

random directions. As a result, it is much easier to jump

from one region to another. Thus, CSA is an extremely

beneficial tool and can be adopted to improve GWO. In

this paper, CSA has been implicitly employed in the GWO

algorithm to update the positions of existing search agents and

generate a new set. The new hybrid GWCSO is powerful and

can quickly solve optimization problems by extracting the

sizing units of solar PV, wind turbine, storage batteries, and

biomass gasifier in a grid-connected MG. In this regard, the

position updated equation of CSA is used to modify the

positions, speeds and convergence accuracies of the grey

wolf agent. The flowchart of GWO in conjunction with

CSA is depicted in Figure 3.

3.3.2 Mathematical model of grey wolf
optimization

The fitness function determines the level of the grey.

According to the fitness value, the alpha wolf, beta wolf,

and delta wolf are the best fitness solutions. These three

solutions are denoted as the key-group. Omega wolf is

responsible for the remaining wolves. Grey wolves’ social

hierarchy and hunting technique are mathematically

modelled in order to create GWO and optimize it. The

following mathematical models are proposed for the social

hierarchy, encircling, hunting and attacking prey (Xu et al.,

2017; Alhasnawi et al., 2021d):

3.3.2.1 Encircling prey

During the hunt, grey wolves encircle their prey. The

following equations are presented to mathematically model

encircling behavior:

�D �
∣∣∣∣∣∣ �C.Xp

�→(t) − �X(t)
∣∣∣∣∣∣ (25)

�X(t + 1) �
∣∣∣∣∣∣Xp
�→(t) − �A. �D

∣∣∣∣∣∣ (26)

Where t + 1denotes the next iteration in these two equations,
�X denotes the position of a single wolf. Xp

��→
denotes the prey’s

position, while �A and �D denote the coefficient vectors. The

following equations model the calculation method

�A � 2 �a. �r1 − �a (27)
�C � 2. �r2 (28)

Where �r1 and �r2 are random integers between 0 and 1. Vector
�a is set to a value between 2 and 0, which causes the number of

iterations to decrease linearly during the iterative procedure.

3.3.2.2 Hunting prey

When the wolf group locates prey, the alpha wolf, beta wolf,

and delta wolf lead the wolf group in encircling the prey. Assume

they are aware of the prey’s location. Thus, creating a key group

from the best three solutions obtained thus far and updating the

Frontiers in Energy Research frontiersin.org09

Jasim et al. 10.3389/fenrg.2022.960141

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.960141


position of each wolf in the group according to the key

group. The following equations are used to update the position.

�X(t + 1) � �X1 + �X2 + �X3

3
(29)

�X1 � | �Xα − �A1. �Dα| (30)
�X2 �

∣∣∣∣ �Xβ − �A2. �Dβ

∣∣∣∣ (31)
�X3 � | �Xδ − �A3. �Dδ| (32)

Where �Xα, �Xβ, and �Xδ denote the top three solutions obtained

thus far during the iterative procedure, which constitute the key

group. The following equations define additional parameters

�Dα �
∣∣∣∣∣∣ �C1. �Xα − �X

∣∣∣∣∣∣ (33)
�Dβ �

∣∣∣∣∣∣ �C2. �Xβ − �X
∣∣∣∣∣∣ (34)

�Dδ �
∣∣∣∣∣∣ �C3.X

→
δ − �X

∣∣∣∣∣∣ (35)

3.3.2.3 Attacking prey

Grey wolves typically attack their prey when it comes to a

halt. Thus, the following equation describes the behavior of grey

wolves as they approach their prey.

A � 2 − 2( t
Max

) (36)

Where t is an integer value between 0 and Max that represents

the number of times the present algorithm has run (max number

of iteration).

3.3.3 Improving in grey wolf optimization
algorithm

As shown in Eq. 29, the GWO algorithm updates the

positions of individuals with high fitness values via trend

search, which is a key group. Consequently, it will have the

poor global-search capability, and it may be easy to slide into the

local optimum, particularly when dealing with large data sets.

With a random walk and levy-flights, the Cuckoo Search (CS)

algorithm updates the positions of the nest, while the search path

can be either longer or shorter than the previous one with nearly

the same probabilities, and the direction is highly random. As a

result, it is much easier to move from one area to another in the

future. The CS algorithm must adhere to the three idealized rules

listed below.

• To begin, cuckoo birds randomly choose their nests and

only lay one egg at a time.

FIGURE 3
The flowchart of GWO with CSA.
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• Second, only the most desirable nests will survive for future

generations.

• Thirdly, the number of bird nests and the probability of

discovering the eggs are fixed. If the host bird discovers an

outsider’s egg, the host bird abandons the nest and builds a

new one.

Following these three rules, the nests are updated during

iteration by following the next equations.

In the CS operation, a population, from the standpoint of

implementation,Ek(Xk
1 ,X

k
2 , . . . ..,X

k
N), of N individuals is

evolved from a starting point (k � 0) to a total number of

iterations (gen). Each individual Xk
i (i ∈ [1, . . . .,N]) is an

n-dimensional vector with the dimensions (Xk
i,1, X

k
i,2, . . . ..,X

k
i,n)

each corresponding to a decision variable in the

optimization problem to be solved. The quality of each

individual, Xk
i (candidate solution), is determined using an

objective function, f(Xk
i ), whose final result represents Xk

i ’s

fitness value. Through use of Levy flights to produce new

candidate solutions is one of the most advanced features of

cuckoo search. A new candidate solution, Xk
i (i ∈ [1, . . . ., N]) is

generated by perturbing the current Xk
i with a position

cichange. To obtain ci, a symmetric Levy distribution

generates a random step, si. Mantegna’s algorithm is used to

generate si(Mantegna, 1994; Cuevas and Reyna-Orta, 2014):

si � �u∣∣∣∣∣ �v∣∣∣∣∣1/β (37)

Where �u � {u1, u2, . . . .un} and �v � {v1, v2, . . . .vn} both

n-dimensional vectors with a dimension of 3/2. Each

component of �u and �v is calculated using the normal

distributions described below (Cuevas and Reyna-Orta, 2014):

u ~ N(0, σ2
u), v ~ N(0, σ2

v) (38)

σu �
Γ(1 + β). sin (π.β2)
Γ((1+β)2 ).β.2(β−1)/2 , σv � 1 (39)

where the gamma distribution is denoted by Γ(.). After

calculating si, the required change in position ci is calculated

as follows:

ci � 0.01.si ⊕ (Xk
i − Xbest) (40)

where the product ⊕ is entry-wise multiplications and Xbest

denotes the best solution that has been observed thus far in

terms of fitness value. Finally, the new candidate solution,Xk+1
i , is

determined through the use of Eq. 41

Xk+1
i � Xk

i + ci (41)

As a result, the CS algorithm can efficiently search the

solution space because its step changes with small distance

detection and occasional long distance walking, and the step

length is much longer in the long run (Cai et al., 2003). Figure 4

presents the pseudocodes representation of the GWO and

GWCSO algorithm.

4 Simulation results

The adopted total load profile for (CL, RL, and IL) to

determine the optimal size of system components and to

conduct energy management analysis is depicted in

Figure 5, where (a) shows annual load profile and (b)

shows daily load profile. The annual solar irradiance,

ambient temperature and wind speed of Basrah city, Iraq

are adopted as an annual input weather data as shown in

Figures 6A–C respectively.

4.1 Optimal sizing results

The optimal findings include the total number of wind

turbines, solar PV panels, batteries, and the maximum rating

of a gasifier. The most viable and optimal option is ranked

according to the ANC and LCOE metrics. Table 2 lists the

control parameters for the optimization algorithms used to

simulate the proposed technique in MATLAB software. For

the case study, GWO and GWCSO algorithms produced

comprehensive optimal results, which are presented in

Table 3. The results indicate that the GWCSO algorithm

predicts the system’s minimum ANC with the lowest LCOE.

The GWCSO algorithm predicts 797.38 kW, 2000 kW solar

PV wind turbines, 1166.53 batteries, and a 1.47 kW biomass

gasifier with 12014467$ total net price cost and an

annualized cost of energy of 1084800.5 $, resulting in an

LCOE of 0.2052 $/kWh. The GWCSO algorithm forecasts

the smallest possible cost of components’ size for the system,

as shown in Table 4. This is because the components’ units

are the lowest achievable with this optimization algorithm,

as shown in Table 3. Additionally, Table 4 demonstrates that

energy purchased from the utility grid using GWCSO is less

expensive than energy purchased via GWO, and vice versa in

the energy sold to the utility grid. The convergence rates of

both algorithms are depicted in Figure 7.

4.2 Energy management analysis

To meet overall energy demand, the proposed system uses

solar, wind, batteries, gasifier, and the utility grid for the

purchase or sale of needed or extra energy, respectively.

Figure 8A depicts the monthly average energy balance over

a year. The annual energy produced by wind, solar

photovoltaic, battery (input and output), gasifier, and grid

(sale and purchase) are depicted for each month. If the total
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power generated by solar, wind, batteries, and the maximum

gasifier power does not meet the load demand, the gasifier

power will be zero, and the power purchased from the grid will

meet the load demand. On the other hand, if the power

generated by solar and wind alone does not meet the

demand, a battery is used to compensate for the lack of

available power to meet the demand. So, if there is excess

solar and wind energy after meeting the load demand, it is

necessary to determine whether all of the available energy can

be stored in the battery; if so, the remaining energy should be

stored in the battery. Alternatively, after battery charging, sell

excess energy to the grid. Figure 8B shows the grid sales and

energy purchase in the first week of April. The greatest

amount of energy sales is in July, because of the high

FIGURE 4
The pseudocode for the GWO and for the GWCSO.

FIGURE 5
The adopted (A) annual load and (B) daily load.
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FIGURE 6
The adopted weather data of (A) solar irradiance, (B) ambient temperature and (C) wind speed.

TABLE 2 The control parameters of GWO and GWCSO.

Algorithm Number of
search agents

Maximum number
of iterations

Dimension Lower limits
for wind,
solar, gasifier
and battery
units

Upper limits
for wind,
solar, gasifier
and battery
units

GWCSO 30 1000 4 [1 1 1 1] [900 2000 100 3000]

GWO 30 1000 4 [1 1 1 1] [900 2000 100 3000]

TABLE 3 The optimal sizing outcome achieved from adopted techniques.

Algorithm Wind turbine (kW) Solar (kW) Gasifier (kW) Battery units ANC ($/year) TNPC ($) LOCE ($/kWh)

GWO-CS 797.38 2000 1.47 1166.53 1084800.5 12014467 0.2052

GWO 873.53 2000 1.684 1176.85 1117558.59 12407851 0.2053

TABLE 4 The annual cost of the system components and grid purchases and sales ($/year).

Algorithm Wind
cost

Solar
cost

Biomass
cost

Battery
cost

Inverter
cost

Grid
cost

Grid
purchases

Grid
sales

GWO-CS 388009.37 643728.8 19.84 27829.51 1552.48 23660.46 155285.9 3845389.7

GWO 425064.35 643728.8 22.63 28075.8 1552.48 19114.5 147868.2 4003278.8
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values of solar radiation and temperature in this month, which

gives the greatest amount of power from the solar PV units.

Figure 9 depicts a complete power exchange for the first week

in April to illustrate the power exchange between the system’s

various components. As shown in the Figure, the battery out (red

curve) met the load demand in the interval up to [20 h 24 h] of

the first week of April because solar and wind energy alone could

not meet the demand. The other intervals in which the battery

provides energy are [4 h 6 h], [43 h 49 h], [68 h 76 h], [83 h 86 h],

[94 h 102 h], and [116 h 124 h]. As discussed in the operational

methodology, the utility grid is used only when solar and wind

energy are insufficient to meet load demand, battery capacity is

equal to or less than the minimum SOC, and also the biomass

gasifier cannot meet the load demand. It is cleared from

Figure 9B, the MG purchased energy from utility grid in the

intervals [1 h 8 h], [24 h 31 h], [48 h 56 h], [101 h 104 h], and

[123 h 126 h]. Except for the time periods when the battery

supplies energy and the intervals in which the MG purchases

energy, excess energy is often sold to the utility grid, as shown by

the blue curve.

Battery State of Charge (SOC) measurement becomes critical

in systems that use batteries as storage devices. Throughout the

year, Figure 10 depicts the state of charge of the battery bank, as

well as the input and output energy. The initial and minimum

allowable SOC levels have been set to 100% and 30%,

respectively. Additionally, Figure 10 demonstrates that battery

SOC is generally good, except for a few instances when natural

resources are limited or load demand is greater.

FIGURE 7
The convergence curve of (A) GWCSO and (B) GWO.

FIGURE 8
(A) Monthly and (B) Daily average energy balance over a year.
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4.3 Robustness test

To evaluate the robustness of the GWCSO and GWO

algorithms, a total of 20 independent runs for each algorithm

have been carried out. Figure 11 depicts the mean, maximum,

and minimum annual cost values, as well as the standard

deviation, for a total of 20 runs. As can be seen in the Figure,

the GWCSO algorithm exhibits the smallest amount of deviation,

FIGURE 9
The power exchange between the adopted sources and batteries in (A) and with grid in (B).

FIGURE 10
Battery SOC and energy (A) annual SOC, (B) SOC of the first week inMarch, (C) annual input and output energy, and (D) input and output energy
of the first week in April.
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resulting in a low deviation from the mean and thus, making it

superior to the GWO algorithm. Additionally, it can be seen in

the Figure that the GWCSO algorithms provide the smallest

mean, minimum, and maximum values of ANC, TNPC, and

LCOE when compared to the values obtained by using GWO.

5 Conclusion

A reliable, cost-effective, and environmentally friendly

hybrid energy management system with solar PV, wind,

biomass gasifier and battery storage units for grid

connected area has been proposed in this paper. Initially, a

brief discussion of the mathematical modeling of the various

components adopted in the study is presented; following that,

the operational strategy and brief introduction of the GWGSO

algorithm are presented. The operating strategy is proposed

for energy management by using wind-solar PV renewable

sources initially, then energy storage systems, and finally

biomass as a last resort, which is the most expensive

source. This strategy makes the system capable of trading

electrical energy with the utility grid. The GWCSO algorithm

has been used to develop a mathematical model for

determining the optimal size of components to resolve MG

resources coordination, system configuration, and component

capacity in order to meet the load demand. Optimization is

performed to maximize economic benefit while minimizing

energy consumption, pollutants, and other objectives. Finally,

the GWCSO algorithm’s results were compared to the GWO

algorithm’s results. The results indicate that the GWCSO

algorithm can accurately predict the system’s minimum

component units, minimum ANC, and lowest LCOE. Also,

the proposed algorithm outperformed GWO in terms of

robustness due to its lower deviation for multiple runs. The

added value of this study is that it illustrates the techno-

economic and environmental consequences of grid-connected

hybrid systems at various integration levels, making it easier

for the investor to choose the optimal system (Mahmoud et al.,

2020).
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Glossary

ANC Annualized Cost

BESS Battery Energy Storage System

CRF Capacity Recovery Factor

CSA Cuckoo Search Algorithm

CS Cuckoo Search

CUF Capacity Utilization Factor

CL Commercial Loads

DPSP Deficiency of Power Supply Probability

GWCSO Hybrid Grey Wolf with Cuckoo Search Optimization

GWO Grey Wolf Optimization

IL Industrial Loads

LCE Levelised Cost of energy

LPSP Loss of Power Supply Probability

LCOE Levelized Cost Of Energy

LLP Loss of Load Probability

MG Microgrid

NPC Net Present Cost

PV Photovoltaic

RER Renewable Energy Resource

RL Residential Loads

SOC State Of Charge

CVbm calorific value of the biomass

Cci capital and installation costs

Cr replacement costs

Cn battery bank’s aggregate capacity

Cb capacity of a single battery

Cm annual maintenance costs

Cf operation costs

Cs salvage costs

CWT cost of wind turbine (per kW)

Csol cost of solar PV (per kW)

Cinv cost of inverter (per kW)

Cbatt cost of battery (per kW)

Cbmg cost of the biomass gasifier (per kW)

Ebmg annual electrical energy output of biomass

Ek population the standpoint of implementation of N

individuals (Xk
i )

G solar radiation

Gref reference solar radiation

I max maximum charging current of the battery

i yearly interest rate

K coefficient of power at different temperatures

NOCT nominal operation temperature

N number of years in the lifetime

NWT total units number of wind turbines

Nsol total units number of solar PV

Nbatt total units number of batteriestotal number of batteries

Ns
batt number of series-connected batteries

Nm
sol maximum number of solar PV panels

Nm
batt maximum number of batteries

Nbatt total units number of batteriestotal number of batteries

Nm
WT maximum number of wind turbines

PWT(t) wind turbine power

PW
r rating power of wind turbine

Pbmg biomass’s rating power

Pm
bmg maximum rating power of biomassmaximum rating of

biomass gasifier

Psol(t) power output of solar photovoltaic
Pnom
PV nominal power of PV

Pm
L (t) peak power of demand

Pinv(t) inverter rating power

Pm
bmg maximum rating power of biomassmaximum rating of

biomass gasifier

Pb(t) battery’s input/output power
SOCmin minimum state of charge

si random step

Tamb ambient temperature

Tref reference temperature under standard conditions

Vbatt single battery’s voltage

Vcin cut-in speed

Vbus battery’s bus voltage

Vrat rated wind speed

Vcout cut-out speed

V(t) wind speed at height (HWT)

Vr(t) wind speed at the reference height Hr

�X position of a single wolf

Xp
��→

prey’s position

�Xα, �Xβ, and �Xδ top three solutions obtained by GWO

Xk+1
i , new candidate solution

ηbatt battery’s round trip efficiency

ηinv efficiency of the inverter

�u and �v n-dimensional vectors

λ friction coefficient

ηcbatt battery’s charging efficiency

ηdbatt battery’s discharging efficiency

ηbmg overall efficiency of biomass
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